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Abstract

Motivation: MHC-peptide binding prediction has been widely used for understanding the immune response of indi-
viduals or populations, each carrying different MHC molecules as well as for the development of immunotherapeu-
tics. The results from MHC-peptide binding prediction tools are mostly reported as a predicted binding affinity (IC50)
and the percentile rank score, and global thresholds e.g. IC50 value < 500 nM or percentile rank < 2% are generally
recommended for distinguishing binding peptides from non-binding peptides. However, it is difficult to evaluate
statistically the probability of an individual peptide binding prediction to be true or false solely considering predicted
scores. Therefore, statistics describing the overall global false discovery rate (FDR) and local FDR, also called poster-
ior error probability (PEP) are required to give statistical context to the natively produced scores.

Result: We have developed an algorithm and code implementation, called MHCVision, for estimation of FDR and
PEP values for the predicted results of MHC-peptide binding prediction from the NetMHCpan tool. MHCVision per-
forms parameter estimation using a modified expectation maximization framework for a two-component beta mix-
ture model, representing the distribution of true and false scores of the predicted dataset. We can then estimate the
PEP of an individual peptide’s predicted score, and conversely the probability that it is true. We demonstrate that the
use of global FDR and PEP estimation can provide a better trade-off between sensitivity and precision over using cur-
rently recommended thresholds from tools.

Availability and implementation: https://github.com/PGB-LIV/MHCVision.

Contact: andrew.jones@liverpool.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The host immune system can respond to the appearance of patho-
genic fragments or mutated peptides derived from cancer cells by the
process of antigen presentation. As part of the antigen processing
pathway, short peptide fragments are generated from either cytosol-
ic proteins or extracellular proteins that enter cells via the vesicular
system. Digested peptides are subsequently presented by major
histocompatibility (MHC) proteins, called human leucocyte antigens
(HLA) for human. Peptides from cytosolic proteins can be presented
by MHC class I molecules (HLA-A, -B and -C) and recognized by
cytotoxic CD8þ T cells. Those peptides derived from the endocytic

processing pathway are bound to MHC class II (HLA-DR, -DQ and
-DP) and can activate CD4þ T cells (Unanue, 2006). A strong inter-
action between peptides and MHC molecules is a fundamental step
to initiate the activation of T cells and subsequently initiate an adap-
tive immune system to eliminate or attack the source of foreign pep-
tides (Wieczorek et al., 2017). The diversity of MHC molecules is
high due to extensive polymorphism at most loci. The latest update
of IMGT/HLA database in August 2019 contains 24 093 alleles
including 16 943 alleles of HLA-A, -B and -C and 6650 alleles of
HLA class II (Robinson et al., 2020). Many of the alleles are excep-
tionally rare, carried only by a few individuals, but 1122 alleles of
HLA-A, -B, -C, -DRB, -DQA, -DQB, -DPA and -DPB loci are
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common and well-documented, 415 alleles of these alleles were
identified as ‘common’ (having known frequencies) and 707 as
‘well-documented’ base on HLA genotyping observations and avail-
able HLA haplotype data (Mack et al., 2013). Each HLA allele has
a binding preference to specific peptides, driven mostly by the physi-
cochemical properties of their primary sequence. Experimental
work, called ‘immunopeptidomics’, for example using mass spec-
trometry (MS) to identify the set of MHC-bound peptides eluted
from cells, has been carried out for many alleles, but can only ever
identify a subset of the true total peptide binding potential for a
given allele (Yewdell and Bennink, 1999). The accuracy of identifi-
cation of binding peptides of a specific HLA allele using computa-
tional methods is therefore highly useful for understanding
individual or population-specific immune response, and facilitating
the development of clinical immunotherapy such as vaccines for in-
fectious diseases or for cancer via neoepitope prediction (Zhang
et al., 2012).

Computational methods for class I MHC-peptide binding predic-
tion showed high accuracy and have been reported to have a better
performance than their MHC II counterparts (Nielsen et al., 2008;
Wang et al., 2008). Moreover, when compared with MHC I binding
prediction, MHC II predictors have a high risk of falsely excluding
strong binders (Zhao and Sher, 2018). The current benchmark of
HLA class I binding prediction showed the best performance of
90% sensitivity and 98% specificity (Nielsen and Andreatta, 2016).
In this study, we therefore focus on peptide binding prediction
against HLA class I because there are more available experimental
datasets, and accurately predicted results are crucial for the robust-
ness of the developed model (Table 1). In general, the prediction
software include a machine learning-based algorithm, trained with
experimental data for peptides known to be bound or not bound by
specific HLA alleles. Among recent publicly available tools, there
are two tools, NetMHCpan and MHCflurry (O’Donnell et al.,
2018; Reynisson et al., 2020), which perform consistently well in
benchmarking studies (Paul et al., 2020). NetMHCpan4.1 is the lat-
est version of NetMHCpan family, it extends the training using
neural networks that can learn connections between amino acid
positions in the HLA protein sequence and target peptides, and thus
can make predictions for HLA alleles in the absence of specific data
for one given allele. Furthermore, this current version covers 2915
MHC molecules for HLA-A, -B and -C, but only 79 alleles are sup-
ported in MHCflurry. Our initial focus thus studied the prediction
results by using NetMHCpan4.1, although we also comment on the
extensibility of our approach to MHCflurry.

The output from a prediction reports the predicted binding affin-
ity (IC50) in nM unit. IC50 < 500 nM is the commonly recommended
threshold for binding affinity to classify binding and non-binding
peptides. From version 4.0 onward, NetMHCpan also produces a
percentile rank (‘% Rank’) for each predicted IC50, the % rank
scores were determined by comparing a given IC50 value for one
peptide to the score distribution of a large selection of random pepti-
des. The percent rank < 2% is a suggested threshold for distinguish-
ing binding and non-binding peptides rather than IC50 < 500 nM
because it reduces the bias of binding preference across different
MHC molecules (Jurtz et al., 2017). Given that most researchers are
more interested in statistics that relate to the proportion of true

detections at a given threshold, we believe that peptide binding pre-
dictions require the estimation of false discovery rate (FDR), which
is one of the motivations for this work. Moreover, the posterior
error probability (PEP), also known as local FDR, is critical for eval-
uating the probability that each individual data point is false (the
converse of PEP is the true probability) (Käll et al., 2008). To esti-
mate FDR and PEP accurately, the distributions of the true and false
data points must be known or reliably estimated. In this work, we
have developed a new software package called MHCVision to esti-
mate these distributions and calculate PEP and FDR from peptide
binding prediction data. We have trained and optimized
MHCVision using several datasets where we have engineered a mix-
ture of a priori known ‘true’ and ‘false’ data, and then we demon-
strate that this works in practice on a wider range of artificial
mixtures (with a known answer) and produces highly plausible esti-
mates on real datasets where the underlying ground truth is
unknown.

2 Materials and methods

Figure 1 provides an overview of the process followed to develop
MHCVision and briefly summarized here. First, we obtained data
(predicted IC50 scores) from multi-allelic cells and from mono-allelic
cells, overlaid with scores from random peptides to evaluate the best
fitting data distributions for true and false data (Fig. 1A, Sections
2.1 and 2.2). These analyses demonstrated that two beta distribu-
tions, with some parameter constraints, well model true and false
data. Then, the beta parameter estimator model was developed
using the modified expectation maximization (EM) algorithm, as
described in Section 2.3 (Schröder and Rahmann, 2017). The ro-
bustness of the model was evaluated by running the model on a var-
iety of datasets where true and false data are known and comparing
the similarity of simulated data generated from the model parame-
ters against the real data (Fig. 1B). The MHCVision model fits beta
mixture distributions to a given dataset, to estimate beta parameters
and relative sizes of true and false data, and thus enables the calcula-
tion of FDR and PEP for each peptide’s predicted binding affinity
(Fig. 1C, Section 2.4). The method for evaluating model fit on a
wider range of testing data is covered in Section 2.5.

2.1 MHC binding peptide collection
Datasets of MHC-bound peptides derived from MS analysis were
downloaded from the Immuno Epitope Database and Analysis
Resource (IEDB, https://www.iedb.org/) (Robinson et al., 2020).
Human peptides identified from MS and bound to HLA-A, -B and -
C were collected. Other eluted peptides from MHC class I ‘mono-al-
lelic cells’, i.e. presented peptides from cells carrying a single HLA
allele, were collected from several publications of immunopeptido-
mics studies (Abelin et al., 2017; Sarkizova et al., 2020;
Schittenhelm et al., 2014; Solleder et al., 2020). Peptides for each
HLA allele from those sources were combined, and redundant pepti-
des were removed. Only peptides with lengths of 8, 9, 10 and 11
mer were retained. However, the majority of peptide length in the
collected data was found as 9mer peptides for all HLA alleles. HLA
alleles that had �1000 9mer peptides were collected for onward

Table 1. MHC class I-peptide binding prediction tools

Tools Reported IC50 (nM) Reported % Rank Supported HLA I alleles

NetMHC 4.0 (Andreatta and Nielsen, 2016) � � 80

NetMHCpan 4.1 (Reynisson et al., 2020) � � 2915

NetMHCcons 1.1 � � 94–120

(Karosiene et al., 2012)

MHCflurry 2.0 (O’Donnell et al., 2018) � � 79

MHCnuggets 2.3 (Shao et al., 2020) � � 148

MHCSeqNet Binding probability 65

(Phloyphisut et al., 2019) (0–1)

EDGE (Sarkizova et al., 2020) � � 53
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analysis, totalling 85 HLA alleles covering HLA-A, -B and -C
(Supplementary Table S1, sheet1). Additionally, the ‘multi-allelic
datasets’, i.e. a set of peptides presented by cells carrying several

alleles, were obtained from the dataset contains naturally presented
HLA class I ligands derived from chronic myeloid leukemia (CML)
patients (Bilich et al., 2019).

To create datasets for training and testing MHCVision, we
required datasets with a known answer, containing biologically

plausible mixtures of true and false binders. The true binders were
sourced from the 85 mono-allelic datasets containing mass spec-

trometry (MS) datasets where peptides presented by genuine MHC
alleles were presented. False data points were modelled by random
peptides, created from the human proteome in the UniProt database

(www.uniprot.org) by a sliding window approach to generate pepti-
des of 8, 9, 10 and 11 amino acids (Apweiler et al., 2004). To gener-

ate a biologically plausible mixture of scores of MS and random
peptides, the dataset of MS peptides derived from mono-allelic sam-
ples was combined with random peptides (in a ratio of 1000:4000).

It should be noted that since some random peptides may be true
binders, we exclude random peptides with IC50 < 1000 nM (�2.5%

of all generated random peptides on average) from consideration
(Supplementary Fig. S1). The resulting peptide set was run through
NetMHCpan4.1 stand-alone package via the command line, for

each specific HLA allele. These mixture datasets were used for the
learning phase of developing MHCVision, and then for testing that
accurate values of FDR and PEP were estimated, along with a wider

range of testing sets on which the model had not been previously
trained (Section 2.4).

2.2 Evaluation of fitted statistical distributions
To find statistical models that can properly model the observed bi-
modal distributions, the data for 85 alleles (mixtures of peptides
identified from MS data and random peptides) in a 1000:4000 ratio

were inspected and tested for fit against Gaussian and beta distribu-
tions. Simulated datasets of 85 HLA alleles were generated by beta
and normal functions with specific values of parameters using

numpy packages in python, which are numpy.random.beta (a, b,
size) and numpy.random.normal (l, r, size). The parameters for

generating simulated data were calculated from each dataset. As the
beta distribution lies the interval [0, 1], we accordingly scaled the
binding affinity scores (log10(IC50)) for peptides in each dataset to

the same interval by dividing the predicted scores by the maximum
value. Then, the similarity between the real and simulated data was

evaluated by the R2 value calculated from the linear regression
analysis.

2.3 The modified EM algorithm with the iterated

method of moments for the mixture model
The parameter estimation algorithm for a mixture of two distribu-
tions was built using a python script. The detailed description that

follows is for the final implementation of the algorithm in
MHCVision for a mixture of two beta distributions. The algorithm

was proceeded iteratively as in the basis of the EM algorithm. The
step of parameter estimation was computed by Pearson’s method of
moment instead of the maximization of expected likelihood, thus,

the maximization step (M-step) was replaced by a method of
moments estimation step (MM-step) (Schröder and Rahmann,

2017). For each iteration, parameters including two mixture propor-
tions ðp1;p2Þ, two means ðl1;l2Þ and two variance values ðr2

1; r
2
2Þ

were estimated for two components.

2.3.1 Initialization

As the distribution of predicted scores was bimodal, thus, two was
defined as number of components. The data was sorted by predicted
IC50 and divided in half, thus, the initial p of each component was

initially set as 0.5. The initial lj;r
2
j were calculated from the data of

each component j, and the initial values of aj and bj were then com-
puted according to Equations 1 and 2.

aj ¼
1� lj

r2
j

� 1

lj

 !
l2

j (1)

bj ¼ aj
1

lj

� 1Þ
 

(2)

2.3.2 Expectation step (E-step)

The expected responsibility weight (Wi, j) of each component j and
data point xi was estimated from the probability density function of

the current estimates for beta distributions ðat
j , bt

jÞand the mixture
proportionpt

j (Equation 3).

Wt
i;j ¼

pt
j f xi; at

j ;b
t
j

� �� �
Pk

j¼1 pt
j f xi; at

j ; b
t
j

� � ; (3)

wheref x; a; bð Þ ¼ C aþ bð Þ
C að ÞC bð Þ � x

a�1 � 1� xð Þb�1

Fig. 1. The development of beta parameter estimation model and MHCVision workflow. (A) The beta parameter estimation model is developed by using the EM algorithm,

and testing different data distributions for matching against a mixture of true binding and random peptides. (B) The output from the model development is ‘MHCVision’,

which is a parameter estimation model for two component of beta distributions, where estimated beta parameters are constrained based on observations of plausible ranges

for binding affinities. (C) The estimated beta parameters corresponding to true and false data are estimated by MHCVision, those parameters are constrained within plausible

ranges using the modified EM algorithm. (D) The values of FDR and PEP are calculated from estimated parameters from the densities of fitted beta distribution
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2.3.3 Method of moments estimation (MM-step)

For each component j, the pj is updated based on the new values of
Wt

i;j according to Equation 4. Then, the component’s mean and vari-
ance and the beta distribution parameters are updated using the

method of moments (Equations 5–8).

ptþ1
j ¼

1

n

Xn

i¼1
Wt

i;j (4)

ltþ1
j ¼

Pn
i¼1 Wt

i;j � xiPn
i¼1 Wt

i;j

(5)

r2
j

� �tþ1

¼

Pn
i¼1 Wt

i;j � xi � ltþ1
j

� �2

Pn
i¼1 Wt

i;j

(6)
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1� ltþ1
j
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� �tþ1
� 1

ltþ1
j

0
B@

1
CA l2

j

� �tþ1
(7)

btþ1
j ¼ atþ1

j

1

ltþ1
j

� 1Þ
 !

(8)

In this step, we further constrained the estimated beta parame-
ters for the beta 2 component by the ranges of values calculated

from the datasets of various sizes (1000, 5000, 10000) of predicted
binding affinity scores from random peptides with a length of 8, 9,

10 and 11 mer against 85 HLA alleles. The purpose of this restric-
tion was to ensure that the beta 2 component of the mixture model
is certain to capture the false data. Since ultimately the model for

MHCVision fits to the distribution of data observed, we believe this
step does not bias the estimation of the ‘false’ distribution but will

lead to more accurate estimate of the shape of the genuinely false
distribution when new data is tested. Moreover, to ensure the beta 1
component is not fitted to the wrong distribution when presented

with all false data, the estimated parameters of the first component
are restricted if the estimated p1¼ 0 and size of the negative set 6¼ 0
(predicted IC50 > 10 000 nM) i.e. indicating that there is only one

distribution found, and there are data points in the plausible range
for false data. In this case, the ranges of a and b for the first beta

component were initially calculated from data points with predicted
IC50 � 10 000 nM using Equations 1 and 2, and the range of values
are only allowed to deviate 25% from the initial estimates. In prac-

tice, these two constraints mean that when the algorithm detects evi-
dence a very large imbalance, in either direction (i.e. all true or all

false), the beta 1 or beta 2 is correctly fitted to the appropriate
distribution.

2.3.4 Termination

The estimations (E-step and MM-step) were repeated until the max-

imal relative changes in the estimated parameter values, kt, between
step t and tþ1 is less than 0.00001 (Equation 9).

kt ¼ max
atþ1

j � at
j

max atþ1
j ; at

j

� � ; btþ1
j � bt

j

max jbtþ1
j j; jbt

j j
� � ; ptþ1

j � pt
j

max jptþ1
j j; jpt

j j
� �

8<
:

9=
;

0
B@

1
CA

(9)

2.4 Calculation of FDR and PEP for predicted scores
The estimated beta parameters were utilized to calculate values of
FDR and PEP of an individual predicted score in the dataset using
Equations 10 and 11, respectively. The number of false and true

positive were estimated by the cumulative distribution function of
the beta distribution while density at true and false were estimated

by the probability density function of the beta distribution.

GivendataX ¼ x1; . . . :;xnð Þ

FDRxi
¼

Fafalse ;bfalseðxiÞ

Fatrue ;btrueðxiÞ þ Fafalse ;bfalseðxiÞ
(10)

PEPxi
¼

fafalse ;bfalseðxiÞ

fatrue ;btrueðxiÞ þ fafalse;bfalseðxiÞ
(11)

2.5 Evaluation of fitted mixture model estimates
We evaluated the performance of the modified EM algorithm for the
beta mixture model using the original ‘training’ data (for 85 alleles,
mixtures of MS data and random peptides) in a 1000:4000 ratio, as
well as additional sets (1000:8000 ratios), all true (1000 MS pepti-
des) and all false (4000 MS peptides). For these datasets, we next
generated simulated data, based on the beta distribution parameters
learnt from the model fitting via the modified EM process described
above. The purpose of the simulated data was only to test for the
quality of the fit between simulated and real data. Two components
including estimated true and false data were generated with esti-
mated parameters given from the EM model for each HLA allele.
The best estimated beta parameters for two components produced
by the modified EM method above were used to generate the simu-
lated distributions. The simulated true data was generated by a set
of estimated true parameters (atrue, btrueptrue), and the simulated false
data was created by a set of estimated false parameters (afalse,
bfalse,pfalse), then, simulated true and false were concatenated.

Simulatedtruedata ¼ numpy:random:betaðatrue;btrue; ðptrue�sizeÞÞ

Simulatedfalsedata ¼ numpy:random:betaðafalse;bfalse; ðpfalse�sizeÞÞ

The similarity between real and simulated data generated by esti-
mated parameters was measured by the linear regression analysis
yielding R2 statistics. Moreover, Kolmogorov–Smirnov (KS) test
was used to detect the difference between the real and simulated
datasets, the significant threshold was set at P-value < 0.05.

3 Results

3.1 The data distribution of binding and non-binding

peptide scores and model fitting
The data distribution of the predicted binding affinity scores (log10

(IC50)) from mono-allelic cells and multi-allelic cells was explored.
A dataset of MS peptides from multi-allelic cells expressing six
alleles of HLA class I including A*03:01, A*68:01, B*07:02,
B*44:02, C*07:01 and C*07:02 was analyzed. To compare with
data from mono-allelic cells, MS peptides from the mono-allelic
datasets for the six alleles were selected. The MS peptides from
multi- and mono- allelic cells were mixed with the same set of ran-
dom peptides, and MHC-peptide binding affinity for their specific
HLA alleles were predicted using NetMHCpan4.1. The histogram
plots were created from the predicted scores to display the data dis-
tribution of MS peptides from mono-allelic cells, multi-allelic cells
and random peptides (Fig. 2). The distribution shape of the scores
for MS peptides from mono-allelic cells was almost exclusively a sin-
gle right skewed peak with lower log10 IC50 values (<3 or 3.5) for A
and B loci, with a more left skewed peak for C alleles around log10

IC50 of 2–4. In all cases, the overlay of random peptides demon-
strated a peak with log10 IC50 > 4. Since peptides identified by MS
data from mono-allelic cells are highly likely to be genuine binding
peptides for a specific HLA allele, we interpreted that the peak on
the left with low IC50 values (low IC50 is high binding affinity) is the
distribution of binding peptides (true data), whilst the right peak
(high IC50 is low binding affinity) is the distribution of the non-
binding peptides (false data). The distribution shape of MS peptide
binding predicted for A*03:01, A*68:01 and B*07:01 from multi-
allelic cells displayed a bimodal distribution, one located on the left

MHCVision 3833



and the other on the right side. This is expected, since only some of
the presented peptides in multi-allelic cell lines are presented by one
allele. However, the left peak of B*44:02, C*07:01 and C*07:02
can hardly be observed, most predicted scores located on the side of
low binding affinity. This may be an experimental artefact or a true
biological result, in that the set of peptides presented are dominated
by only three alleles. The distribution shape of the low binding affin-
ity peptides from multi-allelic cells well matches the distribution
shape of random peptides, indicating that random peptides also well
model the set of non-binding peptides.

The distribution of predicted scores from MS peptides from
mono-allelic cells mixed with random peptides for a more complete
set of 85 HLA alleles is shown in Supplementary Figure S2. In al-
most all cases, the MS peptide distribution is clearly separated from
the random peptide distribution. While the distribution shape of
random peptides appears highly similar shown as a right skewed dis-
tribution, some of the MS peptide distributions vary across different
groups of alleles. Most A and B locus alleles have a slight left skewed
or symmetrical distribution. The C locus alleles tend to have a sym-
metrical or right skewed distribution (i.e. only a few high binding af-
finity peptides). The shape of the data distribution is important since
we wish to model distribution shapes to calculate local and global
statistics from data distributions.

3.2 Statistical model fitting data distribution
To find statistical models that can properly model the observed bi-
modal distributions shown in Supplementary Figure S2, the evalu-
ation of mixture models including a mixture of Gaussian-Gaussian
(GG), a mixture of Gaussian-beta (GB), a mixture of beta-Gaussian
(BG) and a mixture of beta-beta (BB) was performed as described in
Section 2.2. The scatter plots of R2 values from 85 HLA alleles were
plotted across possible mixture components of the statistical models,
where the first component is the R2 of MS peptides and their simu-
lated data, and the second component is random peptides and their
simulated data. The result showed that the R2 values from GB and
BB were very close to 1 for most HLA alleles (Fig. 3A). This result
suggests that the true data distribution (left peak) can reasonably
well be modelled by both Gaussian and beta distributions while the
beta model gives the best fit for false data distribution (right peak).
However, the average R2 from datasets of 85 HLA-alleles from the
beta model fitting true data distribution (0.95) was significantly
higher than the Gaussian model (0.93) (P-value ¼ 1.77E-0.7, using
paired t-test) (Fig. 3B). Hence, these results indicated that the beta
mixture is the most suitable model to fit the predicted scores of data
containing a mixture of binding and non-binding peptides, and the
two-component beta model was thus used as the basis for
MHCvision.

3.3 Estimation of beta parameters
The results in the Figure 3 indicated that the distribution of pre-
dicted MHC binding affinity from a mixture of true and false pepti-
des is captured well by a two-component beta mixture model with

the first component (beta 1) representing low IC50 values (true data)
and the second component (beta 2) for high IC50 values (false data).
To estimate the size of true and false data from the predicted result,
the parameters of beta mixture distribution including two mixture
proportions ðptrue; pfalseÞ, atrue; afalse and btrue;bfalse were estimated
from the predicted dataset using the EM algorithm with a method of
moments estimation for the beta mixtures. Since the second compo-
nent of the data distribution is a set of scores of non-binding

Fig. 2. The distribution of predicted binding affinity of the MS peptides from mono-allelic cells (top) and multi-allelic cells (bottom) and those MS datasets mixed with random

peptides, as histograms for six representative HLA alleles

Fig. 3. Similarity measurement of model fitting data distribution. (A) The scatter

plots of R2 values from MS datasets (x-axis) and random (y-axis) datasets of 85

HLA alleles that were fitted by beta or Gaussian model; a mixture of Gaussian-

Gaussian (GG), a mixture of Gaussian-beta (GB), a mixture of beta-Gaussian (BG),

a mixture of beta-beta (BB). (B) The average R2 of Gaussian and beta model fitting

MS and random datasets from 85 HLA alleles. Each bar represented the mean of R2

from 85 HLA alleles. (*P-value < 0.05, **P-value < 0.01); Gaussian fitting MS

data (G_MS), beta fitting MS data (B_MS), Gaussian fitting random data

(G_random), beta fitting random data (B_random)
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peptides, the distribution shape of any predicted scores of non-
binding peptides with the same HLA allele should be similar.
Therefore, the values of afalse and bfalse from different datasets of
each HLA allele were explored to test for variation of beta model
parameter ranges dependent on dataset size and peptide length. The
calculated values of a and b from random datasets have a small vari-
ation across different data sizes for most HLA alleles
(Supplementary Fig. S3), from which we infer that the calculated
values of a and b can apply to any false dataset for the same specific
HLA allele. The ranges of calculated values of afalse and bfalse were
used to constrain the estimated afalse and bfalse in the MM-step, while
the estimated atrue and btrue values are constrained only for the case
of an input data consists almost all false data (see Methods).

The datasets of predicted scores from 1000 MS and 4000 ran-
dom peptides with 9mer in length for 85 HLA alleles were used to
test the accuracy of the parameter estimation model. The correctness
of estimation results was evaluated by similarity measurement be-
tween the real dataset (predicted IC50 scores) and the simulated
dataset generated by the estimated parameters. The R2 between the
real and simulated dataset for all 85 alleles are greater than 0.99
(Fig. 4A). However, the R2 can only describe a similarity of distribu-
tion shape but not scaling between two datasets. To ensure that
simulated data can represent a given observed data, we also consid-
ered other values in the linear equation including the slope and inter-
cept, and they are also close to 1 and 0, respectively (Supplementary
Fig. S4A and B). Furthermore, the difference between two distribu-
tions of real and simulated data for 85 HLA alleles was tested by KS
test. The P-values from KS test are higher than 0.05 for almost all
alleles indicating that distributions of real and simulated data are
not significantly different, although there are few alleles that have P-
value less than 0.05, which are A*01:01, C*04:01 and C*07:01
(Fig. 4A). Data from these three alleles does not follow an expected
distribution. We hypothesized that the MS data for these three
alleles contains a large number of false positives, perhaps due to in-
adequate FDR control in the source experiment. This stage of the
process is to demonstrate the overall performance of MHCVision,
which, importantly, refits the beta distributions to the shape of true
and false positives in a new dataset. As such, we believe these
anomalies are the result of problems with the MS data we are using
for evaluation, rather than with the model itself.

The overlaying of a density plot for each HLA allele between the
real and simulated dataset is shown in Figure 4B. In most HLA
alleles, the distribution of real and simulated data for both the left
and right peaks showed a good alignment (81 of 85 alleles have R2

� 0.995). The ideally fitted distributions, whose R2 > 0.999, were
found in the dataset that have clear separation of MS and random
peptides and a symmetrical distribution of MS data such as
A*02:02, A*33:03, B*27: 02 and B35:07. Some datasets that have a
flatter shape of MS peptide distribution or left skew (e.g. A*01:01,
C*03:03 and B*42:01) showed imperfect matching of some bins,
but the general location of the real and simulated data are the same
position. However, there are four datasets that have right skew dis-
tribution of MS data such as C*04:01, and C*07:01, displayed less

good alignment between real MS data and their simulated data
(those alleles have R2 < 0.995). Nevertheless, the distribution of
false data is well captured by their simulated data indicating that the
ratio of false positive to true positive in that area of the MS data
should still be correct. The overlaying density plot of all 85 HLA
alleles are in the Supplementary Data S2. The parameter estimation
analysis was also performed with datasets with a larger imbalance
ratio containing 1000 MS peptides and 8000 random peptides, and
the result showed that the similarity between real and simulated
datasets for 85 HLA alleles are close to 1 (R2 > 0.995,
Supplementary Fig. S4C). The R2 from datasets with 4000 random
is very similar to that from data with 8000 random indicating that
MHCVision is robust for datasets with a larger imbalance between
true and false data points, as may well be encountered in biological
samples.

Since the common lengths of MHC I peptides are 8–11 mer,
hence, the mixture of MS and random datasets with different pep-
tide lengths were generated for more thoroughly testing the perform-
ance of the parameter estimation model. There are 16 HLA alleles,
with MS peptides available for all lengths (8, 9, 10 and 11 mer),
which were used to test the estimation performance of the model,
800 MS peptides (200 per length) and 3200 random peptides (800
per length). It was found that the R2 values of the real dataset and
simulated dataset for 16 HLA alleles are highly close to 1
(Supplementary Fig. S5A). The value of R2 suggested that the par-
ameter estimation model functions well for the dataset with multi-
lengths of peptides, which are shown by a good alignment of density
plots between the simulated dataset created by the estimate parame-
ters and the real dataset (Supplementary Fig. S5B). Furthermore, the
robustness of the estimator model was evaluated with highly imbal-
anced distributions (i.e. almost all true, or almost all false), where
selected MS datasets and random datasets were used to test with the
model separately (Supplementary Fig. S6) and the predicted IC50 of
peptides derived from MHC I multi-allelic cells (Supplementary Fig.
S7). The result of similarity measure from those datasets revealed a
high similarity between the real and simulated data indicating that
the model can work well with datasets that are not in our sets of
data used to learn and train MHCVision and provide sensible esti-
mated parameters for data distributions with a large imbalance be-
tween true and false data. Altogether, the results of the R2 values,
KS test and the overlaying of data distributions indicate that the
framework of EM algorithm with a method of moments for a beta
mixture model can provide sensible estimated parameters for true
and false data. The estimated true and false data of the predicted
results can be further used to calculate the values of FDR and PEP
for an individual predicted score.

3.4 The estimation of FDR and PEP for the predicted

scores
The values of FDR and PEP of an individual predicted score were
calculated from the estimated beta parameters and sizes for true and
false data, following model fitting by MHCVision. From

Fig. 4. The analysis of the parameter estimation model for beta mixture testing with the predicted datasets of 9mer peptides of 85 HLA alleles. (A) The R2 and P-value from KS

test between the real and simulated data. (B) The overlaying of density plots between the real and simulated datasets of 10 representative alleles, the overlaying distributions of

85 HLA alleles are in the Supplementary Data S2
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NetMHCpan’s documentation, the 2% rank is recommended to use
as a hard threshold for binding peptide selection. Here, this analysis
performed the estimation of statistical confidence measure of FDR
and PEP for peptide binding prediction from the test datasets of a
mixture of MS and random peptides. A scatter plot demonstrating
FDR and PEP values at the 2% rank for 85 HLA alleles is shown in
Figure 5A. The accumulated (global) FDR value at the 2% rank
score of all HLA-A and most B and C loci is less than 0.1. However,
�20% of the representative datasets (17 of 85 alleles) showed global
FDR at the 2% rank are higher than 0.1 i.e. more than 10% of pep-
tides passing the threshold are predicted to be false positives, most
are found in HLA-C and a few HLA-B. To assess the confidence of
each peptide’s predicted score, the PEP was computed for each pep-
tide in the predicted dataset. The analysis demonstrated that 48 of
85 datasets, especially B and C loci, have PEP at the 2% rank over
0.5, which means the probability of each peptide being a false posi-
tive is higher than 50% even though they have < 2% rank score
(Fig. 5A). At the 2% rank threshold, the FDR of HLA-C (0.13) is
the highest on average followed by HLA-B (0.07), and the average
of HLA-A (0.03) is the lowest. While the PEP at the 2% rank of
HLA-B and HLA-C on average are greater than 0.5 (0.64 and 0.63,
respectively) whilst the average PEP of HLA-A is 0.38 (Fig. 5B).

The overlaying of PEP values on the data distribution of pre-
dicted IC50 scores in Figure 5C showed that the log10 (IC50) < 2 or
> 4 have a high certainty for being true or false binding peptides,
their PEP values close to 0 and 1. For the scores in the range of 2 to
4 have less certainty to determine whether they should be true or
false binding peptides, especially for less well separated datasets for
some alleles. Several datasets have PEP values close to 1 for peptides
with the % rank � 2% e.g. A*30:02, B*15:10, B*27:02, B*35:07,
C*05:01 and C*14:02, in contrast, some data have very low PEP

values, even if those scores have the % rank � 2% e.g. A*02:01,
A*02:11, B*15:03 and B*15:17 (the overlaying of PEP scores and
log10(IC50) scores of 85 HLA alleles are in the Supplementary Data
S3). These results suggest that PEP values provide considerable
added value over the use of the % rank for estimation of confidence
in individual data points. Beyond the MS: random datasets gener-
ated for 85 alleles data, the FDRs and PEPs from data containing al-
most all true or all false data (Supplementary Fig. S6D) and multi-
allelic data (Supplementary Fig. S7D) were calculated by
MHCVision. The results demonstrate that the values of FDR and
PEP correspond well with expected true and false data, giving confi-
dence that the model will perform well when presented with genuine
datasets.

3.5 Extensibility for MHCflurry prediction
While MHCVision has been primarily tested with NetMHCpan,
past benchmarking results suggest that MHCflurry gives similar
strong performance for peptide binding prediction; we thus
extended our approach for predicted results coming from
MHCflurry2.0. MHCflurry also reports predicted IC50 and % rank;
however, the tool’s documentation does not suggest the cut off
threshold of the % rank. Therefore, we assumed the 2% rank as a
possible threshold for distinguishing binders and non-binders, as for
NetMHCpan. There are 79 HLA alleles supported by MHCflurry,
and there are 55 alleles of 9mer MS-random peptides in our study,
which are available for those supported alleles. To estimate parame-
ters from data distribution from MHCflurry prediction, we applied
the parameter ranges that are calculated from MHCflurry predicted
scores of random peptides in various data sizes (1000, 5000 and
10000) instead of parameters ranges calculated from NetMHCpan
predicted scores. The R2 between the real (predicted scores) and

Fig. 5. Estimation of FDR and PEP for predicted scores of 85 HLA alleles. (A) The scatter plot represents the values of accumulated global FDR and PEP at the 2% rank for

each allele. (B) The distribution of FDR and PEP values at the 2% rank for HLA-A, -B and -C derived scores. (C) The overlaying of PEP values on the data distribution of pre-

dicted scores of 10 representative alleles, the dashed black line was marked at the score with 2% rank. Plots of 85 HLA alleles are in the Supplementary Data S3
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simulated data are in range of 0.995 to 0.999 for 52 of 55 alleles
(Supplementary Fig. S8A), and the overlying between the real and
simulated data as shown in Supplementary Figure S9. Thus, those
results indicate that the approach of EM algorithm with a method of
moments also works well for predicted data coming from
MHCflurry. The analysis of FDR and PEP estimation showed that if
using a 2% rank threshold, over 10% global FDR occurs for 18
alleles and PEP higher than 50% for 27 of 55 alleles—indicating
that as for NetMHCpan, 2% rank is not an ideal threshold for con-
trolling FDR for many alleles. (Supplementary Fig. S8B and C).

4 Discussion

MHC-peptide binding affinity prediction is widely used in the im-
munology research and development e.g. designing immunogenic
peptides for vaccine development. NetMHCpan described the pre-
dicted % rank (versus a set of random peptide scores) for each pre-
dicted IC50 score. However, using only the % rank might not be
sufficient to quantitatively evaluate whether a predicted binding
score for a peptide is a true or false positive. As we demonstrate
here, local statistics i.e. the probability that a given predicted score
of each peptide is a true or false positive is needed to increase confi-
dence in binding peptide selection. In this study, we firstly studied
the distribution of predicted IC50 scores coming from
NetMHCpan4.1. The distribution of predicted scores of MS pepti-
des from multi-allelic cells to a specific HLA displayed a bimodal
distribution, containing two separated peaks, which the left and
right peaks represent binding and non-binding peptides, respective-
ly. Gaussian distributions are expected to fit well to symmetrical dis-
tributions with theoretically infinites tails. Beta distributions can fit
to skewed distributions, and distributions with theoretical maxima.
Given that we observe some skew to data distributions, and the dis-
tribution has a theoretical maximum at 4.7 log10 (IC50) scale
(log10(50 000)), where 50 000 is the maximum value provided by
NetMHCpan, and beta distributions well model absolute limits, it is
not therefore surprising that beta distribution give superior fits for
MHC I predicted scores than Gaussian distributions. Moreover, the
usage of beta model fitting MHC I predicted scores is agreed by the
study of Zeng’s group that they used beta distribution to model the
data distribution of MHC-peptide binding affinity for MHC class I
(Zeng and Gifford, 2019). To assess the practicality of the param-
eter estimation model, linear regression was used to model the cor-
relation between the real and the simulated data that is generated by
the best estimate parameters. The values of R2, slope and intercept
were generally close to 1, 1 and 0, respectively, indicating a good
similarity of the input and simulated dataset and confirming that
our parameter estimation model can provide sensible parameters
from an input data modelled by a beta mixture distribution. The
study of parameter estimation using the EM algorithm with a
method of moments for beta mixtures model has been previously
reported for the application in the field of molecular biology
(Schröder and Rahmann, 2017). For our work, we modified the par-
ameter estimation model in the MM-step to restrict the estimated
values of false data, thus, the application of this model is feasible for
MHC supported in NetMHCpan4.1, which cover for 2915 alleles
for HLA-A, -B and -C (Reynisson et al., 2020).

The estimated parameters for true and false data allow the calcu-
lation of FDR and PEP for a given peptide’s predicted score in the
dataset. The global FDR can describe the error rate that accumulates
in the selected binding peptides from the prediction across the whole
dataset, while PEP values can describe a local false probability of an
individual peptide in the dataset. We demonstrated that some data-
sets might get over 10% FDR when using the 2% rank as a thresh-
old, which might be too high risk to control false positives. In
practice, the FDR observed is dependent upon the allele selected, as
well as the actual (unknown) count of true positives in the data, rela-
tive to false positives. Moreover, there is variability in PEP values
close to the 2% rank threshold—in some datasets the predicted
scores at � 2% rank can have PEP values very close to 1, but in
other datasets the predicted scores � 2% rank have a PEP less than
0.1. Furthermore, the analysis of predicted results for 55 alleles

coming from MHCflurry discovered similar trends as for
NetMHCpan. This finding indicates that using only the % rank for
thresholding might wrongly accept false binding peptides or miss
some true binding peptides in different cases, which cannot normally
be differentiated straightforwardly. In our work, we applied the
model of the EM algorithm with a method of moments for beta mix-
ture distribution to the predicted scores from NetMHCpan4.1, alter-
natively users can opt to run with MHCflurry, but the supported
alleles are limited to 79. The output will return the statistical values
including FDR and true probability (1-PEP) for every predicted pep-
tide in a dataset for a specific HLA allele. For different downstream
uses of peptide binding data, rather using solely the fix threshold as
the % rank to classify or prioritize binding peptides, we would rec-
ommend users of MHCVision should apply the estimation to their
data from NetMHCpan or MHCflurry and decide on the most ap-
propriate threshold, depending on their downstream use of the data.
For some applications, controlling for global FDR to a low value,
say 5% or 10% might be appropriate where having as many true
positives as possible, with an acceptably low number of false posi-
tives is desired. Other users of the data might wish to eliminate all
peptides that are unlikely to be true, and thus using PEP < 1%
would ensure only highly confident peptides are taken forward.
When a global threshold such as FDR < 10% is applied, most of the
peptides at the bottom of the ranked list have very high PEP values,
and thus themselves are unlikely to be true binders.

In summary, our study can successfully perform the estimation
of statistical values including FDR and PEP for the predicted result
of MHC-peptide binding prediction. The current version is suitable
for the predicted result from NetMHCpan4.1 and MHCflurry. We
expect that the model will work well for other MHC class I predic-
tors that produce a bimodal distribution, with minor adaptations
and testing. We have not yet assessed the extent to which the model
will work for MHC class II prediction algorithms, and this is an
area for future development of the tool.
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