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MET amplification is rare in treatment-naïve metastatic colorectal cancer (CRC) tumors,

but can emerge as a mechanism of resistance to anti-EGFR therapies. Preclinical and

clinical data suggest that patients with MET amplified tumors benefit from MET-targeted

therapy. Cabozantinib is an inhibitor of multiple tyrosine kinases, included c-MET.

Panitumumab is an inhibitor of EGFR. This report describes a patient with KRAS,

NRAS, and BRAF wild-type metastatic CRC who experienced disease progression on

all standard chemotherapy and anti-EGFR antibody therapy. The patient was enrolled in

a clinical trial evaluating the combination of cabozantinib plus panitumumab. After only 6

weeks of treatment, the patient experienced a significant anti-tumor response. Although

tumor tissue was negative for MET amplification, molecular profiling of cell-free DNA

(cfDNA) revealed MET amplification. This case represents the first report showing the

activity of cabozantinib in combination with panitumumab in a patient with metastatic

CRC, and suggests that MET amplification in cfDNA may be a biomarker of response.

A clinical trial targeting MET amplified metastatic CRC is currently underway.
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BACKGROUND

The receptor tyrosine kinase c-MET (mesenchymal-epithelial transition factor), is implicated
in tumorigenesis, proliferation, invasiveness, metastasis, and resistance to cancer treatment (1).
Encoded by the MET proto-oncogene, c-MET is a disulfide-linked glycoprotein consisting of
an extracellular α-subunit and a membrane spanning β-subunit (1). Hepatocyte growth factor
(HGF) is the only known ligand for c-MET, and is predominantly secreted in a paracrine fashion
by stromal cells. HGF binding induces c-MET receptor dimerization which in turn activates
various downstream signaling pathways (2). HGF/c-MET signaling plays an essential role in diverse
physiological processes such as embryonic development, epithelial branching morphogenesis and
postnatal organ regeneration (3). Aberrant MET activation can occur via multiple mechanisms,
includingMET gene amplification (4).
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MET gene amplification has been observed in multiple tumor
types, including colorectal cancer (CRC) (5, 6), gastric cancer
(7, 8), genitourinary cancers (9), head and neck cancer (10),
non-small cell lung cancer (NSCLC) (11, 12), neuroblastoma
(13), and ovarian cancer (14, 15). MET amplification is one
of the key mechanisms mediating both primary (16) and
acquired resistance (17) to epidermal growth factor receptor
(EGFR) inhibition in patients with NSCLC. It has been
shown that MET amplification leads to acquired resistance
to EGFR tyrosine kinase inhibitors (TKI)s by persistent
activation of ERBB3 signaling (18) and MET amplification
can be detected with or without the presence of the EGFR
T790M “gatekeeper” mutation (19). The prevalence of MET
amplification is low (∼3 %) in patients with untreated
NSCLC, but increases to 5–22% in patients who develop
acquired resistance to EGFR TKI therapy (17, 19, 20).
The emergence of MET amplification under the selective
pressure of anti-EGFR therapy supports the notion that MET
amplification is a driver of acquired treatment resistance
(21).

In patients with metastatic CRC, MET amplification is
associated with resistance to anti-EGFR antibodies, including
cetuximab and panitumumab. In mice engrafted with MET
amplified CRC tumors, treatment with cetuximab is ineffective,
suggesting that MET amplification may be responsible for
intrinsic resistance to anti-EGFR antibodies (22). Functional
crosstalk between c-MET and EGFR provides compensatory
signal transduction leading to constitutive activation of
downstream MAPK and PI3K pathways, thereby circumventing
upstream EGFR blockade (23). MET amplification is found
in less than 3% of patients with metastatic CRC who have
not been exposed to anti-EGFR antibodies. Given the fitness
advantage of MET amplification under the selective pressure
of anti-EGFR therapies, MET amplification is much more
common after exposure to anti-EGFR antibodies. Bardelli
et al. (22) found that MET amplification emerged in post-
treatment tumor biopsies of 3 out of 7 patients with metastatic
CRC who developed acquired resistance to cetuximab or
panitumumab (22). In a separate cohort of 22 patients with
RAS and BRAF wild-type, HER2/MET negative metastatic
CRC who developed resistance to anti-EGFR therapy, in situ
hybridization (ISH) of the tumor tissue biopsies identified MET
amplification as one of the most common genomic alterations
(24).

Molecular profiling of blood-based circulating cell-free DNA
(cfDNA) also supports MET amplification as a driver of
EGFR antibody resistance. In a study by Siravegna et al. MET
amplification was detected in 3 out of 16 patients who developed
acquired resistance to anti-EGFR therapy (25). In another cohort
of 53 patients with metastatic CRC, MET amplification was
detected in in 22.6% (12/53) of patients with RAS wild-type
tumors after exposure to anti-EGFR antibody therapy, but not
found at an elevated frequency in anti-EGFR antibody-naïve
patients (26). In addition, MET amplification was uncommon
in RAS mutated patients (26). These findings have two major
implications. First, it supports the utility of MET amplification
as a biomarker of treatment resistance in patients with RAS

wild-type EGFR antibody refractory metastatic CRC. Second, it
demonstrates thatMET amplification can be detected in cfDNA,
thus supporting the clinical validity of cfDNA profiling to select
patients for MET-targeted therapy.

The efficacy of MET inhibition in anti-EGFR antibody
refractory metastatic CRC has been demonstrated in many
preclinical studies. For example, in MET amplified patient-
derived colorectal cancer xenograft models, MET tyrosine kinase
inhibitors (TKIs) reversed resistance to EGFR blockade (22).
Synergistic inhibitory effects between MET TKI and EGFR
blockade was shown in a CRC xenograft mouse model expressing
human HGF, where more pronounced tumor regression with
concomitant MET TKI and cetuximab was observed in vivo in
comparison to MET inhibition or cetuximab alone (27).

Cabozantinib is an orally bioavailable TKI that targets c-MET
and VEGFR2, as well as RET, ROS1, AXL, KIT, and TIE-2.
Cabozantinib is approved by the United States Food and Drug
Administration (FDA) for use as monotherapy for metastatic
medullary thyroid cancer1 and advanced renal cell carcinoma2.
Panitumumab is an anti-EGFR monoclonal antibody FDA-
approved for use in patients with KRAS and NRAS wild-type
metastatic CRC3. Here we present a case report of a dramatic
response to cabozantinib and panitumumab in a patient with
MET amplified, EGFR antibody refractory metastatic CRC.

CASE REPORT

A 57-year-old male was initially diagnosed with locally
advanced rectal cancer (T3N1M0) and treated with neoadjuvant
chemoradiation followed by surgical resection (Figure 1). He
subsequently received adjuvantmodified (m) FOLFOX6 followed
by colostomy reversal.

Two years later, CT imaging demonstrated new
retroperitoneal lymphadenopathy suspicious for metastatic
disease, and retroperitoneal lymph node (LN) biopsy revealed
metastatic adenocarcinoma consistent with CRC primary. He
received first-line treatment with FOLFIRI plus bevacizumab, but
eventually experienced disease progression. He then progressed
on a clinical trial combining capecitabine with an investigational
therapy, followed by progression on regorafenib.

As his tumor was KRAS and NRAS wild-type, he was
then treated with anti-EGFR antibody therapy (panitumumab).
After 7 months of disease control, imaging revealed a new
hypermetabolic LN at the right common iliac chain, and
irinotecan was added to panitumumab. This treatment was
eventually discontinued due to disease progression. A new
biopsy of a mediastinal LN was performed and next generation
sequencing (NGS) revealed that the tumor was still KRAS,
NRAS, and BRAF wild-type, and there was no evidence of
MET amplification (see Table 1). After progression on another
phase I clinical trial with an investigational therapy, he was
then enrolled in a phase Ib clinical trial combining cabozantinib
and panitumumab (NCT02008383). At the time that he started

1COMETRIQ (cabozantinib) full prescribing information, revised 1/2018.
2CABOMETYX (cabozantinib) full prescribing information, revised: 12/2017.
3VECTIBIX (panitumumab) full prescribing information, revised 6/2017.
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FIGURE 1 | Treatment course (Bev, bevacizumab; Iri, irinotecan; PMAb, panitumumab; LN, lymph node; Tissue NGS, tissue next generation sequencing;

Guardant360, cell free DNA profiling; Cabo, cabozantinib).

TABLE 1 | Tissue-based next-generation sequencing (NGS) and blood-based

cfDNA NGS.

Gene LN biopsy (NGS) (2/27/2014) Blood cfDNA (5/28/2014)

APC Y935fs*1 Y935N†

BRAF Not detected G466E†

EGFR G465R - subclonal G465R†, G465E†, S464L†

Amplified (pCN 2.2)

FAM123B G348fs*29 Not tested

FGFR1 Amplified Not tested

KRAS Not detected G13D†, G12S†, Q61H†

MET Not detected Amplified (pCN 2.3)

NF1 Rearrangement int30 Not tested

TP53 R213* R213*

†Minor alterations: Defined as alterations with relative variant allele frequency (rVAF) less

than 10% of the alteration with the highest VAF. In this case TP53 R213* is the alteration

with the highest VAF.

treatment, he was increasingly symptomatic due to extensive
pulmonary metastases, with worsening cough and shortness of
breath. After ∼6 weeks of treatment, CT demonstrated dramatic
improvement in his pulmonary tumor burden (see Figure 2),
as well as resolution of dyspnea and cough. As part of the
trial protocol, plasma-EDTA was collected before the start of
treatment to explore potential drivers of treatment response
and/or resistance. CfDNA profiling utilizing a 54-gene targeted
NGS panel (Guardant 360TM) was performed on this sample.
Blood-based profiling revealed subclonal EGFR, KRAS and BRAF
resistance mutations. Additionally, EGFR amplification andMET
amplification were observed in cfDNA, but not in tissue obtained
3months prior (Table 1). Unfortunately his treatment course was
complicated by anastomotic dehiscence and leak with abscess

evolution. Because the dehiscence was apparently related to
marked treatment response and tumor involution, treatment
was discontinued. CfDNA profiling performed after 28 days
of treatment revealed loss of MET and EGFR amplification
(Figure 3A), while the mutant allele frequency (MAF) of KRAS
G13D increased from 0.3 to 0.6%. There was also a nearly
10-fold decrease in the MAF of TP53 R213∗ post treatment,
likely correlating with the dramatic reduction of tumor burden
(Figure 3B).

After 2 months off therapy, his CEA increased and his
dyspnea and cough returned. Capecitabine was initiated and
panitumumab was added 2 months later for additional control.
He experienced brief stabilization of disease on capecitabine and
panitumumab, with subjective improvement of his pulmonary
symptoms. He then experienced disease progression and was
transitioned to hospice. He died∼10 months after discontinuing
cabozantinib and panitumumab.

DISCUSSION

Despite advances in the treatment of CRC, it remains the
second leading cause of cancer-related death in the United States
(28). Patients with RAS wild-type metastatic CRC are eligible
for treatment with the anti-EGFR antibodies panitumumab or
cetuximab (29, 30). The clinical benefit of anti-EGFR antibodies
is modest, with a single agent response rate of ∼20% and a
median progression free survival of 4 months (31). Even among
patients who experience benefit from EGFR antibodies, acquired
resistance is nearly universal (32, 33).

Multiple mechanisms of acquired resistance to anti-EGFR
therapy have been identified in metastatic CRC, including
BRAF mutations, acquired mutations in the EGFR extracellular
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FIGURE 2 | Chest CT image (A) before the start of cabozantinib plus panitumumab and (B) after 42 days of cabozantinib plus panitumumab.

FIGURE 3 | Pre and Post treatment cfDNA profile of (A) mutant allele frequency (MAF) and (B) copy number variation (CNV).

domain (34, 35), KRAS and NRAS mutations (36, 37), and
MET amplification (22) and these mutations often co-occur
(38). Of these, MET amplification is potentially treatable
with tyrosine kinase inhibitors and antibodies in development.
Previous preclinical studies have demonstrated the potential
activity ofMET inhibitors in treating cetuximab or panitumumab
refractory metastatic CRC. For example, treatment with a
selective MET TKI successfully restored sensitivity to cetuximab
in two cetuximab-resistant human colon cancer cell lines in vitro.
The two cell lines displayed MET signaling pathway activation
butMET amplification was not examined (39). Using a CRC cell-
line harboring MET amplification in a murine xenograft model
derived from a patient who developed acquired resistance to anti-
EGFR therapy, tumor growth in vivo was effectively inhibited by
crizotinib, a MET/ALK inhibitor (22).

To date, several MET TKIs have been developed with
variable kinase selectivity against c-MET. Many of these are
under different stages of clinical evaluation, either alone or
in combination with other targeted therapy in patients with
advanced solid tumors (40, 41). The MErCuRIC phase I/II
clinical trial aims to assess the safety and efficacy of the
combination of crizotinib and a MEK1/2 inhibitor, binemetinib,

in patients with MET over-expressing, RAS-mutant or RAS
wild-type metastatic CRC (42). Subgroup analysis from this
study suggested potential benefit in patients with high c-MET
expression (43).

Although the mechanisms of treatment response in this
case are not fully known, the response to cabozantinib
and panitumumab may be explained by the restoration of
sensitivity to panitumumab or potentially synergy from dual
MET and EGFR inhibition. Of note, other objective responses
to small molecule MET inhibitors have been reported in
patients with metastatic NSCLC and gastric cancer who had
MET amplification detected by cfDNA profiling (44, 45).
Alternatively, the anti-angiogenic properties of cabozantinib may
have contributed to the overall response. To better understand
whether treatment with cabozantinib alone drives response for
patients with MET amplified metastatic CRC, this trial has been
expanded to treat patients with MET amplified metastatic CRC
with cabozantinib monotherapy.

MET amplification is not routinely tested in clinical
practice due to its low prevalence and unproven actionability.
Additionally, access to treatment-refractory tumor tissue and
molecular heterogeneity complicates testing efforts (24, 46).
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Given these limitations, cfDNA profiling may be the optimal
approach for detection of MET amplification in the treatment
refractory setting (47). In our patient, MET amplification was
not detected in a tissue biopsy sample but was detected in
plasma cfDNA ∼3 months later (Table 1). One explanation
for the discrepancy between tissue and blood profiling results
is that MET amplification represented a subclonal alteration
that was not consistently present throughout the same lesion
(intratumoral heterogeneity) or between different lesions
throughout the body (intertumoral heterogeneity), as described
previously (48, 49). This possibility is supported by the notion
that mutations known to mediate acquired anti-EGFR resistance,
e.g., KRAS and BRAF mutations, were seen in blood, but not the
LN biopsy, suggesting temporal evolution from a common clonal
origin. Alternatively, tumor cells harboring MET amplification
may not have been present at a sufficiently high allele frequency
to be detected by the tissue-based NGS assay.

This is the first case, to our knowledge, showing the activity
of cabozantinib in combination with panitumumab in a patient
with metastatic CRC.MET amplification, which is an established
driver of EGFR antibody resistance, may have played a critical
role in sensitizing this refractory tumor to the combination of
an anti-MET TKI and anti-EGFR therapy. To further understand
the drivers of sensitivity and resistance, studies are ongoing to
evaluate the activity of cabozantinib treatment, either alone or
in combination with panitumumab, inMET amplified metastatic
CRC.

CONCLUSIONS

MET amplification is an important driver of EGFR antibody
resistance. Anti-MET therapy is active in patients with MET

amplified tumors, and may be a clinically actionable target
in patients with MET amplified metastatic CRC. Clinical
investigations are underway to determine how best to target
MET amplified metastatic CRC, and to determine whether
targetingMET amplification has meaningful anti-tumor activity.
Furthermore, cfDNA profiling is a promising diagnostic
technology to detect genomic alterations in the treatment
refractory setting. Prospective clinical trials utilizing cfDNA to
identify and treatMET amplified metastatic CRC are ongoing.
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kin for the publication of this case report.
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