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Study of complex proteome brings forward higher request for the quantification method using mass spectrometry technology. In
this paper, we present amass spectrometry label-free quantification tool for complex proteomes, called freeQuant, which integrated
quantification with functional analysis effectively. freeQuant consists of two well-integrated modules: label-free quantification and
functional analysis with biomedical knowledge. freeQuant supports label-free quantitative analysis whichmakes full use of tandem
mass spectrometry (MS/MS) spectral count, protein sequence length, shared peptides, and ion intensity. It adopts spectral count
for quantitative analysis and builds a new method for shared peptides to accurately evaluate abundance of isoforms. For proteins
with low abundance, MS/MS total ion count coupled with spectral count is included to ensure accurate protein quantification.
Furthermore, freeQuant supports the large-scale functional annotations for complex proteomes. Mitochondrial proteomes from
the mouse heart, the mouse liver, and the human heart were used to evaluate the usability and performance of freeQuant. The
evaluation showed that the quantitative algorithms implemented in freeQuant can improve accuracy of quantification with better
dynamic range.

1. Introduction

Study of complex proteomes has been widely applied in
biomarker discovery, signaling pathway, and drug design [1–
3]. In the cell, the development of disease is expressed by the
changes of protein abundance; thus quantitative analysis for
complex proteomes has increasingly become a critical way
to investigate the mechanism of disease. Since the complex
proteomes consist of a number of proteins with diversified
functions, they pose a challenge for quantitative proteomics
analysis. Over the past decade, mass spectrometry (MS) has
been recognized as one of the most important techniques
for proteomics science [4]. Specially, label-free quantitative
approach based on spectral count has been widely used
because of its ability to quantify large-scale proteomes. One
of the representative methods of label-free quantification is
Normalized Spectral Abundance Factor (NSAF) which was
firstly proposed by Florens et al. [5].Thismethod uses protein
length to normalize spectral count (SC) for improving the
accuracy [6]. However, the NSAF method did not consider

the shared peptides generated during the MS experiment [7].
Besides, the use of only spectral counts is not able to differen-
tiate the MS spectra with different ion intensity, which leads
to the systematic errors of quantification, especially for the
low-abundant peptides. In this sense, selecting appropriate
and valid MS spectral features is the key issue for MS-based
quantification of complex proteome. On the other hand, an
increasingly request of studying the complex proteome is to
combine quantification and functional analysis together to
reveal the unexplored mechanism in the cells. To propel this
brand new analytic mode in proteomics science, innovative
design of software tool is desiderated.

Nowadays, plenty of tools have paved the road to a
new era in quantitative proteomics. John Yates’ group [8]
build a quantitative analysis tool for mass spectrometry-
based proteomics called Census [9]. Census is compatible
with many labeling strategies as well as with label-free
analysis, single-stage mass spectrometry and tandem mass
spectrometry (MS/MS) scans, and high- and low-resolution
mass spectrometry data. Census supports multiple input
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formats and is extensively applied in quantitative proteomics.
Besides, the APEX Tool described by Lu et al. [10] uses a
modified spectral counting method which utilizes machine
learning technique to arrive at protein abundance values
with improved accuracy over traditional spectral counting
techniques [11]. MaxQuant supporting labeling technique
as well as label-free quantification is a quantitative pro-
teomics software package designed for analyzing large mass-
spectrometric data [12]. It uses correlation analysis and graph
theory detects peaks, isotope clusters, and stable amino acid
isotope-labeled peptide pairs as three-dimensional objects in
𝑚/𝑧, elution time, and signal intensity space to quantify for
proteomics. In conclusion, the abovementioned tools have
gained recognition due to their distinctive accuracy and util-
ity. However, there are no quantitative tools which combine
quantification and functional analysis for complex proteomes
and support label-free algorithms compatible with multiple
MS spectral features. Therefore, it is of great significance to
build a mass spectrometry label-free quantification software
tool for complex proteomes analysis.

To systematically overcome this challenge, we devel-
oped a label-free mass spectrometry-based software tool
for complex proteomes analysis, freeQuant, which com-
bines quantification and functional analysis with biomedical
knowledge extracting from the online protein functional
analysis platform, g:Profiler [13]. freeQuant supports label-
free quantitative analysis with multiple MS spectral features.
The key part of freeQuant is the quantitative algorithms
making full use of MS/MS spectral count, shared peptides,
and ion intensity. freeQuant adopts normalized NSAF-based
spectral count for quantitative analysis [6] and builds a new
method for shared peptides to accurately evaluate abundance
of isoforms. In addition, for proteins with low abundance,
MS/MS total ion count (TIC) coupled with spectral count
is included to ensure accurate calculation for protein abun-
dance fold change. Another critical part of freeQuant is
the combination of quantification and functional analysis
which aims of comprehending and explaining functions
and relationships of proteins in a large-scale manner. More
importantly, the ease of use and accurate quantification as
expected are also distinguished properties of freeQuant. We
further performed the software evaluation using the MS
spectral data of mitochondrial proteomes from our previous
studies [14, 15].Wedemonstrated that freeQuantwithMS/MS
TIC algorithm could alleviate the deficiency arising from SC
and accurately evaluate protein abundance fold change. The
strategy with shared peptides can improve the accuracy for
low-abundant protein isoforms. In addition, freeQuant pro-
vides quantification analysis coupledwith functional analysis,
which is meaningful to deeply explore the functions and
interactions of complex proteomes.

2. System Description

2.1. freeQuant: A Locally Installed Toolkit. freeQuant is a free
and locally available toolkit dedicated to the quantitative
and functional analysis of complex proteomes, and the main
interface of freeQuant is shown as Figure 1. freeQuant was

Figure 1: The Interface of freeQuant. Four modules were involved
in freeQuant. First, protein information contains basic information
of the current protein, such as protein name, relative abundance,
and functional annotations. Second, spectral abundance atlas shows
the distribution and relative abundance of identified peptides.Third,
sequence shows the protein length, molecular weight, and protein
coverage. Fourth, distinct peptide shows the correlative information
of identified peptides.

developed by C++ language using Microsoft Visual Studio
2010. It runs in Microsoft Windows 7 (2GB memory or
higher, 128GBHDDor higher) and can be freely downloaded
from ftp://ftp.vico-lab.com/. The locally installed version,
which provides a simple and user-friendly interface, runs
independently on the user’s PC and it is more powerful to
process large-scale data. freeQuant consists of four parts: data
loading, quantification, functional analysis, and results dis-
playing, as supplementary Figure S1 in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2015/137076
shows. The inputs of freeQuant are the FASTA database, MS
data, and MS/MS files. Importantly, the kernel of freeQuant
consists of two well-integrated modules: (1) label-free quan-
titative analysis using the MS spectral features; (2) mining
biomedical knowledge for functional annotation. These two
modules are highly interactive and cross-linked to allow
fruitful analysis of complex proteomes.

2.2. Label-Free Quantitative Algorithm. To ensure the quan-
titative accuracy of complex proteomes with the freeQuant
toolkit, we utilized two MS spectral features, the SC and
the TIC, to quantify identified proteins in a large-scale
manner. Firstly, the normalized spectral abundance factor
(NSAF) based spectral count was adopted for quantification
of complex proteomics, as (1) shows. All spectral counts are
summed for each identified protein and then divided by
protein length, generating the values of spectral abundance
factor (SAF); the SAF value of each identified subunit is
then normalized against the sum of all SAFs within an
individual biological sample, resulting in the normalized
SAF (NSAF) value; all NSAF values are then calculated
separately for all biological samples. The average value of
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NSAF for each identified protein is employed for further
quantitative and biological analysis. Secondly, a new method
with shared peptides is proposed to explore how to accurately
estimate abundance of isoforms.We used distinct peptides as
proportional factor and allocate shared peptides to protein
isoforms. Corresponding with NSAF, protein length was
employed to rectify distinct peptides and obtain proportional
factor by normalizing distinct peptides similarly, and then
shared peptides were allocated to isoforms to obtain the final
spectral counts, as (2) shows.

TheMS-based protein abundance feature originates from
spectral count, which, in the simplest form, counts the
number ofMS spectra assigned to one protein as its abundant
feature. However, it is reportedly inaccurate in determining
large fold change [16] or with low SCs [17, 18]. Therefore,
otherMS abundance features, such asMS/MS TIC, should be
built for further analysis. freeQuant employs TIC as another
MS abundance feature coupled with SC for quantification of
complex proteomes to address the inherent deviation and
systematic errors between replicate MS measurements. The
advantages of this strategy lie in the dramatic extension of
attainably quantitative ratios by the incorporation of ion
counts and the protein size issue eliminated by the adoption
of SC as divisor [19]. In order to obtain MS/MS TIC of
each identified protein, all MS raw data are extracted to
obtain MS/MS files using RawXtract [20]. As (3) shows,
all intensities of each protein are cumulated, named the
Spectral Index (SI). A two-step normalization is then taken
to SI to eliminate the quantification bias from protein length
and mass sampling. The normalized process, as a routine
operation to eliminate systematic errors and inherent vari-
ances, can only be applied in some certain circumstances,
for instance, when comparing relative changes between two
complex mixture samples [19]. Thus, protein length was used
to adjust protein size and all algorithms took two normalizing
steps. Consider
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Equation (1) is the definition of NSAF, where Sc is the spectral
count of protein 𝐽 and 𝐿 is the length of protein 𝐽 and 𝑁 is
the total number of proteins; (2) is the description of shared
peptides, 𝐵 is the total bands, Scu is the count of distinct
peptides, Scs is the count of shared peptides, and 𝑅 is the
proportional factor; (3) is the description of TIC, PI is the

final quantitative result, SI is the spectral counts with total ion
counts, Pn is the distinct peptide, and 𝐼 is the total ion counts.

2.3. Mining Biomedical Knowledge of Complex Proteome.
An important feature of freeQuant is to support functional
analysis of complex proteomes. It is highly interactive to parse
analytical results through g:Profiler. g:Profiler is a web-based
bioinformatics tool for functional profiling of gene lists from
large-scale experiments. It adopts the Benjamini-Hochberg
statistic method to control False Discovery Rate (FDR)
[21] and improve accuracy. According to these properties,
g:Profiler is employed to obtain functional annotation of
complex proteomes.Gene nameof each proteinwas extracted
from IPI FASTA database with our in-house toolkit and was
analyzed through g:Profiler, then outcomes were analyzed
by freeQuant to automatically annotate to obtain functional
annotation of complex proteomes, and theworkflow is shown
in Figure 2. Importantly, 𝑝 value was regarded as the key
factor to filter functional annotations. For the protein with
multiple functions, the functional annotation corresponding
to the smallest 𝑝 value was filtered. Therefore, large-scale
functional annotations of complex proteomes were qualified
and distributed by freeQuant.

3. Data Presentation,
Visualization, and Analysis

With growing amounts of available MS-based data, the
researcher’s role in understanding, interpreting, and verifying
quantitative and qualified results becomes ever more signif-
icant. Much effort has been put in developing quantitative
accuracy of freeQuant and combining functional analysis of
each identified protein for complex proteomes. In order to
completely validate the accuracy and performance of free-
Quant, mitochondrial proteins, which served as a classic type
of complex proteomes, were selected for analysis. Mitochon-
dria have received extensive attention due to their impor-
tance in cellular function including cell division, transport,
metabolism, apoptosis, and known causative role in diseases.
Mammalian mitochondria are double-membrane organelles,
serving as the metabolic power houses of eukaryotic cells
[14, 15, 22]. The data analysis pipeline is shown in Figure 3.
Raw data from the mitochondrial MS experiments were
searched using pFind protein search engine to obtainMS/MS
spectra [23], and the MS/MS spectra were then extracted by
RawXtract [20] to obtain total ion counts. For proteins with
shared peptides, the count of shared peptides was used as an
optimized factor to refine the abundance of mitochondrial
protein isoforms. In parallel, functional annotation was auto-
matically performed by freeQuant with the aid of g:Proflier.
Based on the functional annotation results, the quantified
mitochondrial proteins from the large-scale experiments
were assigned to a total of 13 functional clusters which are
highly related to the biological characteristics of mitochon-
dria. To evaluate our proposed quantification method, the
dynamic ranges of quantification results from both the total
ion count and the spectral count were compared. It illustrated
that the method with MS/MS TIC was more accurate than
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Figure 2:The functional analysis workflow. Gene name of each protein from IPI FASTA database was extracted by freeQuant.The list of gene
name were inputted into g:Profiler via http://biit.cs.ut.ee/gprofiler/gconvert.cgi. A list of functional annotation results for each identified
protein in Excel format were then generated by g:Profiler. Each functional annotation result was labeled with 𝑝 value using Benjamini-
Hochberg statistic method to show its statistical confidence. Next, the output of g:Profiler in Excel format was analyzed by freeQuant to
automatically obtain functional annotation for complex proteomes. Especially in case of g:Profiler generating multiple functional annotation
results for a single protein, the annotation result with smallest 𝑝 value was finally selected to annotate the corresponding protein.
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Figure 3: The data analysis pipeline with freeQuant. Three steps were involved. First, raw data were extracted to obtain spectral counts and
total ion counts; functional profiling files were achieved through g:Profiler. Second, quantification coupled with biomedical knowledge was
analyzed with freeQuant software toolkit using NSAF, MS/MS TIC, and shared peptides. Final, mitochondrial proteins were quantified and
qualified by freeQuant. freeQuant software tool was appreciated by biologists, bioinformatics, and so forth.



The Scientific World Journal 5

Table 1: The analysis of proteins in acyl-CoA dehydrogenase family.

Protein name Total count of peptides Total count of shared peptides Rate (%) Rank (NSAF only) Rank (with shared peptides)
Acadvl 3033 3000 98.91 8 8
Acadl 1449 1419 97.93 11 12
Acadm 1150 1131 98.35 51 39
Acads 705 692 98.16 63 63
Acad8 200 188 94.00 140 100
Acads 180 180 100 157 1444
Acad9 155 144 92.90 182 111
Acadsb 113 105 92.92 228 165
Acad10 85 80 94.12 395 289

the method with SC only, as Figure 4 shows. Moreover, the
new strategy with shared peptides was able to overcome the
overestimated results, especially for the low-abundant protein
isoforms, to improve the quantification accuracy, as Table 1
shows.

3.1. Assessment of Label-Free Quantitative Algorithm

3.1.1. Data Acquisition and Preparation. All MS/MS spec-
tra we used were from the previous work of the authors
[24–26]; the workflow was shown as supplementary Figure
S2. Mitochondria were treated with 0.5% DDM to extract
membrane proteins and separated by SDS-PAGE followed by
CBB G250 staining. Bands were sequentially cut from the
continuum of the gel lane and were labelled to obtain much
more accurate results in the peptide shared quantification.
Proteins were digested with trypsin, and peptides were ana-
lyzed by LTQ-Orbitrap. Then, all MS/MS spectra including
mouse heart mitochondrial dataset, mouse liver mitochon-
drial dataset, and human heart mitochondrial dataset were
searched against the IPI mouse database (version 3.47) and
IPI human database (version 3.68) [27] using pFind (version
2.6). Meanwhile, all MS raw data were searched through
RawXtract (version 1.9.1) to obtainMS/MSfileswith fragment
ion intensity. Detailed search parameters were performed
the same as the authors’ previous work [25]: partial tryptic
digest allowing two missed cleavages, fixed modification of
cysteine with carbamidomethylation (57.021Da) and variable
modification of methionine with oxidation (15.995Da), and
the precursor and fragment mass tolerances were set up at
1.5 and 0.5Da, respectively. Peptides matching the following
criteria were used for protein identification: DeltaCN ≥ 0.1;
FDR ≤ 1.0%; peptide mass was 600.0∼6000.0; peptide length
was 6∼60.

3.1.2. Calculation of Protein Abundance Fold Change. Based
on the data analysis pipeline, the applicability of label-free
quantitative algorithms we proposed was investigated. Their
abilities to calculate protein abundance fold change with
regard to accuracy were tested with mitochondrial proteins.
To get a clear view on the variability of these algorithms,
we used the mass spectrometry data of mouse heart mito-
chondria to evaluate the dynamic range of each algorithm.

Abundant features calculated were averaged and plotted in
a boxplot to demonstrate the magnitude of each algorithm.
The dynamic ranges of two starting abundance features
were in the descending order as TIC and SC. Then, three
groups of proteins based on different conditions including
the whole proteins, proteins only with shared peptides, and
proteins only with distinct peptides were analyzed by the
two proposed algorithms, as shown in Figures 4(a), 4(b), and
4(c). We found that, as shown in Figure 4(d), the dynamical
range of relative protein levels based on TIC values was
broader than NSAF; particularly the estimation of MS/MS
TIC was accurate over three orders of magnitude compared
to NSAF. It was reported that if the dynamic range is much
broader, more proteins will be quantified and the quantitative
results aremore accurate.Therefore, it demonstrated that TIC
coupled with spectral count showed more accurate results
than SC-based algorithm and it alleviated this particular
deficiency arising from SCwhich wasmore suitable for deter-
mining protein abundance fold change. Meanwhile, TIC-
based algorithm coupled with spectral count could avoid the
inherent variance and systematic errors effectively between
replicate MS measurements.

3.1.3. Accuracy of Label-Free Quantitative Approach with
Shared Peptides. SC, defined as the total number of spectra
identified for a single protein, has recently gained acceptance.
We evaluated the label-free approach based on SC, especially
the new strategy with shared peptides.TheMS data identified
from the mouse heart mitochondria was used for the evalu-
ation [24–26], and the MS experiments were repeated four
times, generating four groups of MS/MS data, which were
named as Group A, Group B, Group C, and Group D. All
groups were searched by pFind and quantified by freeQuant
to identify total counts of proteins. Based on the idea of
NSAF, each group was quantified by the new strategy with
shared peptides for further study, and all proteins were sorted
in the descending order with regard to relative abundance.
As supplementary Figure S3 shows, proteins with shared
peptides accounted for 25%–40% of total proteins. We com-
pared the quantification results between the NSAF method
and our new method which introduced shared peptides for
the protein families in the mitochondria, for example, the
proteins from acyl-CoA dehydrogenase family. Proteins in
this family play a significant role in life event due to their



6 The Scientific World Journal

0

2

4

6

8

10
lo
g
10

(v
al

ue
 fr

om
 al

go
rit

hm
)

NSAF_SC NSAF_TIC

(a) Evaluation of the whole proteins

NSAF_SC NSAF_TIC
0

2

4

6

8

10

lo
g
10

(v
al

ue
 fr

om
 al

go
rit

hm
)

(b) Evaluation of proteins only with shared peptides

NSAF_SC NSAF_TIC
0

2

4

6

8

lo
g
10

(v
al

ue
 fr

om
 al

go
rit

hm
)

(c) Evaluation of proteins only with distinct peptides

6.78 1.28 7.93 0.925 7.005

6.68 3.23 7.83 3.48 4.35

5.74 1.3

5.5

3.45

4.44 7.14 0.94 6.2

Max Min Range Max Min Range

A

B

C

NSAF_SC NSAF_TIC

(d) The table of dynamical range of different samples based on
NSAF SC and NSAF TIC

Figure 4: The protein abundance fold change of quantitative algorithm. Quantitative algorithms based on MS abundance features were
involved. NSAF by spectral count and NSAF by total ion counts were used to quantify the whole protein dataset (a), proteins only with shared
peptides (b), and proteins only with distinct peptides (c), respectively. It shows that the dynamical range of MS/MS TIC coupled with spectral
count is broader than NSAF (d). Therefore, MS/MS TIC coupled with spectral count which alleviates this particular deficiency arising from
SC was more suitable for determining protein abundance fold change. For panels (a), (b), and (c), the 𝑥-axis represents the two quantitative
algorithms, NSAF by spectral count (NSAF SC) and NSAF by TIC (NSAF TIC); the 𝑦-axis represents the quantitative results of NSAF SC or
NSAF TIC, which are calculated by Formula (1) and Formula (3) in Section 2.2, separately.The quantitative results are shown in log10 format.

biochemical properties of fatty acid metabolism and lipid
metabolism.AsTable 1 shows, the proportion of proteinswith
shared peptides reached 90%.Ranking of these proteins in the
family generally ascended after approaching by new strategy.
Additionally, if all peptides of a protein were shared, the
quantitative results were completely different, such as Acads.
Consequently, we concluded that normalized processes we
designed eliminated systematic errors and should be consid-
ered when dealing with MS/MS spectra. Simultaneously, the
new strategy with shared peptide overcame inaccurate and
overestimated results for low-abundant isoforms.

3.2. Biomedical Knowledge Annotation against
Quantitative Proteomics

3.2.1. Functional Clustering and Distribution of Identified Pro-
teins. Next, we sought to understand the protein functions
of the complex proteome using g:Profiler, which is able to
annotate the protein functions from the Gene Ontology

Annotation (GOA) database [28], and all the annotation
results output from g:Profiler were automatically parsed with
freeQuant. In order to make the functional cluster closer
to the biochemical properties of mitochondrial proteins, we
assigned all identified mitochondrial proteins to a total of 13
functional clusters according to the summary of our previous
study [25]. These 13 functional clusters include apoptosis,
DNA/RNA/protein synthesis, metabolism, oxidative phos-
phorylation, protein binding/folding, proteolysis, redox, sig-
nal transduction, structure, transport, cell adhesion, and cell
cycle. The proteins which were unable to assign functional
group were therefore classified as “unknown,” as Figure 5
shows. Metabolic proteins have highest abundance in mouse
liver mitochondrial dataset, while oxidative phosphorylation
proteins show highest abundance in cardiac mitochondrial
dataset. This explains that liver plays a vital role in metabolic
process including nutrients synthesis, transformation, and
decomposition. However, heart promotes blood flowing to
provide adequate blood to the organs or tissues, supplies
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Figure 5: The analysis of functional clustering for mitochondrial
proteins. Three mitochondrial proteins were involved including
mouse heart mitochondrial dataset, mouse liver mitochondrial
dataset, and human heart mitochondrial dataset. 𝑥-axis represents
different samples, 𝑦-axis represents fraction of protein abundance,
and the different colours represent different functional clusters.
Functional annotations were distributed to 13 clusters due to
biomedical properties of mitochondria. Metabolic proteins show
highest abundance in mouse liver mitochondrial dataset, while
oxidative phosphorylation proteins show highest abundance in
cardiac mitochondrial dataset.

oxygen or various nutrients, and takes metabolic products
away. Functional clustering for complex proteomes con-
tributes to comprehending physiological and pathological
characteristics of mitochondrial proteins.

We, respectively, selected top 10 most abundant proteins
in each sample, from this point of functional analysis, and
these proteins play a major role in Electron Transport Chain
(ETC) complex, metabolism, tricarboxylic acid cycle, and
so forth. Top 10 most abundant proteins in human heart
mitochondrial dataset which show significant function were
listed, as supplementary Table S1 shows. Similarly, it was
found that those proteins show high abundance in mouse
heart mitochondria and six of them also rank top 10 espe-
cially. However, two of them which are from ETC complex
rank top 10 in mouse liver mitochondria, and the relative
abundance of the rest of them is extremely low. Then top
10 proteins in mouse heart mitochondria were analyzed, as
supplementary Table S2 shows, and four of those proteins
show high relative abundance in human heat mitochondrial
dataset. For proteins in mouse liver mitochondrial dataset,
as supplementary Table S3 shows, the distribution of such
proteins shows great difference; some individual proteins
even cannot be identified, as IPI00420718. Furthermore, the
protein which ranks the first (IPI00111908) in mouse liver
mitochondria ranks 999 in mouse heart mitochondria and

ranks 1004 in human heat mitochondria, respectively. It
lies in the protein which almost participates in urea cycle
merely existing in liver inmammals. By this token, functional
distribution based on quantification contributes to detecting
differential protein expression and quantitative proteomics
is not only a way for data processing but also an important
approach for exploring protein functions and interactions in
a large-scale manner for complex proteomes.

3.2.2. Quantitative Analysis of Mitochondrial ETC Subunits.
In themitochondria of eukaryotic cells, ETC subunits consist
of a series of redox reactions in which electrons are trans-
ferred from a donor molecule to an acceptor molecule. The
change of abundance in ETC subunits may cause mitochon-
drial dysfunction. Our study shows that ETC complexes are
highly abundant in different biological species and tissues. A
much detailed analysis can draw a complete picture regarding
the distribution of ETC subunits abundance. We classified
proteins among ETC complexes and then compared averaged
NSAF of each ETC complex. As Figure 6(a) shows, the
relative abundance of Complex V which is the main factory
for synthesizing ATP shows higher abundance than others.
Our analysis illustrated that, among all five ETC complexes,
Complex I to Complex IVmainly participate in the process of
mitochondrial inner or outer membrane electron transport,
while Complex V is used for synthesizing ATP. Meanwhile,
Complex I to Complex IV display very similar level of
abundances. In comparison, Complex V appears to be in
higher abundance, which is approximately 3 times more
than others. Then we selected mouse heart mitochondria
for further study (Figures 6(b), 6(c), 6(d), 6(e), and 6(f)).
Not surprisingly, the majority of proteins identified in our
study are encoded by the nuclear genome, while 12 of the
ETC subunits are encoded bymitochondrial genome [25, 29].
They are MTATP6, MTATP8, MTCO1, MTCO2, MTCO3,
MTCYB, MTND1, MTND2, MTND3, MTND4, MTND4L,
and MTND5, respectively [30]. These 12 ETC subunits show
significantly low abundance when compared to the nuclear-
encoded ETC subunits, suggesting that these mitochondrial-
encoded proteins are the limited factors for effective assembly
of the ETC complex.More importantly, some related research
reports indicate that many diseases caused by lacking of
mitochondrial function are highly correlated with these
proteins encoded by mitochondrial genome [31].

3.2.3. Quantitative Analysis of Mitochondrial Interactome.
Human heart mitochondrial proteins were selected and
queried within IntAct database for identified protein-protein
interactions to demonstrate quantification coupled with
functional analysis for complex proteomes [32]. Cytoscape
3.0 Network Data Integration, Analysis, and Visualization
software was then utilized to display interactions among all
proteins [33]. Figure 7(a) shows the mitochondrial interac-
tome network combined with quantitative analysis results.
Each node represents a protein, the size of each mitochon-
drial node represents the number of connections in the
protein-protein interaction network, and the larger nodes
represent more interactions. In addition, we listed the top 30
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Figure 6:The quantitative analysis of ETC complex subunits.Three groups of proteins with different complexes were comparedwith averaged
NSAF of each ETC complex. (a) shows quantitative abundance of all five ETC complexes; Complex I to Complex IV displayed very similar
level of abundances. In comparison, Complex V appeared to be in higher abundance, approximately 3-fold more than others. (b) shows
quantitative analysis of proteins in Complex I and proteins were encoded by mitochondrial genome or nuclear genome, respectively; (c)
shows quantitative analysis of proteins in Complex II; (d) shows quantitative analysis of proteins in Complex III and proteins were encoded
by mitochondrial genome or nuclear genome, respectively; (e) shows quantitative analysis of proteins in Complex IV and proteins were
encoded by mitochondrial genome or nuclear genome, respectively; (f) shows quantitative analysis of proteins in Complex V and proteins
were encoded by mitochondrial genome or nuclear genome, respectively.
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Figure 7: (a) The quantitative analysis of mitochondrial interactome. Each node represents a protein, the size of each mitochondrial node
represents the number of connections in the protein-protein interaction network, and the larger nodes represent more interactions. (b) The
analysis of top 30 proteins inmitochondrial interactome.Different types represent different functions,𝑥-axis represents number of interaction,
𝑦-axis represents rank of abundance, 17 of them are from ETC complex, and almost all proteins are top 50 high abundance and, especially, 18
proteins are top 10 high abundance.

proteins of mitochondrial interactome in Figure 7(b); 17 of
these proteins are ETC complex subunits. This study shows
that Complex I proteins were centralized around NADH-
ubiquinone oxidoreductase AB1 subunit (NDUFAB1), a fea-
ture highlighting the importance of NDUFAB1 as a core
protein; another kernel protein in Complex I subunits was
NADH-ubiquinone oxidoreductase B8 subunit (NDUFA2),
and the rest of the proteins in Complex I had a total
of 57 interactions. In contract, the Complex II subunits
showed small scattered clusters and fragmented groupings.
The Complex III proteins were centralized around CYC1,
its important role in OXPHOS. The Complex IV proteins
showed similar interactions, and the core protein of Complex
IV was COX4I1. In the Complex V interactome, ATP5F1
and ATP5B demonstrated the most protein-protein interac-
tions and ATP5B served as the major hub in the human
heart mitochondrial proteins. Beside ETC subunits, other
high-abundant mitochondrial proteins also show numerous
protein-protein interactions, such as ICT1, IMMT, ALDCA,
SCL25A13, ACADVL, and ACAD9. ICT1 is an essential
protein necessary for mitochondrial protein synthesis. A
total of 143 protein-protein interactions in our study were
detected, ranking as top 1 of the whole mitochondrial
proteome, illustrating that ICT1 serves as the major hub
in mitochondrial interactome. Richter et al. (2010) show
that mammalian mitochondrial ribosomes contain a ribo-
somal protein (ICT1) that acts as a ribosome-dependent,
codon-independent peptidyl-tRNA hydrolase. This riboso-
mal protein can rescue ribosomes stalled on mRNAs lacking
a termination codon [34, 35]. Another vital protein was
ACADVL, which shows 63 protein-protein interactions. Its
important role is redox which exists in mitochondria only.
Mutations in theACADVL gene lead to a shortage of VLCAD

enzyme within cells. Without sufficient amounts of this
enzyme, very long-chain fatty acids are not metabolized
properly. Inborn error of long-chain fatty acid metabolism is
often characterized by cardiac hypertrophy, arrhythmia, and
sudden death in the disease phenotype of affected children
[36, 37]. Meanwhile, it was reported that these results were
indicative of the intergenomic protein-protein properties,
which may have been influenced by the functional analysis
[38]. Subsequently, mitochondrial interactome coupled with
quantification and functional analysis were analyzed. As
Supplementary Table S4 shows, in the aspect of functional
analysis, half of these proteins were from ETC complex and
participated in synthesizing energy ATP, and the rest also
played a vital role in redox, binding, transport, OXPHOS,
signaling, and biosynthesis; protein-protein interaction was
entwined with protein abundance, almost all proteins are
top 50 and, especially, 18 proteins are top 10. The integrated
framework addressing protein interactions with quantifica-
tion may elucidate mechanistic insights that play a funda-
mental role in targeting disease and contributes to providing
a new way to discover other crucial proteins.

4. Conclusions

freeQuant, which addresses the abovementioned challenges
in complex proteomes, consists of two well-integrated mod-
ules: the kernel part is label-free quantitative algorithm sup-
porting kinds of label-free quantitative approaches, such as
NSAF-based on spectral count, NSAF with shared peptides,
and TIC coupled with spectral count; another important
feature is the combination quantification with functional
analysis, which is a meaningful way to deeply explore inter-
actions and relationships for complex proteomes. We have
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already applied freeQuant to quantify and qualify mito-
chondrial proteins and analyzed quantitative results based
on biomedical knowledge. The results demonstrated that
MS/MS TIC coupled with spectral count can lower inher-
ent variances between replicate MS experiments and has
broader dynamical range to improve accuracy, especially it
is capable of alleviating this particular deficiency arising
from SC which is more suitable for determining protein
abundance fold change, and the new strategy with shared
peptides overcomes inaccurate and overestimated results for
low-abundant isoform. Label-free quantitative approaches
coupledwith functional analysis can thoroughly comprehend
the relationship and correlation of complex proteomes in
large-scale experiments and contribute to providing a new
method for complex proteomes analysis.

freeQuant has additional features. It adopts wizard dialog
to help users load data and it uses parallel computing to
shorten time to quickly process large-scale data. Different
visualization methods were employed to display analytical
results.The home page describes all the information of a pro-
tein, such as basic protein information, spectral abundance
atlas, sequence, and distinct peptides, and the comparative
page profiles the rank list of whole proteins with regard
to relative abundance to reveal the differences of proteins
abundance as a whole. In conclusion, freeQuant provides
ease-to-use interface and accurate quantification method for
the proteomics science community to study the complex
proteome.
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