J AMERICAN mB' .
=8 socieTy For
MICROBIOLOGY

RESEARCH ARTICLE

L)

Check for
updates

Bundibugyo ebolavirus Survival Is Associated with Early
Activation of Adaptive Immunity and Reduced Myeloid-Derived
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ABSTRACT Ebolaviruses Bundibugyo virus (BDBV) and Ebola virus (EBOV) cause fatal
hemorrhagic disease in humans and nonhuman primates. While the host response to
EBOV is well characterized, less is known about BDBV infection. Moreover, immune sig-
natures that mediate natural protection against all ebolaviruses remain poorly defined.
To explore these knowledge gaps, we transcriptionally profiled BDBV-infected rhesus
macaques, a disease model that results in incomplete lethality. This approach enabled
us to identify prognostic indicators. As expected, survival (~60%) correlated with
reduced clinical pathology and circulating infectious virus, although peak viral RNA
loads were not significantly different between surviving and nonsurviving macaques.
Survivors had higher anti-BDBV antibody titers and transcriptionally derived cytotoxic T
cell, memory B cell-, and plasma cell-type quantities, demonstrating activation of adapt-
ive immunity. Conversely, a poor prognosis was associated with lack of an appropriate
adaptive response, sustained innate immune signaling, and higher expression of mye-
loid-derived suppressor cell (MDSC)-related transcripts (ST00A8, ST100A9, CEBPB, PTGS2,
CXCR1, and LILRA3). MDSCs are potent immunosuppressors of cellular and humoral im-
munity, and therefore, they represent a potential therapeutic target. Circulating plasmin-
ogen activator inhibitor 1 (PAI-1) and tissue plasminogen activator (tPA) levels were also
elevated in nonsurvivors and in survivors exhibiting severe illness, emphasizing the im-
portance of maintaining coagulation homeostasis to control disease progression.

IMPORTANCE Bundibugyo virus (BDBV) and Ebola virus (EBOV) are ebolaviruses endemic
to Africa that cause severe, often fatal hemorrhagic disease. BDBV is considered a less
pathogenic ebolavirus due to its reduced lethality during human outbreaks, as well as
in experimentally infected nonhuman primates. The reduced mortality of BDBV in NHP
models, resulting in a pool of survivors, afforded us the unique opportunity of identify-
ing immune correlates that confer protection against ebolaviruses. In this study, we dis-
covered that the survival of BDBV-infected nonhuman primates (NHPs) was dependent
on early development of adaptive (memory) immune responses and reduced myeloid-
derived suppressor cell (MDSC)-related signaling. MDSCs are a heterogenous group of
immune cells implicated in a number of diseases that are powerful immunosuppressors
of cellular and humoral immunity. Thus, MDSCs represent a novel therapeutic target to
prevent ebolavirus disease. To our knowledge, this is the first study to link increased
morbidity with recruitment of these potent immunosuppressive cells.

KEYWORDS coagulation, Ebola virus, filovirus, immunology, myeloid-derived
suppressor cell, nonhuman primate, pathogenesis

he Ebolavirus genus comprises six species: Zaire ebolavirus, Bundibugyo ebolavirus,
Sudan ebolavirus, Tai Forest ebolavirus, Reston ebolavirus, and the recently discov-
ered Bombali ebolavirus (1). The ongoing outbreaks of Ebola virus (EBOV; species Zaire
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ebolavirus) in the Democratic Republic of Congo and Guinea demonstrate that ebolavi-
ruses continue to pose a significant threat to human health (2, 3). Clinical manifesta-
tions of ebolavirus-infected humans and nonhuman primates (NHPs) are similar,
including high viremia, hypercytokinemia, and consumptive coagulopathy, which may
progress to septic shock and multiorgan failure (4, 5). The virus initially replicates in
monocytes and dendritic cells and then spreads to hepatocytes, endothelial cells, and
epithelial cells. Bundibugyo virus (BDBV; species Bundibugyo ebolavirus) is considered a
less pathogenic ebolavirus due to its reduced lethality during human outbreaks (25 to
51%), as well as in experimentally infected cynomolgus and rhesus macaques (4, 6-8).
In contrast, infection of NHPs with EBOV results in nearly uniform lethality (4). While in-
depth transcriptome analyses have been performed on samples from EBOV-infected
human patients and NHPs, no such studies exist for BDBV (9-16). As macaques are
incompletely protected against BDBV disease, we reasoned that this experimental
model could aid in the identification of specific immune cell populations and transcrip-
tional correlates that support natural defense.

In this study, longitudinal whole blood samples were collected from BDBV-infected
rhesus macaques. Clinical pathology, viral loads, and plasma levels of cytokines, che-
mokines, and thrombosis markers were assessed in surviving and nonsurviving animals
(referred to as survivor and fatal subjects, respectively). Transcriptional changes in each
data set were compared at early, middle, and late time points after infection to define
the immune response at each stage of disease. Humoral responses were measured
with BDBV glycoprotein (GP)-specific IgM and 1gG enzyme-linked immunosorbent
assays (ELISAs) and plaque reduction neutralization tests (PRNTs). These analyses char-
acterize the systemic host response to BDBV exposure. Here, we demonstrate that early
cellular and humoral immune responses contribute to survival, whereas prolonged
innate immune signaling, coagulation anomalies, and myeloid-derived suppressor cell-
associated signaling are associated with severe or fatal disease.

RESULTS

Experimental infection of rhesus macaques. Ten adult rhesus macaques were
intramuscularly (i.m.) inoculated with a 1,000-PFU target dose of BDBV. The survival
rate of macaques up to the 28-day-postinfection (dpi) study endpoint was ~60% (6 of
10 animals) (Fig. 1A). Of the four fatal cases, one animal succumbed at 13 dpi, two ani-
mals succumbed at 17 dpi, and one animal succumbed at 19 dpi. Two survivors (survi-
vor 1 and survivor 2) had clinical scores of =4 at 9 to 11 dpi, but their condition rapidly
improved by 12 dpi (Fig. 1B). All BDBV-infected macaques developed various degrees
of illness, including fever, anorexia, macular rash, and/or depression (Table 1). Disease
manifestations in the fatal cohort were generally more severe. All infected macaques
developed fevers except fatal 4 and survivor 5, and all animals except survivor 4 experi-
enced anorexia. Three of four fatal subjects developed a mild petechial rash, one
exhibited facial edema, three had diarrhea, and one animal showed signs of neurologi-
cal disease (fatal 4). In the survivor cohort, three of five survivors suffered mild pete-
chial rashes and one subject presented with emesis and mild dehydration (survivor 2).
Hematological or serum biochemistry changes were evident in all BDBV-infected maca-
ques. Fatality correlated with the onset of thrombocytopenia, lymphopenia, and gran-
ulocytosis, although these cell population changes were also transiently observed in
some survivors. All animals except survivor 5 had elevated levels of liver enzymes,
including alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline
phosphatase (ALP), and gamma-glutamyltransferase (GGT). Increased blood urea nitro-
gen (BUN) and/or creatinine (CRE) concentrations were prominent in the serum of fatal
cases and two survivors, pointing to potential kidney damage. C-reactive protein (CRP)
levels were also increased in all fatal cases and four survivors, indicating systemic
inflammation.

Circulating viral loads in the plasma of infected macaques. We assessed the lev-
els of viremia in each cohort by performing reverse transcriptase quantitative PCR (RT-
gPCR) amplification of viral genomic RNA and conventional plaque assays on whole
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FIG 1 Survival of BDBV-infected macaques and comparison of peak viral loads and lesion severity scores in
fatal and surviving subjects. (A) Survival curve of rhesus macaques (n=10) infected intramuscularly with 1,000
PFU of BDBV-Uganda up to the =28-day endpoint. (B) Clinical scores of individual fatal versus surviving BDBV-
infected macaques; criteria include behavior, posture and activity level, appetite, respiration, and the presence
of hemorrhagic manifestations. (C) Peak viral loads were measured by RT-gPCR in whole blood and reported as
log,, copies/ml irrespective of the day on which the highest viremia was detected. The limit of detection for
this assay was 1,000 copies/ml. (D) Peak viral loads were measured in plasma samples by standard plaque
assay and reported as log,, PFU/mI irrespective of the day on which the highest viremia was detected. The
limit of detection for this assay was 25 PFU/ml. (C and D) Statistical significance was determined using the
Mann-Whitney nonparametric two-tailed t test. ns, no statistically significant difference; ** P<0.001; ***
P < 0.0001; ****, P<0.00001. (E and F) Viral loads determined by PCR (E) or plaque assay (F) at each dpi
sampled are displayed and are reported as log,, copies/ml or log,, PFU/mI, respectively. Red denotes fatal
group, black denotes survivor group. Each replicate is shown with symbols denoting data for individual
subjects (n=10 biologically independent animals/samples per tissue type in a single experiment); each bar and
error bar represents the group mean value * the standard error of the mean (SEM).

blood samples. All infected animals were PCR positive (Fig. 1C and Table 1). Average
peak PCR titers were 9.700 * 0.998 log,, copies/ml (mean * standard error of the
mean [SEM]) for fatal cases, whereas the mean titers for survivors were 8.596 = 0.610
log,, copies/ml. Interestingly, the peak viral RNA titers were not significantly different
between surviving and nonsurviving subjects (Mann-Whitney nonparametric two-
tailed t test, P=0.2301). However, the average peak infectious viral loads were signifi-
cantly different between the two groups (Mann-Whitney nonparametric two-tailed t
test, P=0.0017), with titers of 5.815 = 1.090 and 3.962 *= 1.914 log,, PFU/mI for
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nonsurviving and surviving subjects, respectively (Fig. 1D and Table 1). Infectious virus
was never detected in survivor 5 at the time points tested, but this animal had detecta-
ble viral RNA on days 7 (5.24 log,, copies/ml) and 11 (7.57 log,, copies/ml) (Table 1). The
high PCR titers and absence of detectable infectious virus in this animal may indicate
rapid clearance of viable virus with noninfectious virus components persisting in the
blood (17). Viremia was reduced or absent in 3 of 4 fatal subjects at end-stage disease,
suggesting immune-mediated rather than virus-induced pathology. Finally, no ostensi-
ble trend between nonsurviving and surviving (mild or severe) subjects was apparent for
viral RNA (Fig. 1E) or infectious virus (Fig. 1F) loads over the course of the study.

Histopathology and immunohistochemistry. Macaques within the fatal cohort dis-
played at least one or more histologic lesions consistent with ebolavirus disease (EVD),
including histiocytosis and lymphocytolysis within multiple lymph nodes (axillary and in-
guinal), multifocal necrotizing hepatitis, lymphohistocytic interstitial nephritis, and hem-
orrhagic necrotizing adrenalitis (Fig. 2). Other features included lymphohistocytic intersti-
tial pneumonia and lymphocytic perivascular cuffs with multifocal glial nodules within
the brain. Diffuse cytoplasmic immunohistochemistry (IHC) labeling for anti-BDBV GP
antigen was noted in association with the aforementioned lesions (Fig. 3). IHC-positive
cells included mononuclear cells scattered within the following regions: sinuses of the
lymph nodes (axillary and inguinal), sinusoids of the liver (Kupffer cells), renal intersti-
tium, adrenal medulla, alveolar septate, and alveoli of the lung (alveolar macrophages).
Infrequently, antigen-positive cells included individual hepatocytes, glomerular tufts in
the kidney, clusters of cells within the zona glomerulosa of the adrenal cortex, endothe-
lium, and cells within the glial nodules of the brain. The spleens of all macaques within
the fatal cohort had diminished marginal zones with relative sparing of both the mantle
zone and periarteriolar sheath (PALS). In the more severe lesions, distinct zones were
indiscernible, admixed with hemorrhage and numerous tingible body macrophages. The
condition of the red pulp among the fatal cohort ranged from congestion to marked
fibrin deposition that infiltrated the disordered marginal zones.

Interestingly, the brainstem of one survivor (survivor 1) had a focal glial nodule and
multifocal clustered lymphocytic perivascular cuffs. Associated positive IHC labeling of
mononuclear cells within the nodule and ependymal cells of the choroid plexus was
found. No other lesions or positive IHC labeling for BDBV antigen were observed in this
survivor. The remaining five survivors (survivor 2, survivor 3, survivor 4, survivor 5, and
survivor 6) lacked significant lesions or IHC labeling for BDBV antigen in the tissue sec-
tions examined.

Targeted transcriptome profiling of BDBV-infected macaques. To identify tran-
scriptional correlates of protection, we compared immunonomes in fatal and survivor
whole blood RNA as previously described (18, 19). Samples were analyzed for each
subject at early (4 to 6 dpi), middle (10 to 11 dpi), and late (14 to 15 dpi in survivors or
the terminal time point in fatal subjects) disease stages (Table S1 in the supplemental
material). This normalization strategy is typical for human and nonhuman primate tran-
scriptomic studies (9-11, 13, 16, 18) on account of longitudinal sampling discrepancies
and inconsistencies in disease onset and progression of individual subjects. One animal
(survivor 4) was excluded due to insufficient sample availability.

Examination of normalized samples by principal-component analysis (PCA) revealed
that samples from fatal subjects and survivors with severe illness (subjects with a peak
clinical score of =4) clustered together, denoting similar transcriptional profiles (Fig. 4A).
Hence, survivors with severe disease were grouped separately from survivors with mild-
to-moderate disease for our subsequent analyses. Dimensional separation was observed
for the disease stage covariate as evidenced by distinct clustering of early-, middle-, and
late-stage samples.

At the early stage of disease, we identified 98 differentially expressed (DE) tran-
scripts with a false discovery rate (FDR)-adjusted P value of <0.05 in samples from sur-
vivors with mild-to-moderate versus fatal disease (see Data Set S1 in the supplemental
material). The most significant DE mRNAs filtered by each disease stage are illustrated
in Fig. 4B. Most notably, survivors with mild disease had an ~30-log,-fold reduction in
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FIG 2 Representative histologic lesions among BDBV-infected macaques. (A to E) Fatal 4 (animal identifier). (A)
Expansion of medullary sinuses in lymph node (LN) and medullary histiocytosis. (B) Expansion of hepatic
sinusoidal spaces with Kupffer cell hypertrophy and hyperplasia. (C) Numerous tingible body macrophages and
loss of a defined marginal zone in splenic white pulp. (D) Expansion of alveolar septa with mixed inflammatory
cells and increased numbers of alveolar macrophages. (E) Modest expansion of the choroid plexus
mononuclear cells. (F to J) Fatal 2. (F) Expansion of medullary and subcapsular sinuses in lymph node and
histiocytosis. (G) Modest expansion of hepatic sinusoidal spaces with mixed inflammatory cells and sinusoidal
leukocytosis. (H) Loss of a defined marginal zone in splenic white pulp. (I) Extensive expansion of alveolar septa
with mixed inflammatory cells. (J) Well-defined glial nodule within the brainstem. (K to O) Survivor 2. (K) No
significant lesions (NSL) in lymph node. (L) NSL in liver. (M) NSL in spleen. (N) NSL in lung. (O) NSL in
brainstem. All images were captured at 20x magnification; tissue samples were stained with hematoxylin and
eosin.

the expression of ST00A8 and ST00A9 early after infection, whereas survivors with
severe disease exhibited an ~2-log,-fold reduction. These mRNAs encode calcium-
binding proteins that form a heterodimer (calprotectin) (20) and are considered hall-
mark markers of myeloid-derived suppressor cells (MDSCs) (21, 22). Repression of other
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FIG 3 Representative immunohistochemistry (IHC) for anti-BDVD antigen in lesions among BDBV-infected
macaques. (A to E) Fatal 4 (animal identifier). (A) IHC-positive histiocytes within the expanded sinuses of a
lymph node. (B) Rare IHC-positive hepatocytes and scattered IHC-positive Kupffer cells. (C) IHC-positive
macrophages throughout the splenic white pulp. (D) IHC-positive alveolar macrophages and mononuclear cells
within the alveolar septa. (E) Scattered IHC-positive ependymal cells of the choroid plexus. (F to J) Fatal 2. (F)
IHC-positive histiocytes within the expanded sinuses of a lymph node. (G) Rare IHC-positive Kupffer cells. (H)
IHC-positive macrophages throughout the splenic white pulp. (I) IHC-positive mononuclear cells within the
alveolar septa. (J) Focal IHC-positive glial nodule within the brainstem. (K to O) Survivor 2. (K) No significant
immunolabeling (NSI) in lymph node. (L) NSI in liver. (M) NSI in spleen. (N) NSI in lung. (O) NSI in brainstem. All
images captured at 20x magnification; IHC-positive cells are brown.

MDSC-related transcripts (e.g., PTGS2, CEBPB, CXCR1, and LILRA3) along with the M2 mac-
rophage activation marker, CD163, was also noted. Nevertheless, some of these mole-
cules were transiently expressed in the severe disease survivor group, suggesting that
disease severity may be linked to recruitment of these potent immunosuppressors. To
test this hypothesis, we compared disease scores and MDSC-related transcripts. Positive
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FIG 4 Comparison of transcriptional changes in surviving versus nonsurviving rhesus macaques infected with BDBV. (A) Shown are principal component
(PC) analyses of all normalized transcripts delineated by disposition (left; fatal subjects [n=4], survivors with mild-to-moderate disease [M] [n=2], and
survivors with severe disease [S] [n=3]) and disease stage (right; early [6 to 8 dpi], middle [10 to 11 dpi], and late [13 to 19 dpi]). (B) Heatmap depicting
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false discovery rate (FDR)-corrected P value of less than 0.05 are shown. (C) Pearson correlation plots for myeloid-derived suppressor cell-related (S700A8
and S700A9) and B cell receptor-affiliated (CD79A and CD79B) transcripts. (D) Heatmap of the most significantly upregulated and downregulated upstream
regulators in survivor versus fatal subjects. (E) Network plots depicting gene clusters associated with BDBV infection in each fatal (left) or survivor (right)
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value of <0.05. M, survivor with mild-to-moderate disease; S, survivor with severe disease; PC1, principal component 1; PC2, principal component 2.

correlations were found between ST00A8 (Pearson, P=0.0004) and ST00A9 (Pearson,
P =0.0002) counts and clinical scores at middle and late disease stages (Fig. 4C).

Shared upregulated transcripts in survivors were associated with lipid antigen pre-
sentation (CD1C) (23), lymphocyte homing (GPR183) (24), B-cell receptor (BCR) signal-
ing (CD79B and CD79A) (25), major histocompatibility complex (MHC) class | (MHC-I)

July/August 2021 Volume 12 Issue4 €01517-21 mbio.asm.org 8


https://mbio.asm.org

Pathogenesis of Bundibugyo ebolavirus

inhibition (LILRBT1) (26), and regulation of B-cell differentiation, proliferation, and matu-
ration to an effector state (IKZF3) (27) (Fig. 4B). Inverse correlations were found between
clinical scores and BCR-affiliated CD79A (Pearson, P < 0.05) and CD79B (Pearson, P < 0.05)
transcript abundance (Fig. 4C). Thus, survival was dependent on early activation of adapt-
ive responses with more rapid and robust signaling in the mild-to-moderate versus severe
disease survivor group.

To rule out whether our sampling scheme (selected early-, middle-, and late-stage
disease samples) was responsible for survivor versus fatal transcriptional changes, we
also analyzed all collected blood samples independent of dpi (i.e., every collected
blood sample rather than selected samples at each disease stage) (Table S1). The survi-
vor data set still showed evidence of activation of adaptive immunity (CD79A, CD798B,
TBX21, and HLA-related transcripts), along with reduced MDSC signaling (S700A8,
ST100A9, and LILRA3), proving that our normalization method was satisfactory (Fig. S1).

Using the upstream analysis function of Ingenuity Pathway Analysis (IPA), we next
identified DE transcriptional regulators in survivor versus fatal data sets. Survivors
showed higher activation of molecules associated with autophagy regulation (IRGM)
(28), interleukin-1 (IL-1) receptor antagonism (ILTRN) (29), and antiviral immunity
(TRIM24) (30) (Fig. 4D). At the early disease stage, inhibition of lipopolysaccharide
(LPS), TNF, and IL1B was projected in both survivor groups, all of which are associated
with MDSC activity (21). In middle- to late-stage disease, these molecules were
expressed at higher levels in the severe survivor cohort than in the fatal group but
remained repressed in the mild survivor group.

To determine canonical pathways associated with protection, we performed
Metascape-based functional enrichment of upregulated transcripts (FDR-adjusted P
value of <0.05) for fatal and combined mild and severe survivor cohorts (31).
Metascape/Cytoscape enables visualization of network data with the density of
gene cluster interactions and nodes representing signaling intensity. Survivor signa-
tures predominantly enriched to adaptive immunity networks, including lymphocyte
activation, BCR regulation, and alpha-beta T cell activation (Fig. 4E). In the fatal
cohort, transcripts primarily enriched to gene clusters involved in innate immunity,
such as myeloid cell activation, leukocyte migration, Toll-like receptor (TLR) cas-
cades, and IL-1 signaling. In contrast, adaptive immunity-related nodes were mini-
mally apparent. To validate these findings, we also performed functional enrichment
using IPA, which takes both positive and negative regulators into account for pre-
dicting activation or inhibition of each gene-signaling network. In line with our DE
and Metascape results, positive z-scores in survivors correlated with adaptive immu-
nity signatures, including ICOS signaling in T helper cells, NFAT immune regulation,
calcium-induced T lymphocyte apoptosis, protein kinase C-theta (PKC6) signaling,
and CD28 signaling in T helper (Th) cells (Fig. 4F). Pathways with negative z-scores
included those related to hypercytokinemia/hyperchemokinemia, pattern recogni-
tion receptor sensing, NK cell signaling, and autoimmunity (e.g., systemic lupus ery-
thematosus [SLE] in T/B cell signaling pathways). Together, these results suggest
that BDBV lethality is associated with prolonged innate signaling and minimal or
dysregulated adaptive responses.

Next, to capture shifts in circulating cell populations, we used nSolver-based
immune cell type profiling (Fig. 5A). In agreement with our DE analysis and enrichment
results, this feature predicted that DE mRNAs in survivors with mild disease were asso-
ciated with increased quantities of T helper cell, cytotoxic T cell, and B cell types.
Frequencies of B cells early after infection were estimated to wane in survivors exhibit-
ing severe disease. Neutrophil and macrophage populations were predicted to expand
in fatal cases, supporting our hematology and histopathology results.

For a more granular assessment, we also performed digital cell quantification (DCQ)
using CIBERSORT to estimate cell type abundances of various B and T cell subsets
(Fig. 5B) (32). At the early disease stage, memory B cells and follicular helper T cells
were increased in the mild survivor group, whereas CD8 T cells and memory T cells
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FIG 5 Immune cell type profiling of survivor and fatal samples. (A) Overall respective cell type quantities for each disease stage and data set (M, mild-to-
moderate disease survivor [n=3]; S, severe disease survivor [n=2]) compared to the fatal group (n=4), determined using the NanoString nSolver Advanced
Analysis plugin. (B) Comparative heatmap of predicted immune cell type frequencies in each group at early, middle, and late stages of disease using
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were increased in the severe survivor group. At middle and late disease stages, both
survivor groups had higher quantities of plasma cell and CD8 T cell types than the fatal
cohort. These data suggest that both humoral and cellular responses are critical for sur-

vival against BDBV.

Assessment of humoral responses. As our DCQ predictions suggested that sur-
vival correlated with recruitment of plasma cells, we performed antiglycoprotein (anti-
GP) 1gG (Fig. 6A) and IgM (Fig. 6B) enzyme-linked immunosorbent assays (ELISAs) on
serum samples collected from each subject. Survivors formed BDBV GP-specific IgM
and IgG, with both immunoglobulin classes appearing at the middle stage of disease.
At the late stage of disease, the antibody titers of survivors with severe disease ranged
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FIG 6 Antibody titers and levels of thrombosis-associated markers in BDBV-infected macaques. (A and B) BDBV glycoprotein-specific
immunoglobulin G (IgG) (A) and immunoglobulin M (IgM) (B) titers in serum samples of fatal (n=4) and survivor (=6 [n=4 with
mild-to-moderate disease and n=2 with severe disease]) subjects were measured at early, middle, and late stages of disease. (C)
Neutralizing antibody titers in BDBV-infected macaques determined by plaque reduction neutralization tests. (D to F) Fold change
increases or decreases in thrombosis-associated markers in BDBV-infected macaques for each group. Each replicate is shown with
symbols denoting data for individual subjects (n=10 biologically independent animals/samples in a single experiment); each bar and
error bar represents the group mean value = SEM. Statistical significance was determined using two-way ANOVA with Greenhouse-
Geisser correction. *, P < 0.05; **, P<0.001; ***, P<0.0001; ****, P < 0.00001.

from 1:800 to 1:25,600 for IgG and 1:800 to 1:3,200 for IgM, whereas the titers in survi-
vors with mild disease ranged from 1:3,200 to 1:12,800 for IgG and 1:800 to 1:12,800
for IgM. Conversely, only low IgM and IgG (1:100 to 1:1,600) titers were noted in fatal
subjects. For the surviving subject (survivor 5) with only viral RNA detectable and not
infectious virus loads, we observed moderate to high IgM and IgG titers (Table S1).
Unlike the immunoglobulin levels in the fatal group, the IgM titers in the survivor
cohorts generally declined during the late disease stage, conjointly with increasing
moderate to high titers of IgG (Fig. 6A and B). Plaque reduction neutralization tests
indicated that survivors had higher, albeit overall low levels of neutralizing antibodies
at middle- and late-stage disease (Fig. 6C).
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Measurement of thrombosis-associated markers. As EVD is known to induce dis-
seminated intravascular coagulation, the concentrations of various thrombosis-associ-
ated markers were measured using a cytokine bead array at each disease stage (4).
Elevated levels of tissue plasminogen activator (tPA) (Fig. 6D) and plasminogen activa-
tor inhibitor 1 (PAI-1) (Fig. 6E) were found in fatal macaques and survivors with severe
disease at middle and late disease stages, although declines in these markers were
seen in the severe survivor cohort at the latter time point. Interestingly, tPA and solu-
ble CD40 ligand (sCD40L) levels were significantly different in the mild survivor group
only at the early disease stage (Fig. 6D and F). These results indicate a prompt return
to coagulation homeostasis in these subjects.

Plasma cytokine bead array analysis. Finally, soluble mediators (circulating cyto-
kines, chemokines, and growth factors) were measured in BDBV-infected macaque
plasma samples. IL-13 levels were higher in mild disease survivors early after infection,
suggesting that innate immunity was briefly stimulated and then arrested in this
cohort (Fig. 7A). Severe disease and lethality were instead associated with copious
increases in markers of innate immune function and inflammation that persisted late
into disease, e.g.,, monocyte chemoattractant protein 1 (MCP-1), IP-10, IL-15, IL-18, IL-
12/23, and vascular endothelial growth factor (VEGF) (Fig. 7B to E) (33). The expression
of these proinflammatory mediators coincided with the onset of clinical disease, similar
to previous EBOV reports. Higher systemic increases in IL-2 and anti-inflammatory (IL-
10 and IL-1 receptor antagonist [IL-1RA]) mediators were also observed in fatal sub-
jects. The Th2 cytokine IL-4 was more abundantly expressed in survivors in early- to
middle-stage disease, which coincides with our enrichment findings indicating activa-
tion of both Th2 and Th1 pathways. Additionally, IL-1RA was expressed at higher levels
in survivors at the early disease stage. These results indicate that rapid resolution of
inflammation was accomplished in survivors with mild disease.

DISCUSSION

The continued reemergence of ebolaviruses emphasizes the need for the develop-
ment of effective countermeasures against these viruses (2-4). Historically, efforts to
develop interventions have been hampered, in part, by the dearth of clinical and labo-
ratory research exploring the pathophysiology of EVD. Moreover, clinical samples typi-
cally provide only glimpses into the host response, as repeated sampling is uncom-
mon. Prognostic indicators comprising factors that promote or hinder defense against
ebolaviruses, particularly BDBV, thus remain incompletely defined. The reduced lethal-
ity of BDBV in NHP models (6-8), resulting in a pool of survivors, afforded us the unique
opportunity of identifying immune correlates that confer protection against ebolavi-
ruses. NHPs are considered the gold standard animal model, as they most accurately
recapitulate human EVD (5).

We compared viral loads, clinical signs, and host responses in BDBV-infected rhesus
macaques. Surprisingly, there was no significant difference between peak viral RNA
titers in fatal and survivor macaques, but there was a significant difference in infectious
titers. This finding may reflect comparable initial dissemination of the virus in each
cohort but the inability to remove infected cells and terminate the immune response
in fatal cases. Immunological control, whether mediated by innate or adaptive
responses, is thus likely responsible for infectious virus clearance in survivors. All ani-
mals displayed various degrees of iliness along with hematological changes. Disease
severity and fatal outcome corresponded with liver dysfunction, lymphopenia, throm-
bocytopenia, and coagulopathy.

Disseminated intravascular coagulation (DIC) is a hallmark feature of EVD and is
characterized by hyperactivation of the coagulation cascade (4). Consequences of DIC
include hemorrhagic diathesis due to consumption of platelets and clotting factors, as
well as widespread deposition of fibrin clots (thrombi) that become trapped in small
blood vessels, resulting in ischemia, hemolytic anemia (erythrocytes are fragmented
during transport through narrowed microvasculature), and occasionally organ failure.
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FIG 7 Comparison of plasma cytokine/chemokine levels in BDBV-infected rhesus macaques. (A to K) Fold change increases or decreases in selected
cytokines, chemokines, or other soluble mediators grouped by disposition (n=4 fatal and n=6 survivor [n=4 with mild-to-moderate disease and n=2 with
severe disease] subjects) and disease stage. Each replicate is shown with symbols denoting data for individual subjects (n=10 biologically independent
animals/samples in a single experiment); each bar and error bar represents the group mean value = SEM. Statistical significance was determined using
two-way ANOVA with Greenhouse-Geisser correction. *, P < 0.05; **, P < 0.001; ***, P < 0.0001; ****, P < 0.00001.

One key event that triggers this EVD phenomenon is oversecretion of tissue factor by
monocytes and macrophages (34). Another mechanism involves increased levels of
plasminogen activator inhibitor | (PAI-l) in response to marked increases in cytokines
and/or circulating LPS (35). The thrombosis-associated markers PAI-1 and tissue plas-
minogen activator (tPA) were elevated in fatal macaques and survivors exhibiting
severe illness after BDBV exposure, suggesting that these factors may also play a role
in DIC. Higher PAI-1 levels were also found in pediatric patients infected with Sudan
ebolavirus (36) and fatal human cases of Lassa virus disease (37), suggesting that this
marker may represent a universal feature among hemorrhagic fever virus infections.
PAI-1 is a serine protease inhibitor (serpin) that normally functions as an inhibitor of
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plasminogen activators like tPA and urokinase (38). In that sense, PAI-1 halts, whereas
tPA promotes, fibrinolysis. While both PAI-1 and tPA were elevated among fatal maca-
ques and survivors with severe disease, exceptionally high levels of tPA may enhance
spontaneous fibrinolysis, alluding to the complexity of fibrinolysis homeostasis.
Coagulation changes that mimic DIC may also play a role in the severity of coronavirus
disease 2019 (COVID-19). A recent paper revealed that elevation of tPA and PAI-1 was
significantly associated with mortality in COVID-19 patients (39). A strong correlation
was found between tPA/PAI-1 concentrations and both absolute neutrophil counts
and systemic calprotectin (S100A8/S100A9 heterodimer) levels.

Our results indicated that severe and fatal disease also corresponded with granulo-
cytosis and monocytosis. Neutrophil granulocytes are spared from EBOV infection, but
their degranulation, proinflammatory secretion, neutrophil extracellular trap (NET) for-
mation, and reactive oxygen species (ROS) production can contribute to inflammation
and tissue damage (40). In vitro and in vivo, EBOV readily infects monocytes and macro-
phages, leading to their activation and resulting in massive cytokine, chemokine, and
growth factor secretion (41-44). Our studies and others have shown that monocytes
are the major cell targets for EBOV in vivo and constitute a significant proportion of
transcriptional changes in blood cells from infected macaques (12, 16). These studies
support the notion that monocytes and/or neutrophils are strongly implicated in EVD
pathophysiology.

Our analyses indicated that a fatal outcome was associated with MDSC-related tran-
scriptional signatures (e.g., ST00A8, ST00A9, PTGS2, CEBPB, LILRA3, and CXCRT) (21).
MDSCs are pathologically activated monocytes and neutrophils with potent immuno-
suppressive activity (22). The morphological and physiological resemblance of MDSCs
to conventional monocytes and granulocytes makes it difficult to distinguish between
these cell types. To further complicate matters, based on their theorized granulocytic
or monocytic lineage, two MDSC subsets exist, granulocytic/polymorphonuclear MDSC
(PMN-MDSC) and monocytic MDSC (M-MDSC), each with distinct cellular profiles and
mechanisms of immunosuppression. Whereas classical activation of myeloid cells is
driven primarily by pattern recognition receptors (PRRs) and quickly subsides after
clearance of the stimulus, pathological activation arises from a persistent environment
of growth factors (granulocyte-macrophage colony-stimulating factor [GM-CSF] and
macrophage colony-stimulating factor [M-CSF]), chemokines (CCL2 [MCP-1]), and
inflammatory signals (IL-1 beta, IL-18, VEGF, IL-6, HIF 1-alpha, and adenosine) in the ab-
sence of pathogen clearance (21, 22, 45, 46). In the present study, the expression of
many of these polarizing factors was associated with disease severity or fatal outcome
following BDBV exposure. Great effort has been put forth in recent years to define the
genomic, proteomic, and metabolic signatures of MDSCs, given their implication in
numerous pathological conditions, including sepsis, cancer, chronic infections, and var-
ious autoimmune disorders (e.g., type 1 diabetes, rheumatoid arthritis, and systemic
lupus erythematosus [SLE]) (21, 47, 48). Our results showed increased transcripts map-
ping to SLE in T/B cell signaling pathways in the fatal data set, implying that EVD and
SLE may share certain pathological features.

Other supporting evidence for the role of MDSC in filovirus pathogenesis is reports
of an accumulation of low-density neutrophils in humans or NHPs infected with EBOV
(9, 16, 49). PMN-MDSCs have a lower density than conventional neutrophils, enabling
them to fractionate with the peripheral blood mononuclear (PBMC) interface in density
gradient blood preparations. Moreover, our group and others have identified rapidly
expanding monocyte-like populations that express low levels of MHC-Il molecules, a
defining feature of M-MDSCs (12, 50, 51). One caveat of our study is that we did not
perform flow cytometry or single-cell RNA sequencing (scRNA-Seq) to determine
whether MDSCs were indeed recruited and contributed to the bulk DE transcripts iden-
tified. However, our previous transcriptional analysis of purified monocytes from
infected macaques supports monocytes as major contributors of gene expression
changes in peripheral cells that express high levels of MDSC-related transcripts,
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including many that we have identified in this study (12). More recently, comprehen-
sive scRNA-Seq, along with high-dimensional flow cytometry, confirmed that mono-
cyte-like cells from EBOV-infected rhesus macaques express high levels of ST00A8/
S100A9 and downregulate multiple MHC-lI-related molecules (16). The authors of this
study suggested these cells might represent immature monocytes or bone marrow
monocyte precursors released during emergency myelopoiesis. Importantly, future
studies should test whether these cells represent bona fide MDSCs by assessing their
ability to suppress the adaptive immune response via ex vivo functional assays. M-
MDSCs can suppress T cell activity by secreting nitric oxide (NO) and immunosuppres-
sive cytokines (IL-10 and transforming growth factor beta [TGF-B]) or expressing
immune regulatory molecules (PDL-1). PMN-MDSCs preferentially exploit ROS, prosta-
glandins, peroxynitrite, and arginase 1 to mediate immune suppression (21).

Macrophages that are differentiated from M-MDSCs but not monocytes are immu-
nosuppressive and share similar genomic profiles. Kwak et al. demonstrated that the
immunosuppressive activity of M-MDSC-derived macrophages is dependent on pro-
longed expression of STO0A9 protein in these cells and involves the transcription factor
C/EBP B (52). The authors also demonstrated that ST00A9 promotes M2 polarization of
macrophages. In contrast to M1 macrophages, which participate in pathogen killing,
M2 alternatively activated macrophages are generally anti-inflammatory. Therefore,
these cells could promote an environment that enhances viral replication or downre-
gulates the adaptive immune response. McElroy et al. showed substantial immunore-
activity of the M2-affiliated marker CD163 in association with viral antigen in the tis-
sues of human fatal cases (53). This marker was associated with both disease severity
and fatal outcome. Our results also indicated higher expression of CD163 in fatal sub-
jects, as well as abundant tingible body macrophages in lymphoid tissue, further sup-
porting that M2-like macrophages contribute to ebolavirus pathogenesis. Tingible
body macrophages are thought to downregulate the germinal center reaction by
releasing prostaglandins and inhibiting IL-2 production, which may contribute to the
lack of adaptive responses (54). Disruption of the B cell-rich marginal zone within the
germinal center architecture in lymphoid tissue may exacerbate this condition, as this
finding was prominent in fatal cases in our study.

Conversely, germinal centers were intact in surviving animals with the absence of an
accumulation of tingible body macrophages; analysis of DE transcripts demonstrated that
survivors also expressed more transcripts enriching to B cell antigen receptor signaling
(CD79B and CD79A) (25). Previous studies have shown that downregulation of CD79A is
observed in B cells during acute disease following exposure of rhesus macaques to EBOV
(16), which may serve as a virus mechanism to impede B cell activation and generation of
memory B cells. Indeed, lower predicted frequencies of IgM and IgG memory B cells, neu-
tralizing titers, and transcriptionally derived plasma cell quantities were detected in
fatal macaques. In contrast, estimated increases in these B cell subsets were observed
in survivors, along with higher ELISA titers of BDBV-specific IgM and IgG antibodies
and neutralizing titers. Transcripts mapping to numerous cellular immunity- and hu-
moral immunity-related pathways, including ICOS signaling in T helper cells (55), cal-
cium-induced T lymphocyte apoptosis (56), PKCO signaling (57), and CD28 signaling in T
helper (Th) cells (58), were also higher in survivor than in fatal data sets. Although lym-
phocyte activation signaling was found in fatal cases, these transcriptional responses
appeared nonspecific rather than a result of antigen-dependent T and B cell activation
and were possibly cytokine mediated (16). Therefore, both antigen-specific humoral and
cellular immunity are likely pivotal for protection against EVD.

In summary, we identified potential biomarkers that predict EVD disease severity
and lethality. Sustained activation of innate immunity, MDSC-related signaling, and
dysregulation of fibrinolytic pathways were prominent findings in fatal cases. Survivors
expressed T cell- and B cell-related transcripts and other mRNAs mapping to adaptive
immune pathways, signifying that both cellular and humoral immunity are critical for
protection against EVD. Elucidation of the mechanisms that confer lethality or defense
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against ebolaviruses can be harnessed to develop diagnostics or immunomodulatory
therapies for these deadly pathogens.

MATERIALS AND METHODS

Ethics statement. Animal studies were performed in biosafety level 4 (BSL4) biocontainment at the
University of Texas Medical Branch (UTMB) and approved by the UTMB Institutional Biosafety
Committee. Animal research was conducted in compliance with the UTMB IACUC, the Animal Welfare
Act (59), and other federal statutes and regulations relating to animals. The UTMB animal research facility
is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care.

Challenge virus. BDBV (strain 200706291; GenBank accession no. MK028856.1) was isolated from a
fatal human case in western Uganda during the 2007 outbreak (46). The challenge stock used in this
study was kindly provided by Thomas G. Ksiazek and was propagated on Vero E6 cells twice (passage 2
virus). Stocks were certified free of endotoxin and mycoplasma contamination.

Animal infection. Ten adult (5 females and 5 males) rhesus macaques (Macaca mulatta) weighing
2.64 to 6.98kg that served as untreated controls on seven different studies at the Galveston National
Laboratory were employed for this project. All macaques (source PrimGen) were i.m. challenged in the
left quadriceps with a 1,000-PFU target dose (actual dose was 750 to 1,088 PFU) of the same BDBV chal-
lenge stock (Table S1). An internal scoring protocol was implemented to track disease progression in
challenged animals and included criteria like behavior, posture and activity level, appetite, respiration,
and the presence of hemorrhagic manifestations, as described previously (8, 11, 12, 14). Animals were
checked at least twice daily, and subjects that reached a clinical score of =9 were euthanized with a
pentobarbital solution. Longitudinal blood samples were taken over the course of the study, and tissue
samples from major organs were taken at the time of euthanasia (Table S1). All measurements requiring
physical manipulation were performed under ketamine sedation.

Clinical pathology. EDTA-treated blood was analyzed using a laser-based Beckman Coulter Ac-T diff
hematology analyzer to determine total white blood cell counts, white blood cell differentials, red blood
cell counts, platelet counts, hematocrit values, total hemoglobin concentrations, mean cell volumes,
mean corpuscular volumes, and mean corpuscular hemoglobin concentrations. A Piccolo point-of-care
analyzer and biochemistry panel plus analyzer discs (Abaxis) were used to test for serum concentrations
of albumin, amylase, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phospha-
tase (ALP), gamma-glutamyltransferase (GGT), glucose, cholesterol, total protein, blood urea nitrogen
(BUN), creatinine (CRE), uric acid, and C-reactive protein (CRP).

Histopathology and immunohistochemistry. Necropsy was performed on all subjects in the BSL4
facility. Tissue samples for histopathologic and immunohistochemical (IHC) examination were immersed
in 10% neutral buffered formalin for at least 21 days, followed by a change of formalin, before removal
from the BSL4 facility. Inactivated tissue samples were processed in a BSL1 facility. Tissue sections were
deparaffinized and rehydrated through xylene and graded ethanol. Slides went through heat-induced
antigen retrieval in a steamer at 95°C for 20 min in Sigma citrate buffer, pH 6.0, 10x (Sigma-Aldrich, St.
Louis, MO). To block endogenous peroxidase activity, slides were treated with 3% hydrogen peroxide
and rinsed in distilled water. The tissue sections were processed for IHC using the Thermo Autostainer
360 (ThermoFisher, Kalamazoo, MI). Sequential 15-minute incubations with avidin D and biotin solutions
(Vector, Burlingame, CA) were performed to block endogenous biotin reactivity. Specific anti-BDBV im-
munoreactivity was detected using an anti-BDBV GP primary antibody at a 1:2,000 dilution for 60 min
(IBTS Services, Gaithersburg, MD). Secondary biotinylated goat anti-rabbit IgG antibody (BA-1000; Vector
Laboratories, Burlingame, CA) was added at a dilution of 1:200 and incubated for 30 min. Next, Vector
horseradish peroxidase streptavidin, ready-to-use (RTU) (Vector) was added for an additional 30 min.
Slides were developed with Dako DAB (diaminobenzidine) chromogen (K3468; Dako, Carpinteria, CA) for
5min and counterstained with hematoxylin for 30s.

RNA isolation. On the specified procedure days, blood was collected from each macaque by femoral
venipuncture into BD Vacutainer EDTA tubes (BD Biosciences, San Jose, CA). An aliquot of EDTA-treated
whole blood (100 ul) was diluted with 600 ul of buffer AVL inactivation buffer (Qiagen, Hilden, Germany),
and RNA was extracted using a viral RNA minikit (Qiagen) according to the manufacturer’s instructions.

Viral-load determination. OneStep probe RT-qPCR kits (Qiagen) and the CFX96 system and software
(Bio-Rad) were used to determine BDBV viral copies. To detect viral RNA, we targeted the BDBV VP35
intergenic region or the GP gene with primer pairs and a 6FAM (6-carboxyfluorescein)-5'-AGGCTTCCCTC
GCTGCCGTTATG-3'-TAMRA (6-carboxytetramethylrhodamine) or a 6FAM-CGCAACCTCCACAGTCGCCT-TAMRA
probe, respectively. Thermocycler run settings were 50°C for 10 min; 95°C for 10 s; and 40 cycles of 95°C
for 10 s plus 57°C (59°C for GP) for 30 s. Integrated DNA Technologies synthesized all primers, and Life
Technologies customized the probes. Representative BDBV genomes were calculated using a genome
equivalent standard, which takes into account Avogadro’s number and the molecular weight of the BDBV
genome. The limit of detection for this assay is 1,000 copies/ml.

The titers of infectious virus loads were determined using a standard plaque assay and Vero E6 cells
(catalog number CRL-1586; ATCC). Briefly, increasing 10-fold dilutions of plasma samples were adsorbed
to Vero E6 monolayers in duplicate wells (200 wl), overlaid with 0.8% agarose/2x Eagle minimal essential
medium (EMEM), and incubated for 6 days at 37°C in 5% CO,. Neutral red stain was added, and plaques
were counted after a 24- to 48-h incubation. The limit of detection for this assay is 25 PFU/ml.

NanoString sample preparation. NHPV2_Immunology reporter and capture probe sets (NanoString
Technologies) were hybridized with 5 ul of each RNA sample at 65°C for at least 12 h. The RNA-probe set
complexes were then loaded into an nCounter microfluidics cartridge and assayed on a NanoString nCounter
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SPRINT Profiler. To estimate the abundance of each of the 769 unique mRNA targets included in the
NHPV2_Immunology panel, fluorescent reporter barcodes were imaged and counted in each sample lane. To
meet quality control (QC) criteria, samples with an image binding density greater than 2.0 were reanalyzed
with 2 ul of RNA. NanoString barcoding technology was previously validated for EVD gene expression (11).
The RNA was hybridized with NanoString NHPV2_Immunology reporter and capture probe sets, and the
RNA-probe set complexes were loaded onto an nCounter SPRINT Profiler to determine mRNA counts. This
platform enables the detection of up to 769 NHP-specific immune-related transcript targets.

Bioinformatics analysis. nCounter .RCC files were imported into NanoString nSolver 4.0 software. All
samples met the established QC criteria. To compensate for differing RNA inputs, housekeeping genes and
spiked-in positive and negative controls were used to normalize raw counts. The data were analyzed using
the NanoString nSolver Advanced Analysis 2.0 package to generate principal component (PC) figures, cell
type trend plots, and mRNA expression heatmaps (a full list of probes detected for each sample group,
along with fold change values and P values, can be found in Data Set S1 in the supplemental material).
Normalized data were exported as a .CSV file, and human annotations were added for each respective gene
to perform immune cell profiling within nSolver. Functional enrichment of survivor versus fatal normalized
counts at early-, middle-, and late-stage disease was accomplished using Ingenuity Pathway Analysis soft-
ware (Qiagen). Z-scores were imported into GraphPad Prism version 9 to produce canonical signaling and
upstream regulator heatmaps. To generate the network maps, DE mRNAs with an FDR-adjusted P value of
<0.05 from each bronchoalveolar lavage (BAL) fluid sample or blood sample data set were imported into
Metascape and visualized using Cytoscape (31). To validate our nSolver-derived cell type predictions, we
used CIBERSORT deconvolution software (32).

Bead-based multiplex immunoassays. The concentrations of circulating cytokines, chemokines,
and other analytes were assayed using bead-based multiplex technology. Irradiated plasma samples
were incubated with magnetic beads from Milliplex NHP cytokine premixed 23-plex panel (EMD
Millipore, Billerica, MA) kits according to the recommendations provided. Analytes measured included
IL-113, IL-1 receptor antagonist (IL-1RA), IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12/23 (p40), IL-13, IL-15, IL-17,
IL-18, gamma interferon (IFN-y), granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage
colony-stimulating factor (GM-CSF), monocyte chemoattractant protein 1 (MCP-1), macrophage inflam-
matory protein T (MIP-1a), MIP-18, tumor necrosis factor alpha (TNF-a), transforming growth factor
alpha (TGF-a), soluble CD40 ligand (sCD40L), and vascular endothelial growth factor (VEGF). The concen-
trations in each plasma sample were measured using a Bioplex-200 array system (Bio-Rad, Hercules, CA).

Serum concentrations of other immune mediators (IL-6, IL-10, IP-10, IL-1, IL-12p40, IL-17A, IFN-3,
IL-23, TNF-q, IFN-y, GM-CSF, IL-8, and MCP-1) and plasma-derived thrombosis-associated markers (P-
selectin, D-dimer, PSGL-1, tPA, sCD40L, PAI-1, and factor IX) were determined by flow cytometry using
LegendPlex multiplex technology (BioLegend) and the nonhuman primate inflammation 13-plex (1:4
dilution) and human thrombosis (1:100 dilution) kits, respectively. Samples were processed in duplicate
following the kit instructions and recommendations. Following bead staining and washing, 1,500 to
4,000 bead events were collected on a FACSCanto Il cytometer (BD Biosciences) using BD FACSDiva soft-
ware. The raw fcs files were analyzed with BioLegend's cloud-based LEGENDplex data analysis software.

Anti-BDBV GP IgM and IgG ELISA. Sera collected at the indicated time points were tested for BDBV
GP-specific IgM and IgG antibodies by ELISA. MaxiSorp 96-well plates (catalog number 44-204; Thermo
Fisher, Rochester, NY) were coated overnight with 15 ng/well (0.15 ml) of recombinant BDBV GP lacking
the transmembrane region (GPATM; Integrated Biotherapeutics, Gaithersburg, MD) in a sodium carbon-
ate/bicarbonate solution (pH 9.6). Antigen-adsorbed wells were subsequently blocked with 4% bovine
serum antigen (BSA) in 1x phosphate-buffered saline (PBS) for at least 2 h. Sera were initially diluted
1:100 and then 2-fold through 1:12,800 in ELISA diluent (1% BSA in 1x PBS and 0.2% Tween 20). After a
1-h incubation, cells were washed six times with wash buffer (1x PBS with 0.2% Tween 20) and incu-
bated for an hour with a 1:2,500 dilution of HRP-conjugated anti-monkey IgM or IgG (Fitzgerald
Industries International, Acton, MA). SigmaFast O-phenylenediamine (OPD) substrate (product number
P9187; Sigma) was added to the wells after six additional washes to develop the colorimetric reaction.
The reaction was stopped with 3 M sulfuric acid 10 to 15 min after the addition of OPD, and absorbance
values were measured at a wavelength of 492nm on a spectrophotometer (Emax system; Molecular
Devices, Sunnyvale, CA). Absorbance values were normalized by subtracting the values for uncoated
wells from the values for antigen-coated wells at the corresponding serum dilution. End-point titers
were defined as the reciprocal of the last adjusted serum dilution with a value of =0.40.

Statistical analysis. All statistical analyses were carried out in GraphPad Prism version 9. No data
were excluded. Two-way repeated-measures analysis of variance (ANOVA) with Greenhouse-Geisser
correction and Tukey’s multiple-comparison test was used to obtain P values for cytokine/chemo-
kine levels, antibody titers, and thrombosis-associated markers. Peak viremia was evaluated using
the Mann-Whitney nonparametric t test. A multiple-hypothesis Benjamini-Hochberg false discovery
rate (FDR)-corrected P value of less than 0.05 was deemed significant for transcriptional analyses,
unless otherwise stated.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, DOCX file, 0.4 MB.
TABLE S1, DOCX file, 0.01 MB.
DATA SET S1, XLSX file, 0.1 MB.
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