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Abstract: Untargeted lipid fingerprinting with hand-held ambient mass spectrometry (MS) probes
without chromatographic separation has shown promise in the rapid characterization of cancers.
As human cancers present significant molecular heterogeneities, careful molecular modeling and
data validation strategies are required to minimize late-stage performance variations of these models
across a large population. This review utilizes parallels from the pitfalls of conventional protein
biomarkers in reaching bedside utility and provides recommendations for robust modeling as well
as validation strategies that could enable the next logical steps in large scale assessment of the utility
of ambient MS profiling for cancer diagnosis. Six recommendations are provided that range from
careful initial determination of clinical added value to moving beyond just statistical associations
to validate lipid involvements in disease processes mechanistically. Further guidelines for careful
selection of suitable samples to capture expected and unexpected intragroup variance are provided
and discussed in the context of demographic heterogeneities in the lipidome, further influenced by
lifestyle factors, diet, and potential intersect with cancer lipid pathways probed in ambient mass
spectrometry profiling studies.

Keywords: ambient mass spectrometry; untargeted lipidomics; untargeted metabolomics; lipid
profiling; cancer diagnosis with ambient mass spectrometry

1. Introduction and Problem Statement

Based on the close relationship between lipid metabolism and cancer formation/
progression [1], tissue pathology determinations (cancer versus healthy or differentiation
between various types of the same cancer) through lipid profiling with ambient mass
spectrometry (MS) has received much traction [2–17]. A variety of aerosolization and liquid
extraction methods [3] (some utilizing handheld sampling probes capable of desorbing
tissue molecules under ambient conditions) are coupled to MS analysis after ionization,
generating a lipid profile signature from the target tissue specimen. Through comparing
the overall mass to charge (m/z) pattern of this “crude” tissue lipid profile (or signature)
generated in the absence of chromatographic separation, to a library of previously collected
lipid profile signatures characteristic to various tissue pathologies, rapid identification of
said pathologies (cancer, infection, or inflammation) has been made possible within a few
seconds of data collection and analysis [4]. The data analysis step in ambient MS often
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uses multivariate decomposition methods [4] but has also been augmented with machine
learning, [18] artificial intelligence [19], and deep learning methods [20] to mine further
nuances in tissue classifying molecular profiles.

Targeted MS approaches for the identification of necrotic tumors using certain ceramides [21]
and other unique lipids for select kinase activity monitoring [22] have been reported. While there
are additional cases in which a single oncometabolite such as N-acetylaspartate (for differentiation
of healthy neuronal tissue from glioma) or 2-hydroxyglutarate (for determination of isocitrate
dehydrogenase mutation status [8,10,23–26]) is used in a targeted analysis, many ambient MS
studies utilize the overall ionic pattern of tissue lipids in an untargeted analysis or a subset
thereof (e.g., most distinguishing ions as from a parsimonious method that uses feature
reduction [27]) as the distinguishing “biomarker” [2–5]. These developments implicitly
redefine the “classic” notion of a disease biomarker from a single (often protein) molecule
that is reproducibly validated across many specimens in a “targeted” analysis, to a pattern
of disease specific (and thus disease classifying) metabolites or lipids analyzed in their
unique ionic states in an “untargeted” manner, often acquired across far fewer independent
specimens. The new “biomarker”, in other words, is a multidimensional classifier that is
represented by its coordinates on a multivariate decomposition plot. The act of disease
identification using said classifier thus boils down to tracking the juxtaposition of the
multivariate coordinates of a query mass spectrum on the multivariate decomposition plot
of the reference signature library. Here, a pre-defined certainty level to call out positive hits
(overlapping with the model) from non-overlapping (or negative) hits is used.

To date, diverse ambient MS methods have been employed to address a wide variety
of clinical cases [2–5]. Overall, very good analytical performance metrics for lipid or
metabolite pattern matching in ex vivo or in situ tissue explorations across tens to hundreds
of independent clinical specimens have been reported [2–5]. Often, by simply splitting the
acquired (albeit highly limited) datasets into training (model building) and test (recognition)
subsets, predictive multivariate classification models are created and validated based on
statistical association with the disease state signal. The success of ambient MS profiling in
the context of such limited analytic validation steps has largely been hailed as resulting in
promising new avenues for rapid and accurate cancer diagnosis. Beyond lipidomic analysis
of solid tissues with untargeted ambient MS methods described above, utility of plasma
lipidomics [28] for cancer diagnosis is also gaining momentum [29]. A detailed review of
technologies and various applications of ambient MS sources (beyond the scope of this
manuscript) is provided elsewhere [2–5]. However, in summary, an ambient MS analysis
source often employs an extraction mechanism, desorption−ionization, or a desorption
followed by post ionization wherein the specimens are subjected to extraction of molecular
content largely in the absence of extensive pre-processing and under ambient conditions
(Figure 1A). A variety of extraction or desorption methods are used, leading to a diverse
set of applications ranging from clinical diagnosis to food safety and pharmaceutical
explorations (Figure 1B). Laser-based ambient ion sources have been extensively reviewed
recently by our group [30], and need not be repeated here. It must, however, be emphasized
that as of late, the majority of hand-held ambient MS probes (focus of this manuscript) do
not utilize pre-separation of analytes (e.g., by means of chromatographic or ion mobility).
As such, direct infusion (as done in conventional lipidomics) best describes the state of
the art in ambient MS methods. This poses a fundamental challenge in the applicability of
analysis tools such as Compound ID and content look up databases such as LipidMaps to
ambient MS data.
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Figure 1. Principles and high-level overview of the mechanisms of ambient mass spectrometry.
(A) Schematics of a typical ambient MS source. A desorption−ionization source or an extraction
source provides desorbed or desorbed and ionized molecules from a specimen under ambient
conditions. Inclusion of post ionization is optional and enhances the signal in select cases. A
mechanism for the transport of extracted/desorbed materials to the mass analyzer is included that
may involve flexible tubing for long (>2 m) transport of surgical aerosols as in iKnife [14], laser
desorption plume as in SpiderMass [31] and PIRL-MS [32], or water (as solvent) extracted tissue
content as in the MasSpec Pen [17]. The ionization step can take place anywhere between the specimen
surface or close to the mass analyzer. A notable difference is lack of chromatographic separation
of analytes prior to MS analysis. (B) A high-level overview of core ambient desorption/ionization
technologies and related applications. Here, a variety of desorption/ionization methods consistent
with the schematics provided in panel A are used to generate a multiple application base that
ranged from surgical to material to environmental or forensic explorations. Reprinted (adapted) with
permission from [3], Copyright 2019 American Chemical Society.

By the same token that a single disease biomarker molecule must pass rigorous analyt-
ical, regulatory, and late-stage performance surveillance (population validation) to ensure
high sensitivity and specificity, lipid and metabolic profiling with ambient MS must also
be subjected to the scrutiny of the same guidelines and principles. In this quest, lessons
can be learned from the failure of many protein biomarkers to reach the clinic [33–35], and
these lessons can be applied to the nascent field of rapid tissue pathology through lipid
profiling with ambient MS. Five important differences set lipid profiling with hand-held
ambient MS probes apart from many single molecule (protein) biomarker discovery and
validation efforts. First, the majority of published ambient MS studies used a small, and
rather homogenous population of clinical specimens in the analytic validation step to
assess the accuracy, specificity, and sensitivity of the tissue pathology predictions [36].
While data analysis methods have been introduced to boost predictive power of limited
models using “cumulative learning” approaches with some success [37], the issue of a
model’s poor predictive ability, arising from small size, deserves special attention. Second,
tissue lipid profiles are likely to be influenced by intrinsic population genetic heterogene-
ity, diet [38–40], and other tumor microenvironment factors such as stromal content and
presence of hypoxia, among others (Figure 2). It has been shown that changes in diet
and lifestyle interventions alter tissue lipidomes in mice, but not all tissues are affected
to the same extent or show the same altered lipidomic pattern [41]. Third, our collective
understanding of the underlying lipid metabolic pathway heterogeneities [42] remain
limited, as few studies have investigated large-scale variation of lipidome across healthy
populations. Fourth, most published ambient MS reports fail to further determine the
molecular identities of important tissue classifying lipid molecules. This makes utilization
of metabolic pathway knowledge in a rational approach to further refine them to those least
influenced by population heterogeneity and diet a daunting task. Fifth, by definition, tissue
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lipid profiling is an “untargeted” MS approach that, in the absence of chromatographic
or ion mobility separation, is vulnerable to population noise perhaps to a greater extent
than a single known and well characterized molecule in a targeted approach would be.
While parsimonious analysis methods that use feature reduction may be less susceptible
to population noise compared with wide mass range models, discovering a mechanistic
link between biomarker and disease state further buttresses biomarker validation beyond
just what is inferred from the strength of its statistical association with disease state. Sta-
tistical association as the sole criteria for biomarker identification and validation in an
untargeted approach can be misleading if not supported by additional mechanistic ver-
ification [35]. The unequivocal identification of metabolites must utilize high resolution
mass spectrometry, tandem MS analysis for diagnostic fragment identification in conjunc-
tion with additional separation (ion mobility and/or chromatographic) methods as an
orthogonal approach.

Figure 2. Heterogeneity of lipid metabolism in cancer. Overview of multiple factors that can influence
lipid metabolism in cells, creating additional molecular heterogeneities that must be captured in
ambient MS profiling studies through use of a large, balanced, and heterogenous sample set. These
factors can be external (diet) and can arise due to intrinsic biological architecture (stroma), mutations,
and the tumor microenvironment (hypoxia). Reproduced with permission from [43].

This review provides a critical assessment of the dangers associated with the use of
small initial (and often unbalanced) sample sets [44–47] in pattern recognition [36] and
lack of late stage validation with respect to the utility of the discovered lipid pattern for
a high sensitivity and specificity performance across a diverse population [36]. We then
accordingly provide recommendations drawn from the growing field of untargeted MS
analysis in food sciences facing similar challenges in validation strategies [48–51]. To
detect an unlimited set of potential adulterants with an untargeted approach, a large and
diverse population of authentic products must be examined [52]. We first review broad
stroke principles of analytical, late stage, and regulatory validations, and then attempt to
extend the implementation of predictive markers from early phase trials [53] to large scale
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validation [54], drawing further upon sources of failures in the protein biomarker discovery
world [33–35,55,56] to provide validation strategies for ambient MS profiling that are most
suitable to minimize late stage performance concerns across diverse populations.

2. State of the Art

Any method intended for clinical decision making or use at the bedside must offer,
over a pre-defined intended use, a precise, accurate, robust, sensitive, and specific perfor-
mance within a reportable range that is reproducible across many sites, users, specimens,
and is further uninfluenced by instrumental and environmental factors and duty cycle
(carry over), and should additionally meet specific safety and use site compliance require-
ments [57,58]. These constitute analytic performance matrices that have recently been
reviewed in the context of ambient MS method use at the bedside [57]. When laboratory
developed tests (LDTs) [59] are used to develop a new targeted MS approach, often, a
homogenous, relatively small sample set sourced from patients local to the laboratory
site or region may be used as the first step for validation. This strategy, however, leaves
the analytic validation step vulnerable to population variation, leading to late-stage per-
formance concerns not addressed during first trials. While the pharmaceutical industry
rigorously engages in post-marketing surveillance campaigns to monitor the performance
of novel therapeutics (in terms of safety and also efficacy), LDTs, if not validated using a
sufficiently diverse (or statistically reduced or demographically matched) test case, remain
very vulnerable to population level poor performance [60], as seen in a number of failed
biomarker cases that showed good performance in the laboratory but failed to perform well
across the population in the absence of demographic matching [54–56]. Here, limited infor-
mation such as changes in a marker in response to disease progression, pharmacological
intervention, and crosstalk therein, will further complicate the co-efficient of similarity-
based methods in the absence of careful demographic matching with the model. While
biomarker driven targeted approaches (or those with statistically reduced datasets) that
rely on identified disease specific peaks may be somewhat shielded against such variations,
similarity coefficient-based comparison methods that rank a query spectrum against the
spectra from a collection of diseases must be more closely scrutinized. Currently, two
untargeted MS methods for pathogen strain identification have broken through the regula-
tory barrier [61,62]. Building on a possible pathway of LDTs [59], the USP Pharmacopeial
Convention provides guidelines for analytic validation of untargeted mass spectrometry
methods in food sciences, quality control, and for the detection of adulteration [49–51,63].
Further resources for bioanalytical method validation are available through the FDA [64],
and a recent adaptation of pharmacopeial and bioanalytical methods validation strategies
specifically tailored to ambient MS methods has been recently published [57] in an attempt
to standardize an analytic validation workflow for this technique in cancer research. This
review (by our group) attempted to put forward guidelines for rigorous analytic validation,
including suitable sample sizes [65] according to power calculation [66], as recommended
for metabolic phenotyping [44,45] and stayed faithful to the minimum reporting standards
for chemical analysis [46,67]. However, late-stage validation concerns for rapid tissue
lipid profiling that use lessons learned from failures of targeted single molecule protein
biomarkers to reach the clinic are not reviewed in depth, and thus form the basis of this
report. Moreover, a previous report by our group qualitatively addressed the influence
of tissue molecular heterogeneity on ambient MS profiles in the context of choosing the
correct disease model [68]. This review further details the origins of this heterogeneity and
provides recommendations for optimal design of validation studies to shield against the
potential confounding effect of population heterogeneity on ambient MS profiles.
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2.1. Molecular Heterogeneities in Biological Tissues Impact Metabolome and Lipidome Profiles

As discussed in the section above, lipids have been shown to play diverse roles in many
cellular functions. It was postulated (a decade ago) that lipidomics would evolve to play
a critical role in expanding our understanding of disease states [69]. As speculated then,
lipidomic technologies have indeed matured considerably to broaden our understanding
of how lipid metabolism correlates with disease biology [70], especially in cancer, where
lipids [71,72], in addition to being of diagnostic value [29], may be involved in a number of
regulatory pathways [43,73], thus showing additional promise as therapeutic targets [74,75].
While our ability to effectively target cancer through modulating lipid metabolism is
still an open question [76], there is convincing evidence that there exists a significant
amount of molecular heterogeneity in cancer cells [77,78]. The exact ramification of this
molecular heterogeneity in terms of divergent metabolic (or lipidomic) pathways is only
beginning to emerge in select cases [43,78–87], but there is convincing evidence that many
factors, including adaptive evolution (to treatment [88]), microenvironment components
(stroma and inflammatory cells), and hypoxia, among others, can influence cancer cell
metabolism [89], and in some cases directly affect lipidomic profiles [43,81,84,90–92].
Of notable importance is a study of lipid metabolism in breast cancer that suggests a
differential role of essential and non-essential lipids in metabolic profiles of inflammatory
and cancer cells within the tumour tissue [91]. In the absence of spatially resolved ambient
MS analysis (or single cell lipidomics [93]), to better capture these heterogeneities, alongside
those arising from metabolic adaptability of cells to their environment [94], at the very
least, a large population base must be included in the analysis, particularly in the initial
model building stage. The issue of spatial resolution (often not at single cell levels in
prominent ambient MS methods) causes sensitivity of signal to tumour cellularity, as
shown in a DESI-MS lipidomic profiling study of brain cancers [95] and the localization
of high 2-hydroxyglutarate (2HG) signal levels in the regions of glioblastoma tumours
with a dense cellularity [10]. While this sensitivity can be utilized to estimate tumour cell
percentage [96], which is in its own right a useful clinical indicator currently only obtainable
by time consuming histologic staining and microscopy, caution must be exercised in the
interpretation of ambient MS profiles associated with residual disease presence. Residual
HER2 expression within breast tumours [97] in a proteomic MALDI-MS study has been
shown to influence receptor status predictions [98].

In a recent study aimed at creating predictive molecular models of breast cancer
receptor status with ambient DESI-MS [99], intrinsic molecular heterogeneity in HER2
receptor patients [100] resulted in dramatically reduced accuracy of DESI-MS models for
the determination of this receptor status compared to that of the estrogen (ER) and proges-
terone (PR) receptors from DESI-MS models. In a similar vein, in a previous ambient MS
profiling study of pediatric medulloblastoma cancer molecular subgroups, an aberrantly
high content of stroma or an infiltration of healthy tissue in the specimens to be classified,
not accounted for in the model, led to misclassification or failed classification [9]. This
study highlights the significance of comprehensive molecular models that capture the
expected molecular heterogeneity associated with the infiltration and microenvironment.
Further emphasizing the impact of the architectural (and hence molecular) heterogeneity of
cancer, DESI-MS modeling of ovarian high-grade serous carcinoma and serous borderline
ovarian tumours resulted in misclassification of a few specimens that contained microcapil-
lary growth patterns and other architectural complexities common to invasive carcinoma
features associated with a specimens’ unique pathology [101].

In addition to these discoveries that highlight the extent of the influence of tissue
molecular heterogeneity on the predictive power of MS-based modeling, it has long been
recognized that diet may modulate both plasma and certain tumour lipids [102]. Diet
exchange between demographic groups has been shown to alter the metabolome (and
cancer risk [103]), and chronic exposure may mark an effect on the metabolome [104].
Cancer cells are known to scavenge nutrients from their environment, especially under
aggressive growth or inadequate perfusion [105], creating an additional link between diet
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and metabolism. Furthermore, the availability of precursor lipids diffused to the tumour
site [106] is shown to create additional spatial heterogeneities in tissue metabolic states
in the vicinity of cancer [107]. A high fat diet has been shown to alter lipid metabolism
in cancer and influence the interplay between normal and cancer cells [108]. This re-
lationship is exemplified elegantly by the crosstalk between adipose tissue (storage for
dietary lipids [109]) and tumors [110], with cancer-associated adipocytes [111] providing
adipose-derived lipids for cancer progression [112] and proliferation [113], with stipulated
therapeutic potentials [114,115].

Further complicating the interplay of diet, adipocytes, and lipid uptake in cancer
metabolism discussed above, alcohol consumption is shown to perturb adipocytes, pro-
moting lipolysis [116–118] and thus potentially influencing cancer cell metabolism by
modulating released precursor lipids. In addition, there has been a further recognition
of the influence of gender and age on the composition of the plasma lipidome [119–121].
While the influence of plasma lipidome variations on solid tumour profiles is yet to be
systematically investigated, a picture thus emerges that to improve the diagnostic accuracy
of lipid profiling for cancer characterization with ambient mass spectrometry, diet, gender,
and lifestyle factors, among others (e.g., clinical history regarding treatments received)
must be taken into consideration, and that ideally, spatially resolved analysis is required to
capture intratumoural lipidomic or metabolomic heterogeneities. While the latter is not
possible or technically feasible, significantly large sample numbers to capture as much of
the population level or batch effect variances [57] will be helpful.

2.2. Initial Statistical Modeling Should Be Based on Sufficient Sample Numbers

The impact on lipidomic profiles of tissue molecular heterogeneity discussed above
further supports the much needed emphasis on suitable sample size to produce significant
results in pattern recognition [36,122,123] and related efforts [36], as well as in multivariate
and high dimensionality data analysis [36,44,45,47]. Effective sample numbers that result
in statistically significant profile models must be optimized for each case study and in-
corporated in the earliest phase of ambient MS profile model building. Here, inter- and
intra-group variance in lipid profiling data is a key determinant of the overall sample
sizes required to differentiate between closely related or molecularly distinct tissue types,
especially if elevated levels of intra-group heterogeneity and variance are present in the
dataset. In Figure 3, we illustrate this point by re-analyzing published data [9] correspond-
ing to the principal component analysis and linear discriminant analysis (PCA-LDA) of
4-component groups, closely related and molecularly distinct. As illustrated in this figure,
larger sample numbers per group are required to effectively distinguish closely related
groups compared to molecularly distinct groups. Here, analysis of so-called “learning
curves” in the related domain of micro-array analysis [124,125] have shown promise in de-
termining effective sample sizes [126], and a minimum of 75 specimens per class have been
suggested [127]. Here, there are parallels to draw from proteomics using Matrix Assisted
Laser Desorption Ionization Mass Spectrometry (MALDI-MS) profiling [128–131], where
guidelines for determining the appropriate sample size for clinical proteomic profiling
studies have been put forward, using a linear mixed model that allows for the inclusion
of estimates of biological and technical replicate variance in a given experiment [132].
In a similar vein, by extending previously published approaches [133,134], the effect of
biological variance (e.g., intratumoural heterogeneity), as an important determinant of the
overall sample size required, has been examined towards a method that allows for the
adjustment of expected biological variance in calculations of sample size [135]. A central
tenet of this approach is a rigorous replicate analysis (i.e., multiple sampling) of each
specimen towards determination of the intraclass heterogeneity. Here, averaging replicates
and using this value in class differentiations is discouraged as averaging results in loss of
valuable information regarding intrasample variability [135]. More interestingly, beyond
basic multivariate methods, such as linear discriminant analysis (LDA) [136], least absolute
shrinkage and selection operator (LASSO) [137], machine learning approaches such as
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support vector machine (SVM) [138], and random forest (RF) [139], which require extensive
pre-processing of mass spectral data, convolutional neuronal networks have been proposed
to offer a higher accuracy of prediction without the need for data pre-processing [140,141].
The predictive power of these methods, however, sharply decreases with small sample
sizes [142,143]. While cumulative learning with convolutional neural networks have been
proposed to utilize smaller mass spectrometry datasets [37]; the future augmentation of
ambient MS data analysis methods with artificial intelligence is bound to make a larger
demand on diversity of training datasets and careful considerations of appropriate sample
sizes as discussed above.

Figure 3. The influence of sample size on the predictive power of ambient MS methods. In this figure we re-analyzed
previously published [9] and newly acquired picosecond infrared laser mass spectrometry (PIRL-MS) data from two cases
of 4 closely related tissues (subgroups of human pediatric brain cancer medulloblastoma) and 4 distinct tissue types
(murine melanoma and additional liver, muscle and skin tissues). Each dataset is comprised of a 10-s ambient PIRL-MS
sampling (m/z range 100–1000 Da) subjected to principal component analysis and linear discriminant analysis (PCA-LDA),
as described previously [9]. Cross validation was performed on AMX [144] using a 20% leave out [9], and was used to
calculate the specificity and sensitivity. For each specimen, one 10-s PIRL-MS spectrum has been included. However, in
keeping with the recommendations of Nyangoma et al. [135] (see above), multiple sampling of each specimen towards
developing the extent of intrasample variation has been reported in our original publication [9]. As can be seen here, where
there is significant intrasample variability (large spread of data points for each class in the PCA-LDA scores plot) and where
classes are more molecularly alike, larger sample numbers are required to reach prediction power plateau compared with
cases where less variant, molecularly distinct classes are compared. In this comparison, each class contained ~30 specimens
(and one PIRL-MS spectrum per specimen).

2.3. Lessons Learned from Metabolomic and Proteomic Biomarker Discovery and Food Sciences

The horizontal growth of untargeted ambient mass spectrometry profiling has taken
place in the absence of an effective dialogue with researchers in the areas of metabolomics
or proteomic biomarker discovery. While most of the “conventional” biomarker discovery
studies use targeted approaches, there are challenges in metabolic profiling study design
(reported previously [145,146]) that may be applicable to the untargeted ambient MS analy-
sis of tissue molecular profiles. It must be emphasized that a large fraction of true biomarker
discoveries (those that have been validated in controlled laboratory or through early-stage
discovery or small population studies) fail to break through the clinic [33,35,55]. While the
sources of such failures can include many factors such as low added value to prognostic or
clinical utility (stemming from improperly defining the clinical need) [33], underestimating
cancer heterogeneity (extreme case selection) among others reviewed elsewhere [55,56], a
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low sensitivity or specificity across the wider population [54] in late-stage or multisite trials
have also been reported [55]. As an example, B7-H4, a novel membrane bound protein
proposed as a marker for ovarian cancer [147], failed due to the large variance seen across
multisite validation efforts [148]. Further buttressing the importance of careful study de-
sign, lysophosphatidic acid (LPA) [149] failed to become a reliable marker for gynecological
cancers as the debut publication used a non-standard sample processing protocol [150];
thiosulfate failed to stand the scrutiny of additional benchmarking against other orthog-
onally validated markers for prostate cancer despite early stage promise [151]. Ambient
MS profiling is not immune to the hurdles and challenges reviewed elsewhere [33,55,56],
especially those that highlight the importance of large study validation using a diverse
population [54,55], reducing the hype based on limited initial findings [55]. Extrapolating
parallel sources of failures seen in these fields [54–56] to the design of ambient MS profiling
studies will be helpful. Table 1 summarizes a few key points of value for consideration by
investigators using ambient MS profiling in their research. In essence, biomarker discovery
efforts may face pitfalls in all stages of discovery, validation, translation, evaluation, and
implementation. As illustrated in Table 1, small studies or those that use extreme cases
without careful validation and use of replicates, rationalization of discordant results, or
careful design of a randomized trial across sufficiently diverse set of parameters are likely
to fail. In a similar vein, a poorly defined clinical case that lacks clear added value to the
clinical practice is unlikely to pass the evaluation or implementation stage. Lastly, solutions
that pass the scrutiny of the above are not necessarily bound to succeed either. A solution
that passes implementation must improve outcomes or offer performance added value
across diverse settings and must also not be cumbersome to implement (be easy to use).
Here it must be emphasized that properly defining the key parameters listed in Table 1,
such as “diverse setting”, “sufficiently large datasets”, “ease of use”, and “clear added
value” is not an easy undertaking. Clearly defining these factors requires an intimate
understanding of the underlying diversity in the molecular make up of target molecule(s)
across a large number of factors, a feat that is far more complicated in untargeted anal-
yses. Here, the untargeted metabolomic analysis of adulterated food provides helpful
parallels, especially in revealing the importance of capturing heterogeneity in the initial
statistical model studies. Due to the untargeted nature of the validation protocols, either
a vast number of potential adulterants must be included in the initial model building
efforts, or a large variety of authentic products from diverse origins must be studied and
their molecular fingerprints catalogued as authentic [49]. In food authentication, the US
Pharmacopeia guidelines explicitly note that samples in the reference set must fully en-
compass all of the variability of the food product under study [52]. Large sets of samples
enable the appropriate inclusion of biological variance, and further including replicates
is encouraged to minimize unexpected variations [49,51]. This scenario closely parallels
lipid profiling studies of highly heterogenous cancers wherein as much of the existing inter-
and intra-specimen heterogeneities as possible must be captured. Further emphasizing the
importance of comprehensive reference datasets that capture the entire range of expected
specimen heterogeneity, in an evaluation of certified reference materials used for oregano
authentication with untargeted ambient mass spectrometry, a false positive was identified;
the model failed to classify a certified sample from South America as authentic due to the
training set utilized having been only populated with certified oregano specimens with
a European origin [152]. Similarly, two newly established untargeted molecular models
for extra virgin olive oil authentication with gas-chromatography fingerprinting failed to
classify aged samples from a previous harvest season [153]. The limitation of insufficient
heterogeneity in the reference dataset was overcome by focusing on the presence of adul-
terant sunflower oil instead, in order to assess olive oil samples from new geographical
regions not included in the reference model [154]. This strategy was suitable as there was
only one type of known adulterant expected, and may not be applicable to all ambient
MS profiling studies. Here, a comprehensive review of the challenges associated with
untargeted fingerprinting methods used in food authentication has been published that
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emphasizes frequently updating the model and revising them as new data become avail-
able [155]. This puts forward a new vision for the creation of intelligent, self-improving
molecular models for cancer diagnosis with untargeted ambient MS lipid profiling wherein
the availability of new data post analytic phase (implementation) can result in naturally
evolving models that capture additional heterogeneity from diverse sites, and across varied
socio-demographic strata. A key to the successful implementation of this vision, besides
artificial intelligence models, is a rigorous definition of ground truth (i.e., pathology) to
ensure only spectra from validated authentic samples are included in the revised dataset.

Table 1. Challenges and sources of potential failures in conventional targeted biomarker discovery efforts. This table lists
current challenges in different phases of biomarker discovery. Parallels, at each phase of discovery, validation, translation,
evaluation, and implementation can be drawn to be used as guidelines for potential pitfalls of ambient mass spectrometry
profiling. Reproduced with permission [55].

Current Problems Potential Solutions

Discovery Poor design, conduct, and analysis Methodological rigor

Unaccounted multiplicity Appropriate use of statistics

Small studies Larger, collaborative studies

Extreme case selection Proper case-control or cohort selection

Nonrigorous exploratory nature of studies More rigorous training of scientists

Poor reporting Use of reporting standards

Selective reporting Preregistration

Spin in interpretation Careful editorial and peer-review

Validation Any and all problems seen in
discovery studies Similar solutions, as above

Lack of replication efforts Incentives for running replication studies

Inbred replications (same populations,
same investigators)

More emphasis on external,
independent validation

Incomplete, suboptimal validation Careful consideration of independence

No systematic reviews Good-quality systematic reviews

Inflation in early, small studies Large validation studies, ideally from
collaborations without bias

Spurious variability in measurements,
methods, analyses across studies

Standardization and harmonization of processes,
collaborative consortia

Transition to clinical
translation Inappropriate perusal of clinical translation Rigorous systematic reviews

Poor prioritization Rigorous umbrella reviews

Sponsor bias driving translation urge Independent assessment of the evidence

Inappropriate stagnation without
clinical translation Incentives to translate
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Table 1. Cont.

Current Problems Potential Solutions

Evaluation Focus only on accuracy and process measures Emphasize patient outcomes

Few randomized trials of biomarkers Promote randomized trials of biomarker use

Use for unclear informational purposes Evaluate utility of information for the sake of
information and potential collateral harms

Improper use for selection and
stratified/subgroup analyses in trials

Validation of utility of
stratified/subgroup analyses

Implementation
and deimplementation

Poor understanding of the use of biomarkers in
real-life settings

Implementation studies assessing use and
outcomes in diverse settings

Lack of rigorous guidelines Standardized, nonconflicted guidelines

Discordant guidelines Strengthening of regulation for biomarkers

Not well-defined regulatory landscape Testing of utility of long-used biomarkers

Entrenched useless biomarkers Overcoming resistance from conflicted
stakeholders, higher barrier for reimbursement

Resistance to deimplementation even with
convincing negative evidence

2.4. Moving beyond Statistical Associations

A caveat of supervised untargeted ambient MS analysis is its strong dependence
on statistical correlation of mass spectra with ground truth information (e.g., pathology).
The untargeted nature of lipid profiling that often utilizes many features (m/z values)
creates additional vulnerability to population level variations. While restricting the mass
range to smaller regions may provide some benefit, the analytic validation guidelines
summarized above (and discussed previously [57]) do not per se call for identification
of tissue classifying lipids. Therefore, establishing a further mechanistic link between
lipid profiles and disease state is not always performed. When small sample sizes pose
a challenge on study significance [36], boosting confidence in association of lipidomic
patterns with the disease state uncovered in the validation phase through a mechanistic link
will be advantageous [156]. Furthermore, as our knowledge of the metabolic pathways [42]
advances [157,158], controlled xenograft models continue to provide an additional test-
bed for orthogonal validation of certain lipids involved in metabolic pathways [159–163],
containing selective mutations in lipid synthesis machinery [22]. Feature reduction to
perform disease classifications with as few tissue-specific and highly distinguishing lipids
as possible (through low complexity or sparse analyses) [9] is an attractive strategy to
further shield against population noise that may alter the spectra without influencing all
the strongly classifying peaks. This rational approach further allows for the inspection of
potential crosstalk between dietary pathways (food metabolome [164]), and identified lipid
marker(s) pathways to anticipate heterogeneities (utilizing human metabolome database
insights [165–167]) or to iteratively reduce m/z features towards development of an initial
model that is robust in terms of tissue classification and uninfluenced by population level
noise or heterogeneity. An example of this is an investigation of molecular signatures of
ischemic heart tissue (myocardial infraction) using spatially resolved ambient MS profiling
with machine learning mining and molecular identity determinations, wherein a role for
taurines in the infarction process was discovered [168], consistent with the physiological
role of taurines in myocardial tissues [169]. A growing body of evidence suggests that
diet-induced depletion of taurines influences cardiomyopathy and its supplementation is
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helpful in attenuating the degradation noted [170,171]. Rational investigation of pathways
in the context of molecular identification could thus prove beneficial in revealing potential
crosstalk with diet. Here, an understanding of the basal level variation across healthy
population will be an important step in rationally creating suitable molecular models that
capture a sufficient level of heterogeneity for the purpose of accurate predictions.

In addition to providing further support for involvement of a particular metabolite
(detected with ambient MS) in a disease process, metabolic pathway information can also
be utilized to enhance classification by invoking and subsequently involving additional
metabolites, rationally determined to be influenced by said disease pathway, in the classifi-
cation process. An example of this is reported in a recent work from the Zare group, where
rational inclusion of cognate Krebs cycle metabolites, also involved in other cancers [172],
in the classification algorithm not only validated the initial set of discovered metabolites
relevant for basal cell carcinoma detection, but also improved the classification accuracy of
the model used [137].

3. Recommendations and the Proposed Workflow for Ambient MS Method Validation
for Rapid Pathology Determination

Based on the points discussed above, and taking an exemplary application of rapid
pathology readout, in Figure 4, we propose a workflow for ambient MS analysis of biologi-
cal tissues. Some of the elements in the proposed workflow may have to be further defined
in conjunction with notes of caution and solutions provided in Table 1. We nevertheless
propose to, in a general and high-level sense: (1) Define the clinical need (or added value)
by performing thorough key opinion leader interviews at the earliest stage possible. For
example, non-subjective tissue pathology information from ambient MS is useful. However,
whether current standard of care methods have any shortcomings in terms of speed, accu-
racy, or scope of available information to be delivered by ambient MS must be established
first. Beware of the fact that clinical decision making in the standard of care workflow is
based on the scope of information currently obtainable. While rewriting the standard of
care around new information (now available) is possible, strong justifications (and possibly
parallel outcome data) are required to suggest revisions to the standard of care workflows.
Rapid diagnosis will not always drastically improve clinical decision making. (2) Use a
diverse and balanced sample set at the first possible (initial) modelling effort opportunity.
This will allow for the sensitivity and specificity (predictive value) to be established using
a heterogenous set early on. Verify how predictive power changes as a function of sample
numbers included in the model and increase the sample numbers until the predictive power
has reached a plateau (in a “predictive power” versus “sample number”correlation plot).
If possible, establish population noise level by including a cohort of healthy specimens in
the study and pay special attention to intraspecimen heterogeneity by performing multiple
samplings across each specimen. Likewise, perform blind test validation with a diverse set,
ideally sourced from a different demographic origin (see Table 1 for pitfalls and redocu-
mentations). (3) Perform a low complexity (or sparse) analyses, and feature reduction to
define the minimum number of lipids that can perform the classification without drastically
sacrificing predictive power, sensitivity, and specificity. (4) Perform identification of most
distinguishing (or tissue-classifying) lipids using orthogonal tandem MS or high resolution,
chromatography-enabled MS analysis in conjunction with tools and platforms created for
conventional lipidomics or metabolomics such as LipidMaps [173]. HPLC-MS/MS analysis
can utilize “pathology guided” tissue section sampling methods such as those with laser
capture microdissection. It must be noted that a rational association between markers
and dysregulated disease pathways will further enhance feature reduction. Here, correct
annotation of identified lipid markers is of exceptional importance also for augmenting
the current knowledge of disease pathways and their functional decoding. Unfortunately,
inaccurate annotation is common in many lipidomics studies [173,174]. This has created
a need for standardization [175] where the use of latest guidelines [173] is recommended.
(5) Create a mechanistic link between identified lipids and disease biology if feasible (and
validate using engineered xenograft models) and inspect metabolic pathways for possible
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crosstalk with dietary lipids, performing additional feature reductions towards a set of
lipids that provide robust predictive value, specificity, and sensitivity with less expected
crosstalk with diet. (6) Evaluate the predictive model of full spectrum and feature reduced
models using the validation set and use the model that provides best performance and
use this set for further multi-site, multi-user validation by exchanging standardizing and
following devised protocols interpretable by multiple users at different sites. Lastly, we
highly encourage investigators to define their own user skill set requirements and establish
early on who will be implementing the solution; do they possess the right skillsets or find
the solution difficult to implement? As stated above, a combination of Table 1 notes of
caution and the high-level summary provided in Figure 4 must be considered to address
the late-stage performance discordance in adopting an untargeted ambient MS method for
bedside use.

Figure 4. Recommendations for ambient MS profiling workflow focused on utility for rapid pathology
determination. Summarizing the material gathered and discussed in this review and major sources of
failures in conventional biomarker discovery efforts (Table 1), we have made a high level workflow
for ambient MS analysis. This emphasizes proper definition of a useful clinical case, use of diverse
sample set that takes into consideration intraclass heterogeneity using rational statistical sample size
calculation methods discussed in the text, alongside an impetus to go beyond statistical associations
to identify tissue classifying molecules and rationally justify their association using common disease
pathway knowledge. This has the added bonus of feature reduction to reduce crosstalk with obvious
metabolic heterogeneity factors such as diet. These recommendations are only high-level and
should be used in conjunction with lessons learned from Table 1, and material detailed in the text,
especially with respect to recommended sample size calculation methods. Providing a one-size-fits-
all recommendation for a suitable sample size calculator is beyond the scope of this paper; sample
sizes must be optimized for each study.

4. Conclusions and Caveats

This review paper aims to encourage a dialogue between investigators that use MS
profiling for cancer detection and those involved in clinical biomarker validation on the
population level. Using a limited initial sample set and validating it with a homogenous
specimen set that likely fails to capture the large-scale variance expected at the population
level constitutes an important misstep that has led to the failure of many protein biomarkers
to reach the clinic. We provided six recommendations to encourage robust and early careful
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study design that takes into considerations pitfalls of promising protein biomarkers that
failed to reach utility at the bedside, to facilitate clinical translation of rapid lipid profiling
for accelerated cancer diagnosis in the clinical domain. Poor definition of the clinical added
value, emphasis on statistical association in the absence of careful statistical calculations to
justify sample sizes needed among others, alongside poor understanding of the influence
of lifestyle and diet on cancer lipid profiles constitute important areas of improvement
in future data modeling. We hope that our recommendations will save time and effort in
the early evaluation of promising leads towards successful translation in a manner that
reduces the discordance between initial phase promise and late-stage performance. It must
be emphasized that the recommendations provided in this manuscript aim to enhance
untargeted ambient MS methods that do not utilize pre-separation of analytes (as done in
conventional lipidomics), such as those obtained with hand-held MS probes. As of late,
ion mobility separation is being incorporated into many MS sources, which will undoubt-
edly enhance the robustness of ambient MS datasets. Therefore, appropriate revisions to
these guidelines are envisioned as the field of ambient MS evolves to incorporate new
separation technologies.
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