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Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm
is called cytoplasmic polyadenylation. It was first discovered in oocytes and
embryos, where it has roles in meiosis and development. In recent years, however,
has been implicated in many other processes, including synaptic plasticity and
mitosis. This review aims to introduce cytoplasmic polyadenylation with an
emphasis on the factors and elements mediating this process for different mRNAs
and in different animal species. We will discuss the RNA sequence elements
mediating cytoplasmic polyadenylation in the 3′ untranslated regions of mRNAs,
including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role
of general polyadenylation factors, we discuss the specific RNA binding protein
families associated with cytoplasmic polyadenylation elements, including CPEB
(CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2),
zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins
(PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes
in cytoplasmic polyadenylation will be highlighted. To facilitate understanding
for those working in different organisms and fields, particularly those who are
analyzing high throughput data, HUGO gene nomenclature for the human
orthologs is used throughout. Where human orthologs have not been clearly
identified, reference is made to protein families identified in man. © 2013 John Wiley
& Sons, Ltd.
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THE POLY(A) TAIL, INITIAL
SYNTHESIS, AND FUNCTION

We shall start with a brief overview of nuclear
polyadenylation so that we can provide context

for discussing cytoplasmic polyadenylation. For more
detail, the reader is referred to other reviews that
discuss nuclear polyadenylation specifically.1–6 The
nuclear polyadenylation of eukaryotic messenger
RNAs was discovered in the 1970s and soon
was shown to be a nearly universal characteristic
of this RNA species.1 In the following decades,
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polyadenylation was shown to follow cleavage of
the newly transcribed messenger RNA (mRNA) and
to be tightly coupled to transcription and to splicing
of the 3′ intron.1–3 Cleavage of the nascent mRNA is
now known to be required for normal transcription
termination as well as for polyadenylation.4

The target selectivity of cleavage and polyadeny-
lation in mammals is mediated by four sequence
elements flanking the cleavage site, as depicted in
Figure 1.5–8 Subunit 1 of the cleavage and polyadeny-
lation specificity complex, CPSF1 (CPSF160), binds
the well-known poly(A) signal (AAUAAA or AUU
AAA), normally located 15–30 nucleotides up-
stream of the cleavage site. The CPSF complex also
contains CPSF3 (CPSF73) the endonuclease responsi-
ble for cleavage,9 and FIP1L, the factor that recruits
the poly(A) polymerase together with CPSF1.10,11 The
cleavage stimulating factor (CSTF) complex binds to
a GU or U rich sequence downstream of the cleav-
age site called the downstream element (DSE). The
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FIGURE 1 | The nuclear cleavage and polyadenylation complex in
vertebrates. The Cleavage and Polyadenylation Specificity Factor (CPSF)
protein complex binds to the poly(A) signal PAS, it contains CPSF1-4
and the associated factors FIP1L and Symplekin (SYMPK).The CPSF3
subunit is the endonuclease acting at the cleavage site. The Cleavage
Factor 1 complex (CFIm) recognizes the upstream element (USE), it is
composed of NUDT21, CPSF6, and CPSF7. The CSTF complex recognizes
the GU- or U-rich downstream element (DSE). CPSF, CSTF, SYMPK, and
CFIm interact at the protein level, stabilizing the RNA binding, thus
promoting correct cleavage and polyadenylation site recognition and
recruitment of the poly(A) polymerase (PAPOLA or PAPOLG). The
nuclear poly(A) binding protein (PABPN1) interacts with CFIm and
PAPOLA and contributes to the efficiency of polyadenylation.17–19

Double arrows indicate interactions. The cleavage site is indicated by a
bold single headed arrow. Some of these interactions have been inferred
from work in yeast. For further details, see two recent reviews.5,8

association of the CSTF and CPSF complexes with
the RNA is thought to be the most important for
the selection of the cleavage site, and the two com-
plexes are connected by the 3′ processing scaffold
protein Symplekin (SYMPK).12,13 The Cleavage Fac-
tor I (CFIm) is a complex of NUDT21 (CFIm25,
CPSF5) and CPSF6 (CFIm68), or CPSF7 (CFIm59).
NUDT21 binds upstream of the poly(A) signal to the
upstream element (USE), which contains U(G/A)UA
sequences that enhance recognition of the cleavage
site.5,14 A fourth sequence element contributing to
cleavage site recognition is a G rich sequence down-
stream of the DSE, for which the binding factor
has not yet been determined.5 If the poly(A) signal
diverges from AAUAAA or AUUAAA, the sequence
of the other three sequences become more important
for correct cleavage. Alternative poly(A) site selec-
tion has recently been shown to be regulated for many
mRNAs and is likely to play an important role in post-
transcriptional gene regulation by generating mRNAs
with different 3′ untranslated regions (UTRs).15,16

After cleavage, the poly(A) tail is added by a
nuclear poly(A) polymerase. The canonical enzyme
that is thought to mediate this in most cells and for
most mRNAs is poly(A) polymerase α (PAPOLA),
which was originally isolated from calf thymus.20 It is
required for both the polyadenylation and the cleavage

reaction. However, another canonical mammalian
poly(A) polymerase γ (PAPOLG) has been found
in the nuclei of many tumor cells and cell lines21

and was the only poly(A) polymerase detected in a
proteomic study of polyadenylation complexes.22 In
addition, the noncanonical poly(A) polymerase TUT1
(Star-PAP, PAPD2) has been shown to mediate the
nuclear polyadenylation of specific mRNAs.23–28

During cleavage and polyadenylation, a number
of proteins are deposited on the mRNA which
appear to limit the poly(A) tail size to 200–250
nt and play a role in mRNA export. These include
nucleophosmin (NPM1), the nuclear poly(A) binding
proteins PABPN1 and NAB2, as well as export
factors.29–32 The removal of the cleavage and poly-
adenylation complex from the mRNA is also part of
the export process.33

In the cytoplasm, the poly(A) tail enhances
translational efficiency and protects the mRNA from
degradation.34,35 These functions are mediated by the
cytoplasmic poly(A) binding proteins (PABPs), the
most well characterized of which is PABPC1 (PABP1
or PAB1). Cytoplasmic PABPs first bind to the poly(A)
tail in the nucleus and are exported with the newly
made mRNA, where additional PABP molecules may
bind.36–38 During translation, PABPs mediate the
formation of the ‘closed loop complex’ (Figure 2) in
which interactions between PABP and eIF4G, a sub-
unit of the cap binding translation initiation complex,
connect the ends of the mRNA. The cap binding com-
plex recruits the ribosome through interactions with
eIF3 and contains the eIF4A helicase, which unwinds
the 5′ untranslated region of the mRNA. In addition,
PABP can recruit further eIF4A and eIF3 through
its interaction with PAIP1.39–41 In plants, a further
PABPC1 interaction with the eIF4A binding factor
eIF4B has been established42,43 and a similar complex
may also exist in human cells.44 Thus, the poly(A) tail
stimulates translation by remodeling of the mRNP
(through eIF4A) and loading of ribosomes (through
eIF3), all mediated by interactions with PABPCs.

The poly(A) tail also protects the mRNA from
degradation, a process in which PABPs play a complex
role, by both preventing and stimulating removal
of the poly(A) tail, depending on the presence of
different deadenylation complexes.34 Most mRNA
degradation in eukaryotes is thought to occur by
the deadenylation-dependent decapping pathway, in
which the poly(A) tail must be shortened to 10–15 nt
before the mRNA is decapped and degraded by
exonucleases.45–47 The sequences regulating mRNA
stability are usually found in the 3′ UTR of the mRNA,
although elements in the 5′ UTR and the coding region
can also participate. Deadenylation, the removal of the
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FIGURE 2 | The closed loop complex enhances translation by
increasing eIF4A and eIF3 recruitment. Cytoplasmic poly(A) binding
proteins (e.g., PABPC1 or PABPC1L) stabilize the cap binding translation
initiation complex consisting of eIF4E (4E), eIF4G, and eIF4A (4A),
forming the closed loop complex. In addition, PABPC proteins can bind
poly(A) binding protein interacting protein 1 (PAIP1), which, like eIF4G
can bind eIF4A and the ribosome recruiting complex eIF3. This leads to
enhanced translation mediated by the poly(A) tail. For references,
see text.

poly(A) tail by specific 3′ exonucleases, is a frequently
regulated step in the determination of mRNA stability.
Destabilizing 3′ UTR elements include AU and
GU rich destabilizing elements that recruit proteins
binding to deadenylating enzymes.45,48,49 However,
mRNAs with short poly(A) tails are not rare in tissue
culture cells50 and many 3′ UTRs can bind ELAVL1
(HuR) through U rich elements, which prevents the
degradation of mRNAs with short tails.51–53 The
poly(A) tail of an mRNA is therefore involved in its
function throughout its lifetime, functioning in mRNA
export, translation, and stability, and is the target of
extensive regulation.

THE ROLE OF CYTOPLASMIC
POLYADENYLATION IN THE
REGULATION OF GENE EXPRESSION

Cytoplasmic polyadenylation is the elongation of
the poly(A) tail of an mRNA after it has been
exported into the cytoplasm. Typically, this process
increases protein expression from specific mRNAs
by the translational activation of stored mRNAs
with short poly(A) tails.54,55 In general mRNAs are
thought to be synthesized with long poly(A) tails and
the default state is for an mRNA to be translated
upon exit from the nucleus. Therefore, regulation by
cytoplasmic polyadenylation requires that the mRNA
recruits factors that deadenylate and translationally
repress the newly exported mRNA, as well as respond
to a specific signal to induce expression by cytoplasmic
polyadenylation

So far, the defined repressive elements are all
in the 3′ untranslated regions of the mRNA and the
same elements that convey activation by cytoplasmic

polyadenylation sometimes can also mediate trans-
lational repression and mRNA deadenylation.56,57 In
addition, these mRNAs often contain separate regions
that recruit other deadenylation and translational
repression factors.58–64 Especially widespread in early
development are mRNAs with GU-rich elements,
which bind the CELF family of deadenylation factors
and mediate deadenylation in the Xenopus embryo,
counteracting cytoplasmic polyadenylation activated
in the oocyte.49,65–68 Although a shorter poly(A)
tail generally reduces translational efficiency, the
lack of a poly(A) tail alone is not sufficient for
efficient inhibition of translation, as many trans-
lational repressors can reduce the expression from
nonadenylated mRNAs significantly in cells.56,69

Consequently, in addition to recruiting deadenylating
enzymes, mRNAs that are regulated by cytoplasmic
polyadenylation also rely on other mechanisms to
reduce translation efficiency, predominantly through
preventing the association of the cap-binding trans-
lation initiation complex,55,64,70 although repression
by interference with the elongation phase of protein
synthesis has also been implicated recently.71 In
addition, several deadenylation factors are able to
repress translation directly, independently of their
deadenylation activity.70,72 In microRNA-mediated
translational repression, deadenylation is known to
be secondary to efficient translational repression.73–77

It is not known if deadenylation follows or precedes
translational repression in mRNAs repressed by other
deadenylation factors.

The activation of translation by cytoplasmic
polyadenylation is presumably mediated by the
increased recruitment of poly(A) binding proteins to
the elongated poly(A) tail and enhanced formation of
the closed loop complex.34,35 However, a few studies
indicate that active cytoplasmic polyadenylation
or other remodeling of the mRNP is required for
translational activation in addition to the presence
of a poly(A) tail,78–80 as was reviewed previously
in more detail.70 In theory, cytoplasmic polyadeny-
lation should also be able to stabilize mRNAs
that are dependent on deadenylation for their
degradation.45–47 Interestingly, two such potential
cases have been reported. In zebrafish embryos, the
binding of a protein that appears to mediate cytoplas-
mic polyadenylation counteracts the destabilization
of germline mRNAs by a microRNA.81 In addition,
in the nematode Caenorhabditis elegans, mutation of
the cytoplasmic polyadenylation machinery leads to
a reduction in the levels of its target mRNAs.82

Regulation of translation by cytoplasmic poly-
adenylation allows nuclear export of mRNAs to be
separated from the synthesis of the encoded proteins
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in time and space. Many of these mRNAs are
indeed localized to specific positions in the cell, for
instance Bicoid mRNA in early Drosophila embryos,
CAMK2A mRNA in the dendrites of neurons and
mRNAs encoding cell cycle regulators on the spindle
of mitotic or meiotic cells.83–86 In several cases,
the sequence elements and RNA binding proteins
that mediate the control of poly(A) tail size also
contribute to the intracellular localization of mRNAs.
Cytoplasmic polyadenylation itself is therefore only
one function of a family of RNP complexes that can
also mediate translational repression, deadenylation,
and mRNA localization.54,55,70,87 In the rest of
this review we focus on the components of these
complexes that determine which mRNAs are targeted
by cytoplasmic polyadenylation, the cytoplasmic
polyadenylation specificity factors (CyPSFs).

CYTOPLASMIC POLYADENYLATION
OF mRNAS IN GERM CELLS AND
EMBRYOS

Cytoplasmic polyadenylation was first described in the
1970s in sea urchin embryos.88 Since then it has been
observed in the oocytes and early embryos of many
animal species including bivalves (Spisula), insects
(Drosophila), amphibians (e.g., Xenopus), fish (e.g.,
zebrafish), and mammalians (e.g., mouse).86,89–94 In
these developmental stages transcription is absent and
posttranscriptional regulation is therefore particularly
important and more readily detectable. The factors
mediating cytoplasmic polyadenylation of mRNAs
have predominantly been characterized in Xenopus
oocytes and early embryos.94–98 The large size of
Xenopus oocytes and embryos enables injection of
radioactive RNA substrates, making it relatively
easy to demonstrate that cytoplasmic polyadenylation
occurs and to map the elements. Most of the mRNAs
targeted by cytoplasmic polyadenylation in oocytes
and early embryos are directly involved in meiosis
and/or mitosis.99–102 In all cases in which this was
examined, cytoplasmic polyadenylation in Xenopus
requires the poly(A) signal that is also used for
nuclear polyadenylation.59,103–106 In addition, specific
sequence elements in the 3′ untranslated region are
required. Five different sequence elements mediating
cytoplasmic polyadenylation have been characterized
in this system. Only one of these elements and its
associated factors, the cytoplasmic polyadenylation
element (CPE), has so far been studied in detail.
Table 1 gives a summary of the evidence for the
mRNA elements and specificity factors that may
mediate cytoplasmic polyadenylation, as discussed
further below.

The Cytoplasmic Poly(A) Polymerases
in Oocytes and Embryos
Cytoplasmic polyadenylation must be mediated by
poly(A) polymerases that are presumably recruited
to specific mRNAs by CyPSFs and activated at the
appropriate time. The best characterized cytoplasmic
poly(A) polymerase, PAPD4 (Gld-2) was first dis-
covered in C. elegans and its enzymatic activity was
confirmed in mammalian orthologs.91,138 This enzyme
is now thought to be the main polymerase associated
with the CyPSF cytoplasmic polyadenylation element
binding protein (CPEB) in full grown Xenopus
oocytes,95 while in Drosophila oogenesis the CPEB
homolog Orb first mediates cytoplasmic polyadeny-
lation with the classical nuclear poly(A) polymerase
(PAPOLA) before switching to a PAPD4 ortholog.139

In vitro studies indicated that Xenopus CPEB can
also recruit PAPOLA to mediate polyadenylation and
a cytoplasmic variant has been characterized, so it is
possible that this poly(A) polymerase plays a role in
cytoplasmic polyadenylation in vertebrate oocytes as
well.140,141 However, a different study has reported
that such truncated PAPOLA variants lack polyadeny-
lation activity in vitro, so more evidence for a cyto-
plasmic role for this enzyme in oocytes is required.142

Although early studies indicated that PAPD4 is also
the poly(A) polymerase involved in CPE mediated
polyadenylation in mouse oocytes,143 knockout mice
do not have changes in cytoplasmic polyadenylation
in their oocytes.144 However, an ortholog of a third
conserved poly(A) polymerase, PAPD5 (Gld-4) can
compensate for PAPD4 (Gld-2) loss in oogenesis
in C. elegans, and this protein can mediate CPEB1
dependent cytoplasmic polyadenylation in human
fibroblasts, so perhaps such a compensation functions
in mouse oocytes as well.123,145 A testis specific
cytoplasmic poly(A) polymerase with high homology
to PAPOLA, PAPOLB (TPAP), is required for sperm
development in mouse, but it is unknown which
CyPSF this enzyme is partnered with.146–150 This
data therefore indicate that four poly(A) polymerases
could participate in cytoplasmic polyadenylation
in germ cell development in animals, and further
research is required to determine which polymerases
are involved in cytoplasmic polyadenylation in each
stage of vertebrate oogenesis and development.

The CPE and Its Binding Proteins
The CPE is a sequence that was originally char-
acterized as conferring cytoplasmic polyadenylation
during Xenopus oocyte maturation.107 Its first spe-
cific binding factor, now called CPEB1, was isolated
from oocyte extract and shown to convey cytoplasmic
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TABLE 1 Summary of Potential Specificity Factors for Cytoplasmic Polyadenylation with Human Orthologs. For Further Details, See Text.

Factor Synonyms/Orthologs Binding Site Evidence for Cytoplasmic Polyadenylation

CPEB1 CPEB, Orb CPE
Strong: UUUUAU,

UUUUAAU;
Weak:

UUUUACU,UUUUAAGU,
UUUCAU99

CPE confirmed by polyadenylation in the absence of
transcription and cytoplasmic injection of RNA in
Xenopus and mouse oocytes, e.g.107–110 CPEB1
function shown by depletion from extracts and
dominant mutants in Xenopus.96,111Good correlation
in mammalian neurons and mitotic cells.112,110

CPEB4 Orb2 CPE
Similar to CPEB1.100,112 Or

higher affinity for U rich
sequence with secondary
structure.113

Injection into Xenopus oocytes late in maturation for
CPE and knockdown for CPEB4. Correlation between
element and protein function in mitotic cells100,112

MSI1 Musashi MBE
(G/A) U1-3 AGU114

Injection of RNA for the MBE and depletion as well as
dominant negative mutants in Xenopus
oocytes.103,115–117

ZAR2 Zygote Arrest 2 TCS
(A/U)UU(A/G)UCU59

Injection of RNA demonstrated existence of TCS
mediated polyadenylation in Xenopus oocytes.58,59,63

ZAR2 binds to the element but no other evidence for
a function of this protein.63

PCBP2 αCP2, hnRNP-E2 C-CPE
C-rich, e.g. CCCUC

CCUCCUCCCC105

Injection of RNA into Xenopus embryos proved
existence of the element and PCBP2 binds to this
element, as well as to polyadenylation factors105

ELAVL1 HuR eCPE
U rich, U12

79,106,118
eCPE function shown by RNA injection and by

polyadenylation of endogenous mRNA in the absence
of transcription in Xenopus embryos.79,106,118 ELAVL1
binds this element.119

PUM2 Pumilio, FBF1, FBF2 PBE
UGUAU(A/U)UAU 120

In Xenopus, PUM2-CPEB1 interactions contribute to CPE
mediated cytoplasmic polyadenylation in
oocytes.99,121 In C. elegans, upregulates translation
in association with PAPD4122

BICC1 Bicaudal C, GLD-3 Unknown Interacts physically and functionally with PAPD4 and
PAPD5 to activate target mRNAs in C. elegans.123,124

DAZL Deleted in
Azoospermia-like

GUU triplet125 No cytoplasmic polyadenylation observed in Xenopus
oocytes, despite clear role in translational
activation.126,127 In zebrafish embryos, DAZL binding
negates microRNA mediated mRNA destabilization,
and increases poly(A) tail size.81 Interacts with
Pumilio.128

RBFOX2 RBM9, FOX-2 UGCAUG and others
characterized in splicing
substrates129,130

Binds to PAPD4 in the cytoplasm of Xenopus oocytes.131

No evidence that binding site confers cytoplasmic
polyadenylation.

FMRP Fragile X Mental
Retardation
Protein

Large number of widely
different elements
proposed e.g.132–135

Found to interact and co-localize with PAPD4 in
Drosophila extracts and neurons.136 Functional
evidence supports a role in translational repression
rather than activation in oocytes.137

polyadenylation.96 The four CPEB proteins conserved
in vertebrates contain two RNA recognition motifs
(RRMs), followed by a zinc finger domain located
in the C terminus of the proteins.151,152 For CPEB1,
all three of these domains are required for RNA
binding.153

CPEB1 and CPEB4 are required for normal
Xenopus oocyte maturation and CPEB1 has been

implicated in regulating the cell cycle in early
embryos.85,100,154,155 CPEB1 knockout mice also
have defects in oocyte and sperm development.156

In addition, CPEB homologs in Drosophila and Cae-
norhabditis have been shown to mediate translational
activation and play a role in germ cell development
and early embryogenesis, indicating that these func-
tions are evolutionary conserved.139,156–161 Figure 3
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FIGURE 3 | Cytoplasmic polyadenylation during Xenopus oocyte maturation. The cytoplasmic polyadenylation element (CPE) recruits its binding
protein CPEB1.96 This binding can be stabilized, especially on noncanonical CPEs, by the recruitment of Pumilio (PUM2) to the Pumilio binding
element (PBE) and protein–protein interactions between CPEB1 and PUM2.99,121 CPEB1 in turn interacts with the cytoplasmic CPSF complex,
consisting of CPSF1,2 and 4 and the associated factor SYMPK (the endonuclease CPSF3 is absent and FIP1L has not been tested).162 CPSF1 recognizes
the poly(A) signal (PAS). Before oocyte maturation translation is Repressed: CPEB1 and PUM2 mediate mRNA deadenylation and translational
repression by recruiting deadenylases (CPEB1 recruits PARN,163 PUM2 can bind the CNOT complex164) and disrupting closed loop complex formation
(PUM2 by direct cap interaction,64 CPEB1 by recruiting a choice of eIF4E binding or cap binding proteins70). In addition, CPEB1 binds the embryonic
poly(A) binding protein PABPCL1.165 The poly(A) polymerase PAPD4 is secured in the complex by interactions with CPEB1 and CPSF, but its activity is
repressed and/or masked by active deadenylation. Upon the stimulation of meiotic maturation, translation is Activated: CPEB1 is phosphorylated
(yellow P).166 Deadenylases and translational repression complexes are ejected from the complex and/or inactivated,163,167 PAPD4 mediates
elongation of the poly(A) tail95 and PABPC1L dissociates from CPEB1 and transferred to the poly(A) tail, where it can stimulate the formation of the
closed loop complex and activate translation.168,169 More details and references can be found in the text.

summarizes the regulation of translation by CPEB1 as
elucidated in Xenopus oocytes and discussed in detail
below.

The CPE is a U-rich element containing a
stretch of at least four U residues with a canonical
CPE being UUUUAU or UUUUAAU, which binds
CPEB1.96,104,108 All the variants that were used
in a bioinformatic screen and correlate well with
cytoplasmic polyadenylation in Xenopus oocytes can
be found in Table 1.99 The RNA binding domains of
mouse CPEB3 and CPEB4 have been reported to select
a distinct structured recognition element containing a
U rich bulge.113 However, Xenopus CPEB4 appears
to target the same mRNAs as CPEB1 in oocytes and
mediates cytoplasmic polyadenylation of the same

mRNAs, although at a later stage of meiosis.100 Mam-
malian CPEB2 binds to sequences containing CPEs
and binding can be competed with poly(U), indicating
its binding site is also U-rich.170,171 So far, no struc-
tures of the RNA binding domains of CPEB family
proteins in complex with RNA have been published,
so the relationship between the structure of the protein
and the RNA elements it binds remains unclear.

In addition to the CPE, the poly(A) signal
that confers nuclear cleavage and polyadenylation
(AAUAAA or AUUAAA) is required for CPE-mediated
cytoplasmic polyadenylation in Xenopus oocytes.104

The protein complex recognizing the poly(A) signal
is thought to be a form of CPSF, with the 160 kDa
subunit (CPSF1) recognizing the RNA specifically. The
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100 and 30 kDa subunits of CPSF (CPSF2 and CPSF4)
are also present in the cytoplasm of Xenopus oocytes,
while the 73 kDa endonuclease subunit (CPSF3) is
absent.172 Because the poly(A) signal is present in
nearly all native mRNAs, mRNA specific regulation
must be mediated by binding sites for CyPSFs
such as the CPE, but the regulation of cytoplasmic
polyadenylation could in principle be influenced by
factors associated with the poly(A) signal.

Interaction Between the Complexes
Associated with the CPE and the Poly(A)
Signal
The spatial arrangement of CPEs in the 3′ untranslated
region (3′ UTR) of an mRNA is important for their
function.99 Two CPEs in close proximity (less than
50 nucleotides apart), mediate translational repres-
sion in immature oocytes regardless of their position
in the 3′ UTR. In order to mediate robust cytoplasmic
polyadenylation, a CPE normally has to be within 100
nucleotides of the poly(A) signal and ideally within 25
nucleotides. Cytoplasmic polyadenylation mediated
by weak CPEs benefits from the presence of a second
CPE in close proximity and/or the presence of the RNA
recognition element UGUANUAU.99 This represents
a binding site for the Pumilio (PUM2) RNA binding
protein, which has a conserved interactions with CPEB
proteins through protein–protein contacts and binds
in their proximity on many mRNAs.173,121,120 Pumilio
is thought to stabilize the binding of CPEB in this con-
text, although it is also a deadenylation factor, a trans-
lational repressor and a putative CyPSF in its own right
(discussed below).64,174,175,122,164 CPEB, in turn, asso-
ciates with the CPSF complex bound to the poly(A)
signal.172,166 CPEB also recruits the scaffold protein
SYMPK, which itself can interact with CPSF.95,176 The
cytoplasmic poly(A) polymerase PAPD4 is recruited
by this complex, although the direct interactions are
not yet clear. Cytoplasmic polyadenylation sequence
recognition in mRNAs therefore has a multipartite
character, with multiple elements recruiting proteins
which also interact at the protein level. This is rem-
iniscent of the determination of specificity in nuclear
polyadenylation as depicted in Figures 1 and 3.

Regulation of CPEB-Mediated Translational
Activation in Oocytes
Activation of CPEB1-mediated cytoplasmic poly-
adenylation in Xenopus oocytes is through phos-
phorylation in its N terminal domains.166,111 This
phosphorylation can be mediated by the Aurora
kinase A (AURKA) and this leads to increased bind-
ing of CPSF and expulsion of the deadenylase PARN

from the complex, shifting the balance to poly(A)
tail elongation.166,163 The activation of CPEB1 medi-
ated cytoplasmic polyadenylation by Aurora kinase
phosphorylation is conserved in mice.177,178 However,
several studies indicate that the earliest activation
of CPEB1 in the Xenopus oocyte is mediated by a
different kinase, with CDK1 activated by its non-
cyclin partner Speedy/Ringo (SPDY) being a strong
candidate.179–183 For a more extensive discussion
of the regulation of CPEB1 phosphorylation during
Xenopus oocyte maturation, we refer to a previ-
ous review.70 The N-termini of the CPEB proteins
are widely divergent,151,152 and the kinase activat-
ing other CPEB homologs is likely to be different. The
Drosophila CPEB homolog Orb was recently shown to
be activated through phosphorylation by casein kinase
2.184 In addition, the PAN GU kinase, which resem-
bles the NimA (Never in mitosis A, NEK) family of
kinases, regulates polyadenylation of cyclin A mRNA
during meiosis in Drosophila,185 and is therefore a
potential candidate for a regulator of cytoplasmic
polyadenylation.

In addition to regulation by phosphorylation,
the levels of CPEB proteins and their associated factors
can also be regulated during oogenesis by increased
synthesis or degradation. Increases are through trans-
lational activation, usually involving cytoplasmic
polyadenylation. mRNAs regulated in this manner
include CPEB4, Aurora kinase A (Eg2), and the
cytoplasmic poly(A) polymerase PAPD4 (Gld-2) in
Xenopus and Orb in Drosophila.100,186–189 CPEB1 is
degraded during the completion of meiosis I through
a mechanism involving phosporylation by a polo like
kinase (PLK1) and the cyclin dependent kinase CDK1
(cdc2) and ubiquitination by the E3 ligase BTRC
(SCFβ-TrCP).101,190,191 This degradation has been
proposed to be predominantly on nonRNA bound
CPEB1 which is sequestered in the form of a dimer.192

SYMPK-bound CPEB1 levels, presumably represent-
ing RNA bound CPEB1 in polyadenylation competent
complexes, remain unchanged during oogenesis.95

The timing of translational activation of mRNAs
during the oocyte maturation is critical for the
correct completion of meiosis. The Mos kinase is
an early player in this signal transduction cascade193

and its synthesis is regulated by early cytoplasmic
polyadenylation, while activation of cyclin B1 mRNA
plays a later role, even though both these mRNAs
contain CPEs and bind CPEB1.80,84,108,194,195 CPEs
that do not overlap with the poly(A) signal have
been reported to mediate earlier cytoplasmic poly-
adenylation. In contrast, the presence of a CPE
overlapping with the poly(A) signal correlates with
activation of cytoplasmic polyadenylation late in
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oocyte maturation, after the breakdown of the nuclear
envelope in meioisis I.99,195 The reduction in CPEB1
levels during late oocyte maturation is thought to
lead to the availability of the poly(A) signal in
these mRNAs. The addition of AU-rich elements that
bind deadenylation factors can also affect the timing
of cytoplasmic polyadenylation.196 CPEB1-mediated
polyadenylation is thought to be required for mouse
oocyte maturation as well, and CPEB1 knockout
mice fail to translate specific mRNAs very early in
oogenesis, long before the full grown oocyte stages
usually studied in Xenopus.177,197,109,198

Other CPEB-Associated Factors that
Influence Cytoplasmic Polyadenylation
A number of other proteins have been found
associated with CPEB1 and are implicated in cyto-
plasmic polyadenylation in Xenopus oocytes. The
poly(A) binding proteins PABPC1 (PAB) and
PABPC1L (ePAB) both can bind to CPEB1. Embry-
onic poly(A) binding protein (PABPC1L) is the
predominant poly(A) binding protein in vertebrate
oocytes and embryos199,200 and is required for
oogenesis in mice and oocyte maturation in Xeno-
pus.165,201 PABPC1L phosphorylation is required
for cytoplasmic polyadenylation in Xenopus oocytes
and the protein transfers from CPEB1 to the poly(A)
tail during cytoplasmic polyadenylation, protecting it
from deadenylation.165,168

In addition, CPEB1 is bound by the GTP ex-
change factor xGEF, a member of the family of Rho
guanine nucleotide exchange factors closely related
to human ARHGEF39 (C9orf100).202,203 Early in
oocyte maturation, xGEF recruits a kinase complex
consisting of MAP kinase(ERK2) and a complex of
CDK1 and its activator Speedy (SPDY, RINGO) to
CPEB1.179,180,204 SPDY is required for the induction
of cytoplasmic polyadenylation and is itself regulated
by translational control.205,126 xGEF and SPDY are
therefore likely to be involved in the activation of
CPEB1 mediated polyadenylation during early oocyte
maturation.

Other mRNA Specific Cytoplasmic
Polyadenylation in Vertebrate Oocytes
CPEB-mediated cytoplasmic polyadenylation is by
far the best studied case, but there is very good
evidence that it is not the only specificity factor that
can confer cytoplasmic polyadenylation to mRNAs.
Another well-established RNA binding protein that
mediates cytoplasmic polyadenylation is Musashi
(MSI1, MSI2).206 The MSI-binding element (MBE)
(formerly the polyadenylation response element,

PRE) was discovered when the role of the CPE was
being investigated in a larger section of the Mos 3′
UTR than had been used previously.107,115 This new
element conferred early cytoplasmic polyadenylation
to the Mos 3′ UTR in oocytes that was maximal prior
to meiosis I in the absence of CPEs and CPEB activity.
Indeed, the TATA-BP2 mRNA is polyadenylated
during oocyte maturation but does not have a recog-
nizable CPE, only an MBE.103 MSI1 was identified
as the trans-acting factor and like the MBE, shown to
activate translation during oocyte maturation.103,115

A dominant negative MSI1 mutant and knockdown
of MSI1 (and the partially compensating MSI2)
using antisense oligodeoxynucleotides, prevented
the polyadenylation of endogenous Mos mRNA
and blocked maturation.103,116 This indicates that
in addition to CPEB, MSI also plays an important
role in cytoplasmic polyadenylation during oocyte
maturation. Moreover, MSI1 is activated by phospho-
rylation that is dependent on Ringo/Speedy (SPDY)
synthesis, and this phosphorylation is co-incident
with Mos polyadenylation.116 Nonphosphorylat-
able MSI1 did not rescue oocyte maturation after
removal of endogenous MSI, further strengthening
the importance of MSI1 in oocyte maturation. The
role of MSI1 in germ cell development and meiotic
progression has also been described in Drosophila
and mouse.207 Like the CPE, the MBE requires a
poly(A) signal for cytoplasmic polyadenylation, but
so far no interactions between MSI proteins and the
polyadenylation machinery have been described.

The translation control sequence (TCS) is a third
cis-element that mediates cytoplasmic polyadeny-
lation during Xenopus oocyte maturation. The
TCS was discovered when the role of CPEs was
being investigated in the WEE1 3′ UTR.58,59 In the
absence of CPEs, in both reporter constructs and the
endogenous Pcm-1 mRNA, the TCS mediates early
cytoplasmic polyadenylation, at least two hours prior
to meiosis I. Like the CPE and the MBE, polyadeny-
lation by the TCS requires the poly(A) signal. The
TCS also confers translational repression in immature
oocytes and translational activation during oocyte
maturation. Recently, a trans-acting factor for the
TCS has been found. Zygote arrest 2 (ZAR2) binds
to the TCS and, like the TCS, represses translation
in immature oocytes when tethered to a reporter
RNA.63 This repression is relieved during oocyte
maturation. ZAR2 and its homolog ZAR1 have
been implicated in the early cleavage phase of mouse
embryogenesis,208,209 supporting a function for these
proteins in the regulation of early developmental
processes. The role of ZAR2 in the regulation of
polyadenylation has yet to be determined.
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The single RRM protein DAZL has been shown
to be critical for male and female germ cell differ-
entiation, oocyte maturation and the oocyte-zygotic
transition in several vertebrate species.102,210,211 In
most cases, DAZL acts by inducing translational
activation of its target mRNAs,210 but its binding
site, a GUU triplet,125 has not been reported to
convey cytoplasmic polyadenylation in Xenopus
oocytes.126,127 In zebrafish embryos, DAZL binding
regulates the stability of its target mRNAs, presumably
to restrict their expression to the future germ cells, as
this protein is normally germ cell specific.81,212–214

In one such study, DAZL was reported to overcome
miR-430 mediated destabilization by the 3′ UTR of its
own mRNA. This was accompanied by cytoplasmic
polyadenylation of the injected mRNA.81 In contrast,
in mouse oocytes, the translational activation and
cytoplasmic polyadenylation of the Dazl mRNA
was found to be mediated by CPEB1 and require
a poly(A) signal.102 In Xenopus oocytes DAZL
mediated translational activation appears not to
involve cytoplasmic polyadenylation, but it requires
an interaction between DAZL and poly(A) binding
proteins.126,127 This interaction is highly conserved
throughout the DAZL protein family and across
species and cross-rescue experiments indicate that
the mechanism of action is also conserved.210,127

However, DAZL can form a complex with the human
Pumilio protein PUM2, so some DAZL functions may
be mediated by Pumilo.128 More evidence is therefore
required before DAZL protein can be truly considered
a CyPSF. In addition, one publication indicates that
another single RRM protein, RBFOX2 (Rbm9, Fox2),
associates with PAPD4 in Xenopus oocytes and
therefore also is a candidate CyPSF in this cell type.131

Cytoplasmic Polyadenylation Mediated by
Other Elements in Xenopus Embryos
Two more CPEs have been identified by deletion
mapping of injected radiolabelled RNAs in Xenopus.
Both mediate polyadenylation in early embryogenesis
and not during oocyte maturation, which explains
why they are less studied: good quality embryos
are harder to obtain and inject than oocytes. First
discovered, at about the same time as the CPE,
was a stretch of 12 U residues that was called the
eCPE.106,215,94 Like the CPE, it requires a poly(A)
signal to function and the spacing between the
eCPE and the poly(A) signal regulates the timing
of polyadenylation.79,106,118 The eCPE can bind
ELAVL1 (ElrA, HuR), but whether this is the genuine
CyPSF is still uncertain.119,216

The second embryonic CPE in Xenopus was
found to be a stretch of cytidine residues and

called the C-CPE.105,217 Cytoplasmic polyadenylation
by the C-CPE also requires a poly(A) signal and
the element is bound by PCBP2 (αCP2, hnRNP-
E2), which is exclusively cytoplasmic in Xenopus
oocytes.218 PCBP2 immunoprecipitates with SYMPK,
CPSF2, PAPD4, CPEB1, and PABPL1, but not with
PARN, in embryos, and oocytes. This indicates that
it is indeed part of a cytoplasmic polyadenylation
complex that is pre-assembled in an inactive form
in the oocyte. As was predicted by the PCBP2
and CPEB1 association, the C-CPE and the CPE
cooperate to increase polyadenylation during early
embryogenesis.105

Other CPEs and Factors Found in
Invertebrates
PAPD4 was originally discovered as germ-line
deficient 2 (GLD-2) in C. elegans91 and a number
of PAPD4-interacting RNA binding proteins that
activate the translation of target mRNAs in dif-
ferent stages of germ line development have been
characterized.82,91,122,219 Although the activity of
PAPD4 as a poly(A) polymerase cannot be doubted,
it has been much more difficult in this system to prove
that cytoplasmic polyadenylation of specific mRNAs
actually occurs in the germ cells and to map the
sequences required for cytoplasmic polyadenylation
on these mRNAs. PAPD4 RNA binding partners in
C. elegans germ cell development include the Pumilio
homologs FBF-1 and FBF-2 (PUM1, PUM2),122 RNP-
8, a single RRM protein with no clear human
homologs,82 and GLD-3, a KH domain protein with
similarity to the Drosophila deadenylation factor
Bicaudal C (BICC1).220–223 In addition to PAPD4,
PAPD5 (GLD-4) has been identified as a cytoplasmic
poly(A) polymerase in C. elegans and has been shown
to promote germ line development with a complex
of BICC1 and GLS-1, a protein with no clear human
homologs.123,224 BICC1 is also implicated in male
fertility in mice, indicating a conserved function in the
germline.225

Drosophila Toll mRNA is regulated by cyto-
plasmic polyadenylation during early embryogenesis.
Experiments using an in vitro polyadenylation system
were used to map a 180 nucleotide region of the 3′
UTR that is required for this function.226 Competition
with this RNA fragment indicated that the polyadeny-
lation factors binding this region are distinct from
those found in CPE containing mRNAs . Remark-
ably, the canonical nuclear poly(A) signal appears
not to be required for the polyadenylation of Toll
mRNA, indicating it employs a fundamentally differ-
ent mechanism of cytoplasmic polyadenylation.55 The
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transacting factors mediating Toll mRNA cytoplasmic
polyadenylation have not yet been characterized. Also
in Drosophila, interactions of PAPD4 and CPEB (Orb)
with fragile X mental retardation protein (FMRP)
have been reported in neurons and oocytes, but its
function appears to be opposite to that of CPEB.136,137

CYTOPLASMIC POLYADENYLATION
OF mRNAS IN SOMATIC CELLS

Elongation of the poly(A) tail has long been known
to also take place in the cytoplasm of mammalian
tissue culture cells, accounting for approximately
10% of all polyadenylation.227 However, cytoplasmic
polyadenylation of specific mRNAs is much harder to
study in somatic cells, as the synthesis of new mRNA
also can contribute to changes in poly(A) tail size on
specific mRNAs. Elongation of the poly(A) tail in a
transcriptionally active cell can be due to reduced
deadenylation of the poly(A) tail of newly made
mRNAs as well as to cytoplasmic polyadenylation.
Moreover, if only a relatively small portion of mRNAs
in a cell undergoes poly(A) tail changes, for instance
those localized under a particular set of synapses, the
detection problem is further magnified. Determination
of mRNA poly(A) tail sizes in most systems is
dependent on techniques that are not very good at
detecting rare mRNAs, such as variations on Northern
blotting, or on PCR based methods that need to
be very carefully controlled to avoid artifacts for a
discussion see Ref 50. As a consequence, no new CPEs
or specificity factors have so far been firmly identified
in somatic cells. Some putative CyPSFs, such as DAZL
and ZAR2, are very germ cell specific and unlikely to
be of importance in somatic cells, with the possible
exception of some tumor cells.228–230 However, a
large body of work indicates that the CPEs and factors
that function in germ cells and early embryos also are
important in other cell types. It is not always clear,
however, if cytoplasmic polyadenylation does indeed
play a role in their function. Discussion of all cases
where CyPSFs or elements have been implicated in
mRNA regulation is outside the scope of this review.
We have therefore selected some of the examples of
regulation by CPEB, Pumilio, Musashi, PCBP and
Bicaudal protein families, as these are confirmed or
very likely CyPSFs in germ cells and early embryos.

CPEB Family Proteins and PAPD4 in the
Nervous System
In neuronal cells, the local regulation of translation in
the dendrites is thought to play a role in the remodeling
of synapses required for learning.83 CPEB1 protein

and polyadenylation factors are present in the cell
bodies and dendrites of many neurons and binds to
mRNAs that are known to be partially dendritically
localized. The CPEs in the 3′ UTRs of mRNAs such
as calmodulin kinase II (CAMK2A) were found to
be required for dendritic mRNA localization, as
well as for translational stimulation and elongation
of the poly(A) tail after synaptic stimulation.231–238

The activation of CPEB1 mediated cytoplasmic
polyadenylation and translation in dendrites has been
attributed to phosphorylation on the same site as
in oocyte maturation, and the kinase is thought
to be either AURKA or CAMK2A.232,239–241 As
CAMK2A mRNA is also targeted by CPEB1, this
is potentially another positive feedback loop, which
has been proposed to contribute to the generation of
a bistable switch.242 Another proposed mechanism of
regulation of CPEB proteins in neurons is a prion-like
conformation change in CPEB variants in Aplysia and
Drosophila, although so far polyadenylation appears
not to be involved.243–246

The polyadenylation inhibitor cordycepin has
been used to show that polyadenylation is required for
normal synaptic function.113,233 However, this type
of experiment is no longer valid, because cordycepin
is now known to inhibit protein synthesis through
effects on the mTOR pathway in some cell types,
as well as to have gene-specific effects on de novo
mRNA synthesis.247,248 The most compelling early
evidence that the poly(A) tail elongation observed in
neuronal cells does not represent newly synthesized
mRNAs comes from observation of poly(A) tail
elongation in vitro, in synapse containing vesicles
(synaptoneurosomes).232 Moreover, a recent study
shows that a rapid increase in poly(A) (detected by in
situ hybridization) does indeed occur in dendrites in
response to NMDA receptor stimulation. The timing
of this effect coincides with CPEB1 phosphorylation
and PARN dissociation and it is abolished by
knockdown of PAPD4 (Gld-2).241 Because of the
speed of the response and the requirement for PAPD4,
it is unlikely that this increase in poly(A) is due to the
transport of newly made mRNA into the dendrites.
This therefore probably represents a true case of
cytoplasmic polyadenylation.

PAPD4 (Gld2) mutants in Drosophila have
defects in long-term memory, which indicates that this
enzyme is indeed important in synaptic plasticity.136

In addition, Orb2, the somatic CPEB in Drosophila,
is required for asymmetric cell division during
neuronal development, for normal locomotion and for
memory formation.249,250 This suggests a major role
for cytoplasmic polyadenylation in the Drosophila
nervous system. CPEB1 has also been implicated
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in axon branching in hippocampal neurons, in cell
migration of astrocytes and in motor skill development
in rodents using expression of a CPEB1 dominant
negative mutant.251–253 The Pumilio proteins, which
can cooperate with CPEB1 in oocytes, have also been
implicated in neuronal development and synaptic
plasticity.254–260 However, CPEB1 knockout mice
have no major nervous system defects, although
subtle effects on synaptic transmission and memory
have been reported.261,262 This may be because other
members of the CPEB family also are expressed
in mammalian neurons.113,263 In particular, CPEB3
mediated translational control has been linked to
changes in synapse function in rodents264,265 and a
polymorphism in the CPEB3 gene has been linked to
memory in humans as well.266 An increase in poly(A)
tail of a CPEB3 targeted mRNA has indeed been
reported.264 In contrast to the regulation observed
in oocytes, however, activation of translation is
thought to be mediated by mono-ubiquitination
or calpain mediated degradation.264,265 In addition,
the activation of CPEB3 bound mRNAs does not
require a poly(A) signal or CPSF.113 Similarly to
the situation for CPEB1 in oocytes, CPEB3 is an
efficient translational repressor264,265 and CPEB3 (and
CPEB4) can associate with the TOB2 protein, which
mediates deadenylation through recruitment of the
CNOT deadenylation complex.267 The data so far are
therefore inconclusive in determining if CPEB3 works
as a deadenylation factor that is inactivated or as a
CyPSF that is activated during synaptic stimulation in
neurons.

CPEB Family Proteins in the Regulation
of Cell Proliferation
CPEB proteins have also been implicated in the
regulation of mitosis, senescence and tumorigenesis,
this has been recently reviewed in depth,151 with only
one additional publication to note.171 In most cases
where cytoplasmic polyadenylation has been impli-
cated, clear effects of CPEB proteins on translational
efficiency were detected. However, actual cytoplasmic
polyadenylation in somatic cells other than neurons
has not been definitively demonstrated. One approach
has been to inject RNA into Xenopus oocytes to
show that the 3′ UTR can mediate cytoplasmic
polyadenylation.170,231 Unfortunately, this is no
definitive guarantee that translational or poly(A) tail
changes are caused by cytoplasmic polyadenylation in
the tissue of interest. Another study shows a sugges-
tive correlation between phosphorylation of CPEB1
and poly(A) tail elongation.268 Only two articles
come close to demonstrating that CPEB mediated

cytoplasmic polyadenylation genuinely plays a role,
one in mitosis and one in senescence,145,112 these are
discussed below.

In early embryos, cell division is atypical, with
an absence of the G1 and G2 phases, so the finding
that CPEB1 activates translation by cytoplasmic
polyadenylation during mitosis in the embryonic cell
cycle85,269,270 did not have immediate implications
for the normal somatic cell cycle. However, most
mRNAs regulated by cytoplasmic polyadenylation
in oocytes encode proteins that are also involved in
normal mitosis.151 In addition, mRNA transcription
is known to be reduced in G2 and blocked in M
phase in HeLa cells,271 similar to the situation in
oocytes. In the first systematic screen for differentially
polyadenylated mRNAs in mammalian cells, Novoa
et al.112 compared the poly(A) tail sizes of mRNAs in
HeLa cells in the S and G2/M phases. Total poly(A)
RNA was isolated using oligo(dT) chromatography
and RNA with short poly(A) tails was isolated by
low stringency elution of poly(U) chromatography.
Hundreds of mRNAs displayed cell cycle dependent
changes in the ratios between the total and short
poly(A) tail fractions, indicating that poly(A) tail
regulation is widespread during the cell cycle.
Knockdown of CPEB1 and CPEB4 caused cell cycle
defects and affected the polyadenylation of some, but
not all of these mRNAs during G2/M. These data
indicate that both CPE dependent and other types of
cytoplasmic polyadenylation are occurring during the
G2/M phase of the cell cycle in HeLa cells.

In primary fibroblasts, knockdown or knockout
of CPEB1 prevents senescence, a process that halts cell
proliferation in normal cells after a finite number of
cell divisions.272,273 The translational activation of the
tumor suppressor TP53 (p53), a factor required for
senescence, is dependent on CPEB1 and TP53 mRNA
has a short poly(A) tail in human fibroblasts with
reduced CPEB1.272 Surprisingly, the knockdown of
the PAPD4 (Gld2) poly(A) polymerase increased TP53
translation, an effect that was attributed to the role of
PAPD4 in the maturation of a microRNA that targets
CPEB1 mRNA in these cells, leading to increased
CPEB1 levels.145 Knockdown of the PAPD5 (Gld4)
poly(A) polymerase did reduce TP53 protein expres-
sion and TP53 mRNA polyadenylation, and PAPD5
was found associated with CPEB1 and the TP53
mRNA.272 These data indicate that TP53 mRNA is
regulated by polyadenylation mediated by CPEB1 and
PAPD5 during the senescence of human fibroblasts.
However, since both CPEB proteins and PAPD5 can
also be found in the nucleus in somatic cells274–277

and transcription is ongoing in these experiments, an
effect on nuclear polyadenylation cannot be excluded.
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Other Roles of CyPSFs in Somatic Cells
An exciting recent study demonstrated widespread
regulation of poly(A) tail size during the circadian
rhythm in the liver, some of which appears to be
linked to transcriptional up regulation and some of
which are not linked to transcriptional increases.278

The poly(A) tail sizes of some of the mRNAs in the last
class are regulated by CPEB1 and CPEB2. Less well
characterized and new polyadenylation regulatory
elements are likely to be involved in the regulation
of the other mRNAs identified in this study.

Musashi (MSI1 and MSI2) was initially
characterized as a factor that promoted the self-
renewal of neural stem cells by translationally re-
pressing numb, an inhibitor of Notch signaling.279

More recently, MSI has been implicated as a marker
for a variety of stem cells including mammary
cells,280 normal and malignant gasterointestinal
cells,281,282 endometrial stem cells,283 and in normal
and malignant hematopoesis.284 The mechanism
of translational repression by mammalian MSI in
somatic cells is proposed to be the disruption of the
closed loop translation initiation complex due to an
interaction of MSI1 with PABP.285

The Pumilio family (PUM1 and PUM2) proteins
are highly conserved in eukaryotes and well char-
acterized as deadenylation factors and translational
repressors in many cell types.286 In addition to their
functions in neurons (see above), Pumilio proteins
have been implicated in the regulation of MAPK
signaling and cell proliferation.287–289 There is
so far no evidence that these factors can mediate
cytoplasmic polyadenylation in somatic cells, whether
on their own or in conjunction with CPEB proteins.

The Bicaudal C homolog BICC1 is linked
to polycystic kidney disease in zebrafish, Xenopus,
mouse and human,290–292 this is caused by defects
in epithelial morphogenesis.292–295 CPEB1 deficiency
also causes epithelial defects in the breast tissue of
mice.296 These observations complement the long
established localization of the polyadenylation factor
SYMPK at tight junctions,297,298 and suggest a
potential function for local translation mediated by
cytoplasmic polyadenylation in the morphogenesis
of epithelia. BICC1 appears to be a KH domain
RNA binding protein, but a consensus binding
element in RNA has so far not been identified.222,299

It has been reported to both to enhance and
counteract microRNA mediated repression.300,301 No
data are available on the effects of BICC1 on mRNA
polyadenylation in somatic cells.

Both PCBP2 (αCP2) and ELAVL 1 (HuR)
are best known as proteins that mediate mRNA
stabilization in somatic cells,302,303 but there is so

far no evidence that this role involves cytoplasmic
polyadenylation. PCBP2 and its closely related family
member, PCBP1 (hnRNP-E1), have been shown to
mediate translational repression in haematopoietic
cells.304,305 Strikingly, the C-CPE that can promote
cytoplasmic polyadenylation in Xenopus embryos105

and mRNA stabilization in the cytoplasm of
somatic cells also mediates gene-specific increased
splicing, cleavage and polyadenylation of pre-mRNA
in the nucleus.306 In addition, PCBP2 stimulated
polyadenylation and was found to associate with
three CPSF subunits and SYMPK in nuclear
extracts. This observation opens the possibility that
other cytoplasmic polyadenylation sequences and
factors also can influence nuclear polyadenylation,
and conversely, that proteins that bind upstream
polyadenylation elements in the nucleus may also
have a function in cytoplasmic polyadenylation. In
this context it is remarkable that a subunit of the
USE binding factor CFIm (NUDT21) has been found
together with PCBP1 in a vinculin bound cytoplasmic
RNP complex during cell adhesion.307 Moreover, the
NUDT21 recognition site is included in the Pumilio
binding element, opening the possibility of competitive
or subsequent binding.120,308 Interestingly, gene
specific increases in splicing and nuclear 3′ mRNA
processing have been shown to play a major role in
the regulation of cyclin expression during meiosis in
yeast,309 and regulation of nuclear polyadenylation by
USEs may therefore be the ancestral mechanism that
evolved into cytoplasmic polyadenylation in animal
germ cells.

CONCLUSIONS

Cytoplasmic polyadenylation was first characterized
in Xenopus oocytes, and all well characterized
examples of regulatory sequences are still from
this system, with the best established specificity
factors being CPEB1, CPEB4, MSI1, and PCBP2.
However, a role for cytoplasmic polyadenylation is
also emerging in the C. elegans germ line, as well as in
neuronal plasticity and mitosis in somatic cells. While
conclusive evidence of cytoplasmic polyadenylation
still is dependent on showing that poly(A) tail
elongation is independent of transcription, good
circumstantial cases can be made where mRNA
activation can be linked to the physical and functional
association of an RNA binding protein in complex
with one or more poly(A) polymerases, such as
has been shown for BicaudalC and Pumilio in C.
elegans. However, due caution must be exercised when
assigning cytoplasmic mRNA associated functions
to poly(A) polymerases, as most are present in the
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nucleus as well and these enzymes are also involved
in the processing and degradation of noncoding
RNAs.274,310–312 Increasingly, complexes of multiple
RNA binding proteins are implicated in the mRNA
specificity as well as the timing of cytoplasmic
polyadenylation. The best characterized is the CPEB-
Pumilio interaction, but now there are also the
CPEB1-PCBP2 and Pumilio-DAZL interactions and
many mRNAs that are regulated by cytoplasmic
polyadenylation in oocytes have binding sites for

multiple factors. This indicates that cooperation
and/or antagonism of different poly(A) regulatory
factors is common. Cytoplasmic polyadenylation now
appears to be a widespread phenomenon, and is
increasingly attracting the interest of researchers
working in systems other than Xenopus and C. elegans
oogenesis and early development. Therefore, we can
expect new specificity factors to emerge in the near
future.
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