
TUTORIAL

A Tutorial on Pharmacodynamic Scripting Facility
in Simcyp

K Abduljalil*, D Edwards, A Barnett, RH Rose, T Cain and M Jamei

INTRODUCTION

The Simcyp Simulator provides a framework for mechanistic
Physiologically-Based Pharmacokinetic/Pharmacodynamic
modeling of potentially interacting drugs. It also provides
a scripting facility, using the Lua language, for developing
customized pharmacodynamic and toxicity models driven
by drug concentrations at the site of action.

We present an overview of the scripting facility including
the scripting language, the editor, and how scripts are
embedded within the Simulator. Examples incorporating dif-
ferential equations and including inter-individual variability
on parameters are presented.

BACKGROUND

The Simcyp population-based Simulator is a widely used
platform for predictive simulation of pharmacokinetic/
pharmacodynamic (PKPD) parameters and profiles, and
drug-drug interaction (DDI) based largely on the extrapola-
tion of a limited set of physicochemical properties and in vitro
experimental data, such as the clearance and transport of a
drug by one or more metabolizing enzymes and
transporters.1,2

In a clinical setting, several predictive variable factors, i.e.
covariates, may be measured in an individual patient or vol-
unteer and used to improve a PKPD model prediction and
describe the observed variability. To incorporate inter-
individual variability, the Simcyp Simulator generates virtual
populations of individuals from models incorporating struc-
tural correlation of multiple factors (including demographics,
genetic and disease status) generating an individual subject
with its own set of parameters.1 A more mechanistic simu-
lation approach can incorporate model components that
account for and predict individual covariates. The Simcyp
Simulator uses such mechanisms benefiting from both
“bottom-up” and “top-down” paradigms, called by some the
“middle out approach”.1,3

While prediction of PBPK involves a certain level of
modeling complexity, the extension of such predictions to
PD outcomes requires an even more complex layer. Linking
PD to the PBPK model allows the possibility of deriving the
response (pharmacological or toxicological) by the organ
concentration.

The Simulator provides common empirical and semi-
mechanistic “Built-In” pharmacometric building-blocks to

ease construction of quite complex models by picking and
mixing such building blocks, in a flexible environment, to
various input tissue/organ concentrations to drive the
response. These built-in PD models have been described
earlier,1 but are defined further here to fully understand the
architecture of the environment that includes the scripting
features.

Briefly, the architecture of the Simcyp PD module
presents a number of different model-building blocks called
PD Response Units (Figure 1). Such units can be linked
together to develop more complex responses via certain
“transduction” options offered by the platform (for the
basics of transduction see4). There are two types of PD
Response unit; a PD Basic unit and a PD Link unit.1 The
PD Basic unit offers the most commonly used simple
response models that include, linear, exponential and
sigmoidal/Hill,5 providing an option to link them to an effect
compartment. These models can represent a kinetic recep-
tor binding model and be transduced to a stimulus
response model in a subsequent PD Basic unit. The PD
Link unit includes transform link models, which are simple
transforms to convert response to a probability or event
count rate, and parameterised link models which include
indirect response models6 and survival models.7 The PD
Link unit does not include the effect compartment or kinetic
receptor binding links as these models are available in the
PD Basic unit. PD Response units are subdivided into a
sequence of steps with associated model choices from unit
input to unit output. Each step calculates values according
to a chosen model for that step and passes its result to the
next step in the sequence. Applications of linking PBPK
and these PD models to predict the impact of genotypic
variability, formulation differences, differences in target bind-
ing capacity and target site drug concentrations on drug
responses and variability have been described previously.8

Since a Simcyp PD model is linked onto the PBPK simu-
lation model for a specific compound via a chain of
response units and each unit comprises a number of built-
in steps in a data flow, this design gives an opportunity for
replacing a step within a unit by a custom model (Figure 2).
In the same way as for a built-in model, the custom model
connects to its input and passes on its output. By this
mechanism, the input of the custom model acts in the
same manner as the input into the processing step it repla-
ces, and the custom step output feeds back into the
sequence of PD processing step in the same way that the
output from the step it replaces would have done. Thus, the

Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK. *Correspondence: Khaled Abduljalil, Khaled.Abduljalil@certara.com
Received 22 April 2016; accepted 2 July 2016; published online on 9 July 2016. doi:10.1002/psp4.12102

Citation: CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 455–465; doi:10.1002/psp4.12102
VC 2016 ASCPT All rights reserved



flow of the PD units is maintained in a sequential manner.
The step replacement is represented by a Step function
which substitutes a built-in function with a user-scripted
function in the Simulator’s C11 code. If the PD Custom
step is on the first step occurrence in a chain of PD
response steps (for example on PD Basic 1), the input to
the PD Custom step can be a drug (total or free) concen-
tration or amount in plasma, blood, effect compartment, or
any other tissue in the PBPK model. It can be the total
dose of the drug, if no PK model is assumed. If the PD
Custom step is preceded by one or more PD steps, then

the input to the PD Custom step is the output from the pre-
ceding step. The output response will be the response in
the last step in the PD chain returned by the user, however
when the codes contain ODEs, the output will also report
all state variable profiles. More than one built-in step can
be replaced by a custom step allowing more than 20 places
across the various compound types to be used, however
replacing only one step can be enough, depending on the
PBPKPD model settings.

ENVIRONMENT CONSIDERATIONS
The scripting language – Lua
Lua is a high-level freely available, very lightweight, and

flexible scripting language (www.lua.org). It can easily be

embedded in other programs with no need to run an exter-

nal compiler, and scripts are run seamlessly as part of a

“live simulation.” Lua is a relatively new language for PKPD

scientists and modellers but it has been used extensively,

particularly in computer games where very fast script exe-

cution is required. While advanced features in the Lua lan-

guage are very powerful, the basics of Lua are rather easy

to learn. There is extensive online documentation (www.lua.

org/docs.html). Details of this documentation are beyond

the scope of the current paper.
Mathematical functions available in Standard Lua library

are supported, for example logarithm, exponential, random

distribution . . . etc. (www.lua.org/manual/5.1/manual.html#5.6).

Only functions that are not required or potentially unsafe for the

purposes of a modeling script were disabled. In addition to the

Figure 1 Simcyp PD response unit structure and interconnec-
tions enabling various combinations of PD units up to three
layers.

Figure 2 General scheme shows the Custom PD Step within the PD Units Chain. The figure shows how the Custom Step replaces a
default PD Step. Each figure block can be equivalent to a single script containing one or more functions. The output function, Rxu1,
from an upstream step “1” is considered as an input function to the PD Custom Step, Xu,custom, while the output from the custom step,
Rxu,custom, is considered as an input function, Xu3, to a subsequent step “3”.

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

456

CPT: Pharmacometrics & Systems Pharmacology

http://www.lua.org
http://www.lua.org/docs.html
http://www.lua.org/docs.html
http://www.lua.org/manual/5.1/manual.html#5.6


requirement of valid Lua Syntax in a script, there are additional

rules imposed for valid script execution in the Simcyp environ-

ment. Most of these are enforceable through a validation tool

linked to the script editor; others through limited access provid-

ed by Simcyp Lua Library functions; a few by the user interface

itself. The scripting editor is based on generic text editing com-

ponents from the Scintilla project (www.scintilla.org) but is

adapted for Simcyp PD scripting.

Simcyp call-back functions
When a simulation is executed, different branches of the

simulator (trial design, population library, and compound

library) are initiated in order and connected to generate

individual values for the compound and population type

under study. The engine then starts to run PKPD calcula-

tions and reports the results. A summary scheme of these

processes have been provided in the supplementary mate-

rial (Appendix A).
Within a script, there are named script functions (e.g.

“Step” and “Setup” functions) which are called by the Simu-

lator platform at specific points in the simulation. Such func-

tions are generically known to programmers as “call-back”

functions. Simcyp maintains the signatures of these call-back

functions and uses them to give controlled access to inputs

and parameters through function arguments and the values

to be passed onto as the function’s return value. The particu-

lar function names are reserved and a particular signature is

required for the function to be valid. Coding of Lua scripts is

supported by a “Functions” dropdown menu, which provides

templates for calls to Simcyp Library functions (calls to

Simcyp C11 code available as Lua script functions) as well

as function definition templates for user-coded Lua Setup
and Step functions (Figure 3; see also Supplementary
Materials for additional functions in the dropdown menu).

Generally, Setup functions map onto execution of simu-

lation contexts and called once a certain simulation context

is reached, where Simcyp Library set and get functions
can be used to manipulate data stores (see Figure 4). In

order to control the information passage, the Simcyp data

store provides four types of storage space to support PD
custom scripting, namely: stores for values scoped at the

simulation-population, compound, individual, and individual-
compound data levels with one Setup function correspond-

ing to each scoping level (Figure 4).
The Step functions are used to code the model in alge-

braic or ODE equations. All step functions operate at the
individual-compound specific level. They are called for each

individual per active compound and could be for each time

point if the model contains ODE. Most step functions have
read access to an array of parameters (P) which are indi-

vidualised model parameters specific to that step for a par-

ticular compound type (see the warfarin example below).
Details of these functions are available in Simcyp help

documentation.
While PBPKPD applications using the Simcyp PD mod-

ule with customized features have been published,9–11 the
aim of this tutorial is to provide a description of the underly-

ing structure and feature of the scripting environment and
to demonstrate a case example of coding a PD model step

by step.

Figure 3 A screenshot of the Simcyp Lua Editor shows the Functions dropdown menu. The expanded menu shows how to access
various get functions templates to get individual covariates.

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

457

www.wileyonlinelibrary/psp4

http://www.scintilla.org


Case Examples
Example – Warfarin PD model. The case example pre-

sented here is based on the PD response model to warfa-

rin in a Chinese population12 as this model has different

coding features. The PK model is not of interest in this

tutorial, since the plasma concentration is instead taken

from the PBPK model and used as an input to the PD

model. The PD model we are interested in here is

depicted next:

dNPTij

dt
5Kin � 12

Imax � Cp Sð Þij
mIC50 1 Cp Sð Þij

 !
2Kout � NPTij

INRij 5INRBase1 INRMax � 12
NPTij

NPT0

� �mc

As the equations show, the time course of normal prothrom-

bin (NPT) concentration in response to an increase in the S-

warfarin plasma concentration (Cp(S)) after warfarin

Figure 4 Simcyp datastores for persistence of script variables at the different scoping levels, together with the Setup, Step, and Sim-
cyp library (sc:) functions and Lua code that can access or modify them. Higher level stores can provide default parameters for lower
level access when a requested value is not available at the same level as the get call. The set functions typically set store values at
the same level as the function call. sc:sampleIIVDistribution generates individual values from the parameter distribution stored
at the next higher level.

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

458

CPT: Pharmacometrics & Systems Pharmacology



administration was described by an indirect model to express

the time delay between Cp(S) and NPT, in which NPT syn-

thesis was assumed to be inhibited by the Emax model. NPTij

represents the NPT in the ith individual at the jth observa-

tion, Kin is expressed as Kout multiplied by NPT0 (baseline

NPT before warfarin administration), IMax is the maximum

decrease in NPT concentration assumed to be 1.0 (complete

inhibition of NPT synthesis), Cp(S)ij is the Cp(S) in the ith

individual at the jth time point, and IC50 is the Cp(S) that

inhibits NPT synthesis at 50% of IMax.

The time course of international normalized ratio (INR) in

response to a decrease in the plasma concentration of

NPT after warfarin administration was described based on

the percentage inhibition of NPT0. INRij represents the INR

in the ith individual at the jth observation, and INRBase and

NPT0 represent the baseline INR and NPT before warfarin

administration, respectively. INRMax is the maximum INR

increase from the baseline, which was set at 5 (the maxi-

mum INRij was fixed at 6) because the observed maximum

INRij in 97.3% of the study patients was less than 6. The

exponent Gamma (c) accounts for the nonlinear relationship

between NPT inhibition and the increase in INR by warfarin

and modified by inter-individual variability in an exponential

manner (mcÞ after centring on the median value of NPT0

(119 mg/ml).
The model parameter values are:

Cp(S)ij is the S-warfarin plasma concentration
NPT0 (mg/ml) 5 118.2 6 22.1 (mean 6 SD)
INR0 5 1.05 6 0.10 (mean 6 SD)
Kout (1/hr) 5 0.0138 (CV544%)
Kin 5 Kout � NPT0

Imax 5 1 (fixed)

m_IC505 IC50*(2.07 ˆ VKORC1), where IC50 (mg/ml)

5 0.072 (equivalent to 0.233 mM) (CV 537%) and

VKORC1 code was 0 for VKORC1 *2/*2 and 1 otherwise.
INRMax 5 6 (Fixed)
m_Gamma (mc) 5 Gamma * e(0.005886 * (NPT0 – 119),

where Gamma 5 3.48 (CV523%).

The Simcyp Lua code of this model is provided in Figure 5.

To code this model, one needs functions that define and

handle the structural model, define parameters and their

distribution and covariate, generate individual values and sam-

pling function. The first function is the popSimSetup
function

function popSimSetup(. . .)
sc:setNUserOdes(1)– define how many differential equations

sc:setUserStateName(1, “Prothrombin
conc(mg/ml)”)

end

The popSimSetup function has the widest context. We

have defined here the number of ODE in the whole work-

space. In our case we have only one ODE for the parent

compound. It is recommended to assign values that are

kept constant for all compounds and individuals so this

function does not need to be called repeatedly at lower lev-

el of storage. The second line in our code is to label the

state variable, but other parameters, including covariates,

can be labelled here as well. The popSimSetup function

operates at the population and simulation level and is called

only once per simulation. Iteration through all active scripts
for a call to popSimSetup will occur in order of compound

(i.e., substrate then inhibitors then metabolites) and step

sequence within compound.
Next, we need to start coding on either an individual or

compound level. We will start with coding individual level
and then compound level information. However, the reverse

is also permitted. The function that writes on individual level

is called individualSetup function as below:

function individualSetup(. . .)
local VKORC1
VKORC15math.random(0,1)

sc:setParameter(1,VKORC1)
end

We have coded here a covariate that was found to affect

IC50. The code for this covariate is either 1 or 0 for each

individual (VKORC1*2 rs9923231 (21639 G>A). Carriers
of this allele will have a code of 0 (see the original model)).

Therefore we have to declare this variable as local and use

a Lua standard function math.random(lower, upper) to

generate an individual value for this categorical covariate.
For sake of code simplicity, here we have assumed 50% of

the population have the code 1 and 50% have the code 0,

but other frequency can be coded. The individualSetup
function is called once for each individual subject to assign
individual parameter values. We have used this function to

set up a covariate (other examples of using Simcyp covari-

ates are given in the Survival example in Appendix B). In

the last line of the step function we used a set function to
store and index this parameter. This is the first parameter

in our model.
Now, we need to code compound parameters with their

distribution types on the compound level. The function that

writes to that level is called compoundSetup function. This
function is called once for each active compound per

response step combination in the following order; substrate,

then inhibitors, then metabolites.

function compoundSetup(. . .)
sc:setIIVDistribution(2, sc.NORMAL_SD, 118.2,
22.1) – NPT0 (mg/mL)
sc:setIIVDistribution(3, sc.NORMAL_SD, 1.05,
0.10) – INR0
sc:setIIVDistribution(4, sc.LOGNORMAL_CV,
0.0138, 44) – kout (1/hr)
sc:setIIVDistribution(5, sc.LOGNORMAL_CV,
0.233, 37.1) – IC50(mM/L)
sc:setIIVDistribution(6, sc.LOGNORMAL_CV, 6,
0) — INR_max
sc:setIIVDistribution(7,sc.LOGNORMAL_CV, 1, 0)
– Imax
sc:setIIVDistribution(8, sc.LOGNORMAL_CV,
3.48, 23.4) – Gamma
end

We have an arithmetic mean and SD for INPT0 and

INR0 as baseline before administration of warfarin. We

will code them as parameters that have normal distribution

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

459

www.wileyonlinelibrary/psp4



with the reported mean and SD. For the rest of the parame-
ter a lognormal distribution with CV was assumed. More
details on the distribution are given later in this tutorial. The
input to the PD model is the total plasma concentration of S-
warfarin. The simulator takes PD input as total or free con-
centration or total amount in molar units. Since the input
concentration is in mM, the IC50 is changed from mg/ml to
mM. We have started indexing these parameters from 2,
because we have already the first index for VKORC1. Please
note that INR_max and Imax were fixed, therefore they will
not have any CV.

After defining the compound parameters and their distri-
bution types, we need in the next step to sample from
these distribution types and assign parameter values to
each individual. To do this we need to use a function called
individualCompoundSetup function. This function oper-
ates at the individual-compound level and is called once for
each individual per active compound and response step

combination. Values which depend on both compound type
and individual, for example an individual clearance value of

a drug, can be manipulated here.

function individualCompoundSetup(. . .)
for i52,8 do
local Pindiv5sc:sampleIIVDistribution(i)
sc:setParameter(i, Pindiv)

end
end

In our model we have sampled for the seven parameters,
indexed previously under CompoundSetup function, using
the distribution associated to each of them and we pass
individual values down to the lowest level “step” function to

be used for the calculation. We have one differential equa-
tion with initial condition and one algebraic function. We will
start coding the initial condition for the NPT parameter

Figure 5 Simcyp Lua code for INR model after warfarin administration (based on Ref. 12).

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

460

CPT: Pharmacometrics & Systems Pharmacology



using a function called odeInitStep function. This func-
tion can be ignored if the initial condition is zero, otherwise
it is required. Here we simply can write it as:

function odeInitStep(xin, su, P, . . .)
su[1]5P[2]

return su[1]
end

The table type in Lua implements associative arrays that
can be indexed not only with numbers, but also with strings
or any other value of the language, except nil. Therefore to
make the code clearer we can use names instead of num-
bers by constructing a table and assigning it to a variable
“t” as below:

function odeInitStep(xin, su, P, . . .)
t5{}
t.NPT51
su[t.NPT]5P[1]

return su[t.NPT]
end

The su is a reference to arrays or associative arrays rep-
resenting a reserved block of user state variables reserved
by Simcyp.

After coding the initial condition, we can now code the
block of differential equations using a function called
odeRateStep (t, xin, su, gu, P, . . .) function. This is
similar to using the ODE block in other software such as
$DES in NONMEM or $DIFF in WinNonlin. The argument
xin and the returned value, represent respectively the
input (e.g. drug concentration or amount from the PBPK
model, such as unbound concentration in the liver or kid-
ney). In our example xin represents total plasma concen-
tration of S-warfarin. The argument P is a reference to a
generic input parameter array. The su and gu are referen-
ces to arrays or associative arrays representing a reserved
block of user state and user gradient variables reserved by
Simcyp by subscripting, so gu[1] and gu[2] will correspond
to su[1] and su[2]. Alternatively, names can be used
instead of numbers as shown earlier.

The variables used within the scope of this function will
be declared as local. In our example, the IC50 is assumed
to be dependent on individual VKORC1 variant and Gamma
is influenced by individual NPT values, according to the
original code. The math.exp expression is the Lua stan-
dard library function for exponent.

function odeRateStep(t, xin, su, gu, P, . . .)
local INR0, kout, IC50, NPT0, INR_max, Imax,

Gamma, Kin, VKORC1
NPT05P[1]
INR05P[2]
kout5P[3]
IC505P[4]
INR_max5P[5]
Imax5P[6]
Gamma5P[7]
VKORC15P[8]
mIC505IC50 * (2.07̂ VKORC1)
mGamma5Gamma* math.exp(0.005886
*(NPT0 - 119))

Kin5NPT0 * kout
t5{}
t.NPT51
NPT5su[t.NPT]

gu[t.NPT]5 Kin*(1-(Imax * xin/(mIC501xin))) -
kout* NPT
INR5INR01INR_max * (1 - NPT/NPT0)̂mGamma

return INR
end

Currently, up to 25 ODEs can be coded in all activated

custom models. The user needs to make sure that the cor-

rect indices or names are used by each script. Another

code example for this function is given in the viral model

code example (Appendix C). The total number of user

ODEs should be set up at the start of a simulation via a

sc:setNUserOdes(number) call within the popSim-
Setup function. The odeRateStep may also contain sim-

ple algebraic formulae assigned to other local variables.
It is also possible to directly access the ODE state varia-

bles like substrate or inhibitor concentration. Therefore it is

possible to connect/combine the impact of different com-

pounds, for instance, metabolite and the parent compounds

(substrate or inhibitor) simultaneously.
If the scripted model does not contain ODEs, such as

simple linear or Emax models, then one can select a differ-

ent Step function from the Function dropdown menu called

directAlgebraicStep(xin, P, . . .) function (see

example below). Indirect PD models6 or survival models7 in

their algebraic forms can be coded using a different func-

tion called indirectAlgebraicStep(t, xin, P, . . .)
function to use the simulation time (t) as the independent

variable. A code example of this function is given for a sur-

vival model in Appendix B in the supplementary

document.
So far we have clarified the concept of the Setup and

Step functions of the Simcyp Lua script and we have seen

many Simcyp Library Functions such as set functions and

some for distribution functions without providing details of

their roles. These will be discussed below before we go to

the next examples.

Simcyp library script functions. The Simcyp Library

consists of a number of Lua function calls (prefixed by

sc:) implemented within the Simcyp C11 code, as well

as some pre-supplied named values (prefixed by sc.) for

use as function arguments. These facilities allow and

control the passing of information between the Simcyp

simulator and Lua scripts, and are one of three main

types.

1. Simcyp set functions (to set/write values e.g.,

sc:setParameter)
2. Simcyp get functions (to get/read stored values e.g.,

sc:getIndivAge)
3. Simcyp sampling functions (to sample from a random

distribution, e.g., sc:sampleRandomDistribution)

The sc:set functions: Most custom Step functions have

read-only access to an array of individual parameters P

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

461

www.wileyonlinelibrary/psp4



specific to the step model for a given compound. Lua code

in Setup functions may define model parameter values

and store a value in P with the sc:setParameter
(index, value) function as we did for the VKORC1 vari-

able. Then the stored value can be retrieved with sc:get-
Parameter(index)function. For additional examples see

the survival model code (Appendix B). Such sc:set func-

tions store values at the same scoping level as the function

within which they occur (Figure 4). The sc:get functions

try the same level and if the parameter information is not

found, go to the next higher scoping level to find the

information.
Some sc:set functions need a value only as argument

such as the one we used at the top of the code for setting

the total number of ODEs in the simulation. At the same

place we used a function to label the state variable and other

parameters, if we wish to do so. For example:

function popSimSetup(. . .)
sc:setNUserOdes(1) – define how many differential

equations
sc:setUserStateName(1, “Prothrombin conc(mg/ml)”)
sc:setParameterName(1, “VKORC1”)
sc:setParameterName(2, “NPT0”)
end

Additional code examples are given in the supplementary

material (Appendices B & C). Parameter labels are stored

and used for the output of inter-individual variability distribu-

tions and individual values.
The sc:get functions: This function can be used to

retrieve any values stored temporarily for the current script

or can be used to call any covariates within the Simcyp Pop-

ulation Library. The Simcyp Library provides read only

access to different covariates generated as part of its virtual

population to obtain an individual value by calling one of

many sc:get functions, such as sc:getIndivAge(),

sc:getIndivEnzCovar(), sc:getIndivWeight(),
sc:getIndivSexCode() from a setup or step function. A

code example for using these functions is given in the next

example as well as in the supplementary document (Appen-

dix B). The range of covariates includes demographic and

physiological details amongst enzyme/transporter/receptor

phenotypes, abundances, and turnover. The drop-down

menus shown in Figure 3 give an idea of the range of cova-

riates available. The advantage of accessing covariates

assigned as part of the PBPK model is that a covariate that

is also used by the PD model will be given the same value

for the same individual as is used in the PBPK model.
The set function can be used to allocate extra

storage. Extra storage is provided at the simulation-

population level (Xtra) and at the individual (IndivXtra)

levels through the sc:setXtra(index, value) and

sc:setIndivXtra (index, value) function, respective-

ly. The extra storage allows additional values or variables to

be set and stored for later use independent of the step

function. Information for different compounds may be stored

at different indices. Both individualSetup, individu-
alCompoundSetup functions write to indivXtra storage,

while compoundSetup and popSimSetup functions write

to Xtra storage (Figure 4). Read access is possible for
Xtra at all levels with sc:getXtra(index), but indivX-
tra is readable only for the same individual through
sc:getIndivXtra(index) in individualSetup,
individualCompoundSetup and Step functions as differ-
ent individuals may be simulated on different execution
threads. More examples are in the Survival code
(Appendix B).

In our warfarin example, different parameters for an inter-
individual statistical distribution that is used to generate
individual P values were set up with sc:setIIVDistr(-
parameterIndex, distrName, mean, dispersion).
This will be discussed below under the Random Distribu-
tions and Parameter Dispersion section.

Random distributions and parameter dispersion. Cur-
rently, there are five types of predefined random distribu-
tions available for PD Custom scripting which are
selectable from the editor menu, namely lognormal (mean,
CV %), converted lognormal (meanln, sdln), normal (mean,
SD), zero truncated normal (mean, CV), and uniform (min,
max). A distribution for inter-individual variability of model
parameters can be specified through the function sc:se-
tIIVDistr(parameterIndex, distrName, mean,
dispersion) in the compound setup function. We have
previously defined in the warfarin model two types of distri-
bution, normal and lognormal. Then in individualSetup
function, there was a call via sc:sampleIIVDistr(para-
meterIndex) to sample from that distribution. The individ-
ual value is passed as argument P[index] to a step
function.

Alternatively, a user can sample from any of the afore-
mentioned distribution types via the library function
sc:sampleRandomDistribution(distrName, mean,
dispersion) without reference to a step-model parame-
ter. Such calls will use the same pseudorandom number
generator coded within Simcyp as the sampleIIVDistri-
bution function but the value can be assigned and used
however the user intends, not necessarily for inter-
individual variability.

A Simcyp simulation runs with a particular pseudoran-
dom number generator type. Currently, a user may select
from a linear congruential generator13 or a Mersenne Twist-
er generator14 with a master seed fixed by a user or
system-set from a clock time. This initial sequence will how-
ever be used to seed several other generators so that par-
allel individual simulations can proceed independently. PD
simulation of an individual is also set up with a generator
seeded with very large offset from the original PK genera-
tor. This approach maintains repeatability of various ran-
dom elements of a simulation from a fixed seed even when
some elements in a model have changed. Calls to Simcyp
Library distribution functions will insert calls in the pseudo-
random number generators specific to the PD context in
which the script is placed, but will not change the random
number sequences of purely PK – based sampling.

A user also has the option of generating random distribu-
tions using facilities in the Lua standard library for access-
ing the American National Standards Institute (ANSI)
standard C library (uniform) random number generator,

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

462

CPT: Pharmacometrics & Systems Pharmacology



notably the math.random, math.randomseed functions.

Since such calls are independently seeded, there is no

direct reference to any built-in Simcyp pseudorandom

sequence. Thus, the user will have to consider carefully the

effect of calls from multiple scripts.

Example - Emax model. This example shows a simple

pharmacodynamic model commonly known as the Emax

model, subtracted from a baseline response, and inserted

into a typical nonlinear mixed effects population model. Let

us code a subtractive Emax model from a baseline that is

age-dependent in Simcyp using Lua script that is structural-

ly equivalent to a NONMEM code in NMTRAN (shown

below).

$PROB PD_EMAX MODEL WITH AGE AS A COVARIATE

ON BASELINE
$INPUT ID TIME CONC RESP5DV AGE WT
$DATA EMAX_PD.txt IGNORE5#

$PRED
TVE0 5 THETA(1) - THETA(4)*(AGE-45)
E0 5 TVE0 1 ETA(1)
EC505THETA(2)*EXP(ETA(2))
EMAX5THETA(3)*(11ETA(3))

RESPONSE 5 E0 - (EMAX * CONC/(EC50 1 CONC))
Y 5 RESPONSE 1 EPS(1)

$THETA 50, 7, 15, 0.1
$OMEGA 5, 0.1, 1
$SIGMA 1

$SIMULATION

The concentration used as the PD input is not defined

here, however it can come from the PK model section or as

part of the data set file.
Pharmacometricians familiar with NONMEM NM-TRAN

terminology will recognize this code as defining a nonline-

ar effects model through a set of structural parameters

(the THETA’s) modulated by certain independent normal

random variables (the ETA’s) representing inter-individual

variability; with structural parameter values given in a

$THETA block and (diagonal) elements of the random var-

iable’s covariance matrix given in a $OMEGA block. Add-

ing ETA(1) to THETA(1) thus makes the E0 parameter

normally distributed, and multiplication of THETA(2) by

EXP(ETA(2)) makes the EC50 parameter lognormally dis-

tributed. The prediction includes an added residual ran-

dom error represented by an (EPS-ilon) and another

standard normal variable with a fixed variance defined in

the $SIGMA block.
An equivalent PD model can be scripted in Lua, whereby

the PD model parameter (labelled E0, EC50, Emax - param-

eters specific to a compound) and their associated inter-

individual random distribution are defined in a compound-
Setup function. Similar to the previous example, the Sim-

cyp Simulator can be told to sample individual values from

each such distribution in an individualCompoundSetup
function and save the individual values appropriately in the

underlying Simcyp datastore. The individual values will then

be available to a parameterised step function as elements

of parameter array P.
function compoundSetup(. . .)
sc:setIIVDistribution(1, sc.NORMAL_SD, 100, 5)
– E0
sc:setIIVDistribution(2, sc.LOGNORMAL_CV,7,4) – EC50

sc:setIIVDistribution(3, sc.NORMAL_SD, 45, 0) –
Emax
sc:setIIVDistribution(4, sc.NORMAL_SD, 0.1, 0)
– effect of age
sc:setIIVDistribution(5, sc.NORMAL_SD, 0, 1) –
used as ETA
end

function individualCompoundSetup(. . .)
for i51,5 do

localP_indi 5 sc:sampleIIVDistribution(i)
sc:setParameter(i, P_indi)

end
end

function directAlgebraicStep(xin, P, . . .)
local E0, EC50, EMAX, CONC, AGEF, E0_AGE, EPS_1

E05P[1]
EC505P[2]
EMAX 5P[3] * (11 P[5])
AGEF5P[4]*(sc:getIndivAge() - 45) – effect of

age on baseline response
CONC5xin – PD input (conc in the X (tissue)

compartment)
EPS_15sc:sampleRandomDistribution(sc.NOR-

MAL_SD, 0, 1) – to add residual error
E0_AGE5E0 - AGEF

RESPONSE5E0_AGE - (CONC * EMAX/(CONC1EC50)) -
- response model
Y5RESPONSE1EPS_1 - - overall response

return Y .

end

A residual variability (as in NM-TRAN for EPS/SIGMA) can

alternatively be added through a Simcyp Trial Design built-

in facility. The Trial Design input screens include a feature

called “Analytical error” where this additive (or other) error

term can be entered as the standard deviation rather than

variance.
Another example of Simcyp PD Custom scripting has

already been published in this journal as part of an investi-

gation of factors affecting response to the drug rosuvasta-

tin.9 That study involved investigation of the role of

OATP1B1 transporter phenotypes on the change in choles-

terol synthesis rate using a scripted indirect PKPD

response model incorporating a circadian rhythm. Details of

the code are included in that publication’s Supplementary

Material.
Many additional examples of scripts are pre-supplied and

available upon installation of the Simcyp Simulator. These

examples allow users to become familiar with the scripting

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

463

www.wileyonlinelibrary/psp4



language, Syntax and provide a basis for users to modify
the script.

Additional examples that show different elements of the
code such as antiviral and survival models where a user
can add individual covariates or enzyme phenotypes, or
use the extra storage options, are provided in the supple-
mentary document.

The model parameter distributions are not correlated
by default; however the user can code the correlation.
An example of Simcyp Lua script for bivariate normal distri-
bution is provided in the supplementary document (Appen-
dix D).

REMARKS AND FUTURE GOALS

The first implementation of this scripting facility has focused
on supporting the simulation of custom PD models using
the scripting language Lua. Several well-known PKPD soft-
ware applications have their own coding language using
named blocks of code which are selected and executed as
determined by the software, for examples DIFF or $DES
respectively for differential equations in PKPD software
WinNonlin (http://www.certara.com) or NONMEM (http://
www.iconplc.com). In some cases, the application provides
flags for user code to test for a particular context and so
conditionally executes a user code section. For example, a
user may wish to perform specific tasks once in the whole
simulation or assign specific parameters to each individual.
The NONMEM population modeling program, when used
with its PREDPP Population Pharmacokinetic library, calls
user code represented say by a $PK block in the associat-
ed NMTRAN control file to define algebraic equations for a
PK model prediction, and supplies a value to the NEWIND
flag that differentiates a first overall call from a first subse-
quent call for a new individual. Simcyp also recognises
these two different contexts, and defines specific Lua setup
functions for each, namely: popSimSetup for once-per-
overall-simulation execution and individualSetup exe-
cuted once-per-each-individual. Lua variables are places
that store values and are by default global in a script. They
may however be declared local to a particular function with
the local keyword. It is good practise to declare variable
local to scope them within their relevant block. Unlike global
variables, local variables have their scope limited and a
short lifetime to the block where they are declared. As
shown in the examples, the Simcyp Library includes a num-
ber of sc:set functions to store variables within the C11

application across different script calls and sc:get func-
tions to access them.

Parameter estimation facilities have not as yet been
extended to include custom-scripted parameters. Neverthe-
less parameter estimation can still be used for built-in
PKPD model parameters when a user script is part of the
model. Furthermore, a freely available R library package
has recently been developed to enable a user to run Sim-
cyp directly from the R environment, commonly used for
statistical scripting (a similar interfacing facility has been
developed for the Matlab environment).15 This will allow fur-
ther manipulation of Simcyp parameters from these

computing platforms and so could potentially be used for fit-

ting Lua-coded models as well.
The current Simcyp architecture of PD response chains

allows the replacement of built-in models seamlessly and is

in principle expandable to more complex networks of

response units. Feedback of drug response on some physi-

ological and biological parameters like gastric pH have

been enabled.
Recently, the Simcyp Lua scripting features have been

extended to allow the user to modify individual age-height-

weight covariance relationships in the demographics sec-

tion as part of the population library that generates virtual

individuals. This is potentially useful if the user wants to

define these covariates differently for a special population

of interest, such as for a new disease or a particular obesi-

ty profile.
Lua custom scripts may also help in the sharing of model

components with external model repositories as part of an

enhanced interoperability capability. For example Innovative

Medicines Initiative’s DDMoRe project (www.ddmore.eu)

has been developing a repository of annotated PD-related

disease models, elements of which might be translated into

Lua scripts. A command line console has been added

which supports the DDMoRe Project Interoperability Frame-

work. This new functionality allows DDMoRe partners with

a Simcyp Simulator license to run simulations in scripted

workflows with other software such as NONMEM and PSN,

Monolix, PFIM, and PopED using PharmML.16 Further, the

console allows use of the Simulator’s databases of popula-

tions, compounds, and PBPK models through other plat-

forms such as Matlab and R.

CONCLUSIONS

A scripting facility for customising PD response models

within the Simcyp Simulator has been developed, whereby

a user can replace the built-in model for a given PD step

with a script using a dedicated editor. The editor supplies a

library of Simcyp functions for storing variables in the Simu-

lator and for accessing or manipulating elements of the PK

and PD simulation. In addition it facilitates the implementa-

tion of complex PD models defined using ODEs with limited

computational overheads. Further, the Simcyp platform

handles the compilation of the Lua code allowing less expe-

rienced users to access advanced modeling capabilities.

Acknowledgments. The Simcyp Simulator is freely available, follow-
ing completion of the training workshop, to approved members of academ-
ic institutions and other non-for-profit organizations for research and
teaching purposes. A chapter on Custom PD Unit is provided in the Sim-
cyp help file facility and is freely accessible from the Members’ area
(https://members.simcyp.com/) to the Simcyp consortium members. Both
the R-library and Matlab-library are freely available on the Simcyp Mem-
bers’ area or by contacting Simcyp. We thank Miss Eleanor Savill and
Miss Jessica Waite for assistance with preparation of the manuscript.

Conflict of Interest. All authors are employees of Simcyp Limited
(a Certara Company).

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

464

CPT: Pharmacometrics & Systems Pharmacology

http://www.certara.com
http://www.iconplc.com
http://www.iconplc.com
http://www.ddmore.eu
http://https://members.simcyp.com


Author Contributions. K.A., D.E., A.B., R.R., T.C., and M.J., all
wrote the manuscript.

Abbreviations

ADME Absorption Distribution Metabolism and
Excretion

ANSI American National Standards Institute
DDI Drug-Drug Interaction
gu Time-gradient of a user-state variable in the

Custom differential equation model
GUI Graphical User Interface
NONMEM Nonlinear Mixed Effects Modeling software
NMTRAN NONMEM Translator
ODE Ordinary Differential Equation
P Array of parameter for a Response Model
PREDPP NONMEM PRED Population Pharmacoki-

Netics subroutine library
PBPKPD Physiologically Based Pharmacokinetic/

Dynamic [model]
PD Pharmacodynamic
PK pharmacokinetic
PKPD Pharmacokinetic-Pharmacodynamic
RX Response as input: terminology to identify a

PD response in a chain of transduction/link
processing as an input in the current context

Ry Response as output: terminology to identify
a PD response in a chain of transduction/
link processing as an input in the current
context

su A (user-) state variable in the custom PD
ordinary differential equation model

X General input
xin Incoming functions into a PD step. (xin, custom

in case of custom PD model input)
xout 5 leaving functions into a PD step (xout, custom

in case of custom PD model input).

1. Jamei M, Marciniak S, Edwards D, Wragg K, Feng K, Barnett A, et al. The simcyp
population based simulator: architecture, implementation, and quality assurance. In
Silico Pharmacol. 1, 9 (2013).

2. Schuck E, Bohnert T, Chakravarty A, Damian-Iordache V, Gibson C, Hsu CP, et al.
Preclinical pharmacokinetic/pharmacodynamic modeling and simulation in the pharma-
ceutical industry: an IQ consortium survey examining the current landscape. AAPS J.
17, 462–473 (2015).

3. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’ and
‘top down’ approaches in pharmacokinetic modeling: fitting PBPK models to observed
clinical data. Br. J. Clin. Pharmacol. 79, 48–55 (2015).

4. Black JW, Leff P. Operational models of pharmacological agonism. Proc. R. Soc.
Lond. B Biol. Sci. 220, 141–162 (1983).

5. Hill AV. The possible effects of the aggregation of the molecules of hæmoglobin on
its dissociation curves. J Physiol. 40, iv–vii (1910).

6. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect phar-
macodynamic responses. J. Pharmacokinet. Biopharm. 21, 457–478 (1993).

7. Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data (John Wiley &
Sons: Hoboken, NJ, 2002).

8. Chetty M, Rose RH, Abduljalil K, Patel N, Lu G, Cain T, et al. Applications of linking
PBPK and PD models to predict the impact of genotypic variability, formulation differ-
ences, differences in target binding capacity and target site drug concentrations on
drug responses and variability. Front. Pharmacol. 5, 258 (2014).

9. Rose RH, Neuhoff S, Abduljalil K, Chetty M, Rostami-Hodjegan A, Jamei M. Applica-
tion of a physiologically based pharmacokinetic model to predict OATP1B1-related
variability in pharmacodynamics of rosuvastatin. CPT Pharmacometrics Syst. Pharma-
col. 3, e124 (2014).

10. Cristofoletti R, Dressman JB. Use of physiologically based pharmacokinetic models
coupled with pharmacodynamic models to assess the clinical relevance of current bio-
equivalence criteria for generic drug products containing Ibuprofen. J. Pharm. Sci.
103, 3263–3275 (2014).

11. Abduljalil K, Rose RH, Johnson TN, Cain T, Gaohua L, Edwards D, et al. Prediction
of tolerance to caffeine pressor effect during pregnancy using physiologically based
PK-PD modelling. Poster presented at: PAGE 22; June 11-14, 2013; Glasgow,
Scotland.

12. Ohara M, Takahashi H, Lee MT, Wen MS, Lee TH, Chuang HP, et al. Determinants
of the over-anticoagulation response during warfarin initiation therapy in Asian
patients based on population pharmacokinetic-pharmacodynamic analyses. PLoS
ONE 9, e105891 (2014).

13. Knuth DE. The Art of Computer Programming. Volume 2: Seminumerical Algorithms,
3rd edn. (Addison-Wesley, Reading, MA, 1997).

14. Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM T. Model Comput. S. 8, 3–30
(1998).

15. Cain T, Barnett A, Jamei M. Application of Simcyp’s R Library Package in Simu-
lation and Prediction of Metoprolol Compliance Using a Single Plasma Concentra-
tion Sample. Poster presented at: PAGE 24; June 2-5, 2015; Hersonissos, Crete,
Greece.

16. Swat MJ, Moodie S, Wimalaratne SM, Kristensen NR, Lavielle M, Mari A, et al. Phar-
macometrics Markup Language (PharmML): opening new perspectives for model
exchange in drug development. CPT Pharmacometrics Syst. Pharmacol. 4, 316–319
(2015).

VC 2016 The Authors CPT: Pharmacometrics & Systems
Pharmacology published by Wiley Periodicals, Inc. on
behalf of American Society for Clinical Pharmacology and
Therapeutics. This is an open access article under the terms
of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited
and is not used for commercial purposes.

Supplementary information accompanies this paper on the CPT: Pharmacometrics & Systems Pharmacology website
(http://www.wileyonlinelibrary.com/psp4)

Pharmacodynamic Scripting Facility in Simcyp
Abduljalil et al.

465

www.wileyonlinelibrary/psp4


	l

