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a b s t r a c t 

The well-known Toll like receptor 9 (TLR9) agonist CpG ODN has shown promising results as vaccine adjuvant in 

preclinical and clinical studies, however its in vivo stability and potential systemic toxicity remain a concern. 

In an effort to overcome these issues, different strategies have been explored including conjugation of CpG 

ODN with proteins or encapsulation/adsorption of CpG ODN into/onto liposomes. Although these methods have 

resulted in enhanced immunopotency compared to co-administration of free CpG ODN and antigen, we believe 

that this effect could be further improved. Here, we designed a novel delivery system of CpG ODN based on its 

conjugation to serve as anchor for liposomes. Thiol-maleimide chemistry was utilised to covalently ligate model 

protein with the CpG ODN TLR9 agonist. Due to its negative charge, the protein conjugate readily electrostatically 

bound cationic liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and 

dimethyldioctadecylammonium bromide (DDA) in a very high degree. The novel cationic liposomes-protein 

conjugate complex shared similar vesicle characteristics (size and charge) compared to free liposomes. The 

conjugation of CpG ODN to protein in conjunction with adsorption on cationic liposomes, could promote co- 

delivery leading to the induction of immune response at low antigen and CpG ODN doses. 

• The CpG ODN Toll-like receptor (TLR) 9 agonist was conjugated to protein antigens via thiol-maleimide 

chemistry. 
• Due to their negative charge, protein conjugates readily electrostatically bound cationic liposomes composed 

of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol and dimethyldioctadecylammonium bromide 

(DDA) resulting to the design of novel cationic liposomes-protein conjugate complexes. 
• The method is suited for the liposomal delivery of a variety of adjuvant-protein conjugates. 
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Specifications Table 

Subject Area: Pharmacology, Toxicology and Pharmaceutical Science 

More specific subject area: Vaccine delivery systems 

Method name: Adsorption of CpG-protein conjugates on the surface of cationic liposomes 

Name and reference of original 

method: 

Conjugation of CpG ODN on protein antigens [1 , 2] 

Manufacturing of liposomes with microfluidics [3 , 4] 

Adsorption of proteins and adjuvants on liposomes surface [5] 

Resource availability: 

Method details 

Overview 

CpG oligodeoxynucleotides (CpG ODN) are short single-stranded synthetic DNA molecules that 

include of a cytosine triphosphate deoxynucleotide and a guanine triphosphate deoxynucleotide. 

They mimic microbial DNA that often contains these motifs and their ability to enhance immune

responses is well documented [6 , 7] Responsiveness to CpG motifs is mediated through TLR9, a

receptor localised to and signalling from the endosomal compartment of antigen presenting cells 

(APCs), such as dendritic cells (DCs) and macrophages. TLR9 binding of CpG-containing DNA results 

in the induction of rapid innate immune responses to prevent or limit early infection, but crucially

also directs the quality of the specific adaptive immune response to facilitate pathogen clearance and,

finally, memory responses for long-lived protection. Supported by the induction of immunostimulatory 

T helper Th1-biasing cytokines and chemokines including interleukin IL-12, tumour necrosis factor 

TNF- α and interferon IFN α/ β and γ , CpGs directly (i.e., APCs) or indirectly (i.e. natural killer cells and

T lymphocytes) activate a variety of immune cells, ultimately resulting in enhanced immune function 

[8] . 

TLR9 agonist CpG ODN has shown promising results as a vaccine adjuvant in preclinical and clinical

studies [9] . Despite this success, the use of CpG ODN is associated with several obstacles including

poor in vivo stability mainly due to their digestion by endonucleases, unfavourable pharmacokinetic 

and biodistribution profiles and poor cellular uptake characteristics [6] . In addition, there are safety

concerns regarding undesirable side effects observed depending on the administered dose [10] . These

side effects include liver toxicity, enlargement of the lymph nodes [11] , extramedullary hematopoiesis

[12] , systemic inflammation [9 , 13 , 14] and renal damage [15] . Additionally, autoimmune responses have

been observed in cancer patients [16] . Reduction in such effects could be achieved by lowering the

dose of administered compound. 

In an effort to circumvent these issues, alternative in vivo delivery systems of CpG ODN, including

conjugation strategies and nanoparticulate formulations, have been suggested. Conjugation of CpG 

motifs with protein antigens creates a more potent immunogen compared to physical mixture of 

antigen and CpG [17] . Co-localisation, improved antigen uptake and presentation, and thus enhanced

immune responses are some of the benefits of such protein conjugates. Specifically, whilst protein-CpG 

mixtures have the limitation of inconsistent co-localisation, protein-CpG conjugates ensure efficient 

internalisation of antigen and adjuvant by the same DCs through endocytosis and activation of the

intracellular TLR9, allowing the use of lower doses of adjuvant compared to the unconjugated form

[18–20] . As an alternative to conjugation, liposomal delivery of CpG ODN has been demonstrated

to offer important advantages including protection from DNase degradation, extension of retention 

time inside the body, improved cellular uptake, delivery to target tissues and slow release over

a long period of time [21] . Various types of liposomal CpG ODN have been developed to achieve
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Table 1 

Volumes and quantities used for conjugations. 

Conjugate Protein-EMCS used CpG ODN-SPDP used 

CRM197-CpG ODN 4.8 mg (100 μL of 48.2 mg/mL stock solution) 5,23 mg (dissolved in 50 mM NaPi, 1 mM EDTA pH 7.5) 

NadA-CpG ODN 3 mg (280 μL of 10.7 mg/mL stock solution) 2,54 mg (dissolved in 50 mM NaPi, 1 mM EDTA pH 7.5) 

GBS67-CpG ODN 4 mg (350 μL of 11.4 mg/mL stock solution) 2,7 mg (dissolved in 50 mM NaPi, 1 mM EDTA pH 7.5) 
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mmunostimulation, and encapsulation or co-administration of CpG motifs into/with liposomes have

een shown to dramatically enhance the potency of immunogens compared to free CpG ODN

22 , 23 , 24 , 25] . Special focus has been given on the use of cationic liposomes as their positive charge

avours formation of the depot effect at the injection site [26] thus improving the antigen presentation

o APCs followed by a sustained release to the draining lymph nodes [27] . 

In this context, we explored the potential of protein-CpG ODN conjugate anchored to liposome

anoparticles by adsorption to enhance immunogenicity. It was anticipated that the covalent linkage

f the TLR9 agonist CpG ODN to a protein antigen multivalently presented on the surface of cationic

iposomes could promote accumulation of protein and adjuvant within the body, facilitate their

elivery and further increase vaccine efficiency compared to protein conjugation alone or liposome

elivery. 

aterials 

CpG ODN 1826 (5‘-[AmC6]TCCATGACGTTCCTGACGTT), N- ε-malemidocaproyl-oxysuccinimide

ster (EMCS), succinimidyl 3-(2-pyridyldithio)propionate (SPDP), Tris(2-carboxyethyl)phosphine

ydrochloride solution (TCEP), sinapinic acid and OVA were purchased from Sigma-

ldrich (Poole, Dorset, UK). Cholesterol, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC),

imethyldioctadecylammonium (DDA) were purchased from Avanti Polar Lipids (Alabaster, AL,

SA). GBS67, NadA, CRM197 were supplied by GSK (Siena, Italy). 

hemical synthesis 

CpG ODN was conjugated to three different proteins: Cross-reactive material 197 (CRM197),

eisseria adhesin A (NadA), Group B Streptococcus 67 (GBS67). CRM197 (MW 58 kDa, pI = 5.85) is

n enzymatically inactive and nontoxic form of diphtheria toxin found to be an ideal carrier for

onjugate vaccines against encapsulated bacteria [28–30] . NadA (MW 25 kDa, pI = 4.4) is a surface

xposed trimeric protein presented in approximately 50% of pathogenic meningococcal isolates and is

ssociated mostly with strains that belong to three of the four hypervirulent serogroup B lineages.

adA is the most well characterised and known antigen between the ones included in Bexsero

accine and for this reason has been selected as model antigen for this study [31] . GBS67(MW

8 kDa, pI = 6.46) is an ancillary highly conserved protein of pilus 2a [32–34] . Pilus proteins have

een identified through reverse vaccinology as promising vaccine candidates [35] . The conjugation

as achieved through the well-known thio-maleimide click reaction [1 , 2 , 19 , 36] . 

reparation of protein-EMCS 

For the incorporation onto the protein of maleimides moieties, 1.52 mg of EMCS were dissolved

n 50 μL of DMSO, and 11 μL of the prepared mixture (6 eq-v) was added to a solution of 6 mg

f protein (CRM197: 130 μL of 47.4 mg/mL stock solution, NadA: 860 μL of 7 mg/mL stock solution,

BS67: 330 μL of 18.4 mg/mL stock solution) in 100 mM sodium phosphate (NaPi), 1 mM EDTA pH

.1 buffer solution (Final volume 1 mL). Reaction was incubated for 3 h at RT. After 3 h, reaction

ixture was purified using 30 kDa Viva spin filter units 0.5 mL (x5 dialysis cycles) dialysing against

0 mM NaPi, 1 mM EDTA pH 7.5. Protein content was determined by BCA colorimetric assay. The

inker/protein molar ratio was determined by MALDI-TOF mass spectrometry analysis run in an

ltraFlex III MALDI-TOF/TOF instrument (Bruker Daltonics, Bremen, Germany) in linear mode and with
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Fig. 1. Reaction scheme for conjugation of CpG ODN on proteins. 

Table 2 

Introduction of CpG ODN chains on proteins. 

Structure CpG ODN: protein 

stoichiometry (mol/mol) 

MW protein-CpG ODN 

conjugate 

CpG ODN: protein in 

conjugate (mol/mol) 

a Conjugation efficiency 

(%) 

CRM197 10:1 10 0,0 0 0 6:1 60% 

NadA 10:1 10 0,0 0 0 4:1 40% 

GBS67 10:1 120,0 0 0 4:1 40% 

a Amount of conjugated CpG ODN vs amount of CpG ODN used for conjugation. 

Fig. 2. SDS-PAGE for confirmation of protein-CpG ODN conjugation. A) Bands: 1. CRM197, 2. CRM197-EMCS, 3. CRM197-EMCS- 

SPDP-CpG ODN B) Bands: 1. GBS67, 2. GBS67-EMCS-SPDP-CpG ODN, 3. NadA, 4. NadA-EMCS-SPDP-CpG ODN. 

 

 

 

 

 

positive ion detection. The sample for analysis was prepared by mixing 2.5 μL of product and 2.5 μL

of sinapinic acid matrix. 2.5 μL of mixture was deposited on a sample plate, dried at RT for 10 min,

and subjected to the spectrometer. 

Preparation of CpG ODN-SH 

An amount of 20 mg (3.21 μmol) of CpG ODN 1826 (5‘-[AmC6] TCCATGACGTTCCTGACGTT, MW 

6238) was reacted with 10 eq-v (10 mg, 32.1 μmol) of SPDP linker in 1:9 v/v 100 mM NaPi pH 7.2:

DMSO (1 mL). The reaction mixture was incubated for 3 h at RT under continuous mixing and was

purified by size exclusion chromatography on a G25 Sephadex column eluting with H 2 O. Fractions
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Table 3 

Protein and CpG ODN loading on liposomes. DSPC:Cholesterol:DDA (10:40:50% molar 

ratio) liposome were manufactured using microfluidics at 1:1 FRR, 12 mL/min TFR and 

purified using dialysis. Liposomes were mixed free with protein, protein + CpG ODN mixture 

or protein-CpG ODN conjugate and purified by dialysis. The final (5 mg/mL), protein 

(0.25 mg/mL) and CpG ODN (0.038 mg/mL) concentrations in all the samples were the same. 

Protein and CpG ODN quantification was carried out by BCA and UV, respectively. Results 

represent mean ± SD, n = 3 independent batches. 

Protein Formulation Protein loading (%) CpG ODN loading (%) 

OVA Protein + Liposomes 91 ± 3 –

Protein + Liposomes + CpG ODN 93 ± 8 93 ± 9 

Protein-CpG ODN + Liposomes – –

GBS67 Protein + Liposomes 96 ± 3 –

Protein + Liposomes + CpG ODN 95 ± 1 96 ± 5 

Protein-CpG ODN + Liposomes 95 ± 3 96 ± 1 

CRM197 Protein + Liposomes 90 ± 3 –

Protein + Liposomes + CpG ODN 92 ± 4 93 ± 4 

Protein-CpG ODN + Liposomes 96 ± 1 98 ± 1 
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C  
ontained the CpG ODN-SH were combined and concentrated by Genevac evaporator (Genevac,

pswich, Suffolk, UK). 1 H NMR was performed in order to assess the incorporation of the linker. To

elease the free thiol groups, CpG ODN-SH was treated with 3 eq-v of 0.0 0 05 M TCEP solution for

 h at RT in the dark. The reaction mixture was purified by size exclusion chromatography using G25

ephadex column and H 2 O as eluent. The amount of CpG ODN-SPDP recovered was quantified by

easuring UV absorbance at 260 nm. 

onjugation of CpG ODN-SH to protein-EMCS 

Protein conjugate was prepared by incubating protein-EMCS with CpG ODN-SPDP (1:10 eq-v

rotein: CpG ODN) in 50 mM NaPi, 1 mM EDTA pH 7.5 (Final volume 500 μL). Table 1 presents

he volumes used for each protein conjugation. The reaction was incubated overnight at RT under

ontinuous mixing. Protein conjugate was purified using 30 kDa Vivaspin filter unit 0.5 mL (x 40

ialysis cycles) and recovered in PBS (1x) buffer. The protein and CpG ODN content were determined

y BCA colorimetric assay and UV absorbance (260 nm), respectively. Finally, the extent of protein

onjugation to CpG ODN was evaluated by SDS-PAGE electrophoresis and SEC 

–HPLC. The standard

EC protocol was carried out using TSKgel G40 0 0SW column (30 0 × 7.8 mm, 50 0 Ǻ, 5 μm particle

ize) from Tosoh Bioscience (Tokyo, Japan). Running conditions were flow rate 0.5 mL/min, run time

5 min, 100 mM NaPi, 100 mM Na 2 SO 4 , ACN 5%, pH 7.1 as running buffer and injection volume 50

L. All samples were injected in a protein concentration of 0.5 mg/mL for protein and protein-EMCS

nd protein-EMCS-CpG ODN and 0.5 mg/mL for free CpG. 

reparation of liposomes bearing protein-CpG ODN conjugate 

The preparation of DSPC: Cholesterol: DDA cationic liposomes was achieved via microfluidics

Nanoassemblr, Precision NanoSystems Inc., Vancouver, Canada) processes based on previously

eveloped methods [3 , 4 , 37] . Briefly, DSPC: Cholesterol: DDA lipid stock mixture was prepared in

thanol at 10:40:50 molar ratio (2.88 mg/mL DSPC, 5.63 mg/mL cholesterol, 11.49 mg/mL DDA). Then,

he lipids and an aqueous phase (10 mM TRIS buffer pH 7.4) were injected simultaneously in the

icromixer. The volumes of lipid (organic) and aqueous phase injected depends on the manufacturing

onditions have been selected. Herein, all formulations were prepared at 20 mg/mL initial lipid

oncentration, 1:1 v/v aqueous: organic flow rate ratio (FRR) and 12 mL/min total flow rate (TFR). All

ewly formed liposomes (1 mL) were then subjected to buffer exchange via dialysis against 10 mM

RIS pH 7.4 for 1 h under magnetic stirring to ensure removal of residual solvent. 

To investigate the adsorption of protein-CpG ODN conjugate onto the surface of liposomes, protein-

pG ODN was mixed with DSPC: Cholesterol: DDA liposomes to a similar manner as reported before
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Fig. 3. SEC –HPLC for confirmation of protein-CpG ODN conjugation. Experiments performed using a TSKgel G40 0 0SW column 

(300 × 7.8 mm, 500 Ǻ, 5 μm particle size) from Tosoh Bioscience (Tokyo, Japan). Running conditions were flow rate 0.5 mL/min, 

run time 45 min, 100 mM NaPi, 100 mM Na 2 SO 4 , ACN 5%, pH 7.1 as running buffer and injection volume 50 μL. All 

samples were injected in a protein concentration of 0.5 mg/mL for protein and protein-EMCS and protein-EMCS-CpG ODN 

and 0.5 mg/mL for free CpG. 

 

 

 

 

 

[5] . Briefly, liposomes were incubated with protein-CpG ODN (1:20 w/w protein: liposomes) in 10 mM

TRIS pH 7.4. To serve as controls, liposomes adsorbed free protein or free protein and CpG ODN

were also prepared. Samples were left to equilibrate for 30 min at RT. Dialysis using Biotech CE

tubing (300 kDa MWCO) was carried out overnight at 4 °C with two buffer changes, for removal of

unbound protein. BCA assay and UV (260 nm) were used for quantification of protein and CpG ODN,
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Fig. 4. The effect of CpG ODN loading on size of liposomes. DSPC:Cholesterol:DDA (10:40:50% molar ratio) liposome were 

manufactured using microfluidics at 1:1 FRR, 12 mL/min TFR and purified using dialysis. Liposomes were mixed with free 

protein, protein + CpG ODN mixture or protein-CpG ODN conjugate and purified by dialysis. The final liposome (5 mg/mL), 

protein (0.25 mg/mL) and CpG ODN (0.038 mg/mL) concentrations in all the samples were the same. Liposomes were 

characterised in terms of size and PDI by DLS. Results represent mean ± SD, n = 3 independent batches. 

Fig. 5. The effect of CpG ODN loading on PDI of liposomes. DSPC:Cholesterol:DDA (10:40:50% molar ratio) liposome were 

manufactured using microfluidics at 1:1 FRR, 12 mL/min TFR and purified using dialysis. Liposomes were mixed with free 

protein, protein + CpG ODN mixture or protein-CpG ODN conjugate and purified by dialysis. The final liposome (5 mg/mL), 

protein (0.25 mg/mL) and CpG ODN (0.038 mg/mL) concentrations in all the samples were the same. Liposomes were 

characterised in terms of size and PDI by DLS. PDI is a measure of the monodispercity of sizes of particles in the mixture. 

Results represent mean ± SD, n = 3 independent batches. 

r  

a  

d  

v

espectively. The amount of protein adsorbed on liposomes surface was calculated by subtracting the

mount of protein remaining in solution from the amount of protein initially added to the liposome

ispersion. OVA (MW 45 kDa, pI = 4.5) served as positive control as its behaviour in the presence of

arious liposome formulations is well established. 
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Fig. 6. The effect of CpG ODN loading on zeta potential of liposomes. DSPC:Cholesterol:DDA (10:40:50% molar ratio) liposome 

were manufactured using microfluidics at 1:1 FRR, 12 mL/min TFR and purified using dialysis. Liposomes were mixed with free 

protein, protein + CpG ODN mixture or protein-CpG ODN conjugate and purified by dialysis. The final liposome (5 mg/mL), 

protein (0.25 mg/mL) and CpG ODN (0.038 mg/mL) concentrations in all the samples were the same. Liposomes were 

characterised in terms of zeta potential by DLS. Results represent mean ± SD, n = 3 independent batches. 

 

 

 

 

 

 

 

 

 

 

Liposome characterisation 

The size distribution (mean diameter and polydispersity index (PDI)) and the zeta potential of the

liposomes were measured by dynamic light scattering using photon correlation spectroscopy on a 

Zetasizer Nano-ZS (Malvern Instruments Ltd., UK). Measurements were made at 25 °C with liposomes 

being diluted in 1/10 v/v using their aqueous phase (1:300 v/v 10 mM TRIS pH 7.4). Sizes quoted are

the z-average mean for the liposomal hydrodynamic diameter (nm). 

Method validation 

Protein-TLR9 agonist conjugate assembly 

CpG ODN-protein synthesis was achieved in a similar manner to that reported for other adjuvant-

protein conjugates [1 , 2 , 19 , 38] . Maleimide groups were inserted onto protein by reaction of the protein

with commercial EMCS linker. An incorporation of 4–6 maleimides were found by MALDI-TOF analysis 

of the modified proteins (Fig. S1 Supporting material) [1 , 39] . Thiol groups were introduced onto CpG

ODN 1826 by reaction of the primary amine at 5 ′ position of the adjuvant molecule with the active

ester of SPDP linker. 1 H NMR analysis confirmed the successful modification of CpG ODN (Fig. S2

Supporting material). After removal of the thio-pyridine protection with TCEP, CpG ODN bearing the 

sulfhydryl groups was incubated with protein-EMCS to give addition to the maleimides exposed onto 

the protein surface ( Fig. 1 ). 

SDS-PAGE electrophoresis and SEC 

–HPLC clearly showed conjugation of the CpG ODN to the 

modified protein ( Figs. 2 , 3 ). An average ratio of 4–6 CpG ODN chains was incorporated for each

protein molecule in the final product which is in agreement with what has been previously published

for the preparation of CpG ODN conjugates using other proteins [19 , 36] . The characteristics of the

protein conjugates are summarised in Table 2 . 
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ssociation of protein with liposomes 

Adsorption of the negatively charged protein and CpG ODN onto the cationic liposomes surface

esulted in the increase of liposomes size and reduction of their surface charge as expected ( Fig. 4 ).

he highest increase in size was observed for the protein + liposomes + CpG ODN for all the proteins

ested. Interestingly, no significant size increase was obtained when protein conjugate was mixed with

SPC: Cholesterol: DDA liposomes with the size remaining at 136 nm ( Fig. 4 ). PDI values were lower

han 0.3 across the formulation range tested which in conjunction with size distribution indicate

niform particles ( Fig. 5 ). The lowest zeta potential measurements were observed when liposomes

ere mixed with protein alone for all the proteins ( Fig. 6 ). On the other hand, when liposomes mixed

ith protein conjugates a 10 mV reduction was noticed from 41 mV to 31 mV for free liposomes and

rotein conjugates, respectively. Regarding the protein and CpG ODN loading on proteins, more than

0% protein and CpG ODN loading was achieved for all the formulations tested ( Table 3 ). 

onclusions 

The potency of CpG ODN TLR9 agonist has been demonstrated by many researchers with some of

ts formulations being tested in clinical trials. CpG ODN has been used for stimulation of immune

esponses physically mixed with antigens and other adjuvants or encapsulated into nanoparticles

or delivery to lymph nodes in an effort to protect it from degradation. Despite the research has

een done so far, no research has been focused on the use of protein conjugates in conjunction

ith liposomes attributes. Conjugation efficiency has been proven extensively, especially when it

s compared with simple co-administration of antigens and adjuvants [19] . It is supported that

onjugation can ensure co-delivery of protein and adjuvant to the same cell [8] . Similarly, cationic

iposomes use as adjuvants/delivery systems have attracted interest the last years due to their ability

o absorb negatively charged molecules and their strong immunological properties [40 , 41] . Building on

hese evidences, this work aimed at designing a novel delivery system composed by the CpG ODN-

rotein complex and cationic liposomes, in an effort to maximise the vaccination potency. 

Three different model proteins NadA, CRM197 and GBS67, have been successfully conjugated on

pG ODN motifs using maleimide-thiol chemistry as has been previously used for the preparation

f other protein-CpG ODN conjugates [2 , 36] . Based on the isoelectric point of the proteins and

heir negative charge, cationic liposomes with DSPC: Cholesterol: DDA 10:40:50 composition and

verage size of 140 nm, demonstrated the capability to adsorb on their surface the negatively

harged adjuvant-protein conjugate molecules to a very high degree. The conjugation approach as

lso the liposome contribution described in this study, can be particularly helpful for enhancement of

mmunity using low doses of antigen and increasing the speed of immunisations required to achieve

ffectiveness [42] . 
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