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Abstract: The modulation of the sphingosine 1-phosphate receptor is an approved treatment for
relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes in lymph
nodes. Different sphingosine 1-phosphate receptor subtypes are expressed in the brain and spinal
cord, and their pharmacological effects may improve disease development and neuropathology.
Siponimod (BAF312) is a novel sphingosine 1-phosphate receptor modulator that has recently been
approved for the treatment of active secondary progressive multiple sclerosis (MS). In this review
article, we summarize recent evidence suggesting that the active role of siponimod in patients with
progressive MS may be due to direct interaction with central nervous system cells. Additionally,
we tried to summarize our current understanding of the function of siponimod and discuss the effects
observed in the case of MS.
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1. Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease that affects the central nervous system
(CNS), especially the brain, spinal cord, and optic nerve. Although some people have mild symptoms,
such as blurred vision, numbness, or tingling of the limbs, in severe cases, the patient may experience
paralysis, vision loss, or cognitive deficits. Although we do not know exactly what causes MS, T- and
B-cell-mediated inflammatory demyelination of the CNS white and gray matter, parallel to neuro-axonal
damage, are histopathological features. Clinically, MS can be divided into four major categories:
clinically isolated syndrome (CIS), which refers to the first episode of neurological symptoms that
lasts at least 24 h, but the criteria for diagnosing MS have not (yet) been met. Individuals who have
experienced CIS may or may not continue to develop definitive MS. Relapsing-remitting MS (RRMS) is
characterized by an acute clinical attack, followed by complete or incomplete recovery, and a certain
remission period between attacks. A few years later, many patients with relapsing-remitting disease
eventually develop secondary progressive MS (SPMS), which is characterized by a more or less
continuous decline in neurological function, with or without occasional attacks. Primary progressive
MS (PPMS) is characterized by the accumulation of clinical disability from the onset of the disease,
without early relapses or remission. In the stage of RRMS disease, the most important indicator of
successful therapeutic intervention is to reduce the frequency of relapses. On the contrary, during the
progressive disease stage, treatment aims to delay the progression of the disability. Although there
are multiple options for treating RRMS patients, only two drugs, siponimod [1] and ocrelizumab [2],
have shown therapeutic effects and have been approved for the treatment of progressive MS. It is worth
noting that most phase II and III clinical trials of progressive MS have not shown any beneficial effects,
which is the main requirement for a better understanding of the underlying progressive MS pathology.
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As will be pointed out later, siponimod (Mayzent® and Novartis) is a sphingosine 1-phosphate
receptor (S1Pr) modulator that can selectively bind to S1Pr1 and S1Pr5. These receptors are expressed
by various neuronal and peripheral cell populations, such as lymphocytes, dendritic cells [3,4],
astrocytes [5,6], microglia [7,8], and oligodendrocytes [5,9]. In this review article, we try to summarize
our current understanding of the cellular functions of siponimod and discuss the effects observed in
the context of MS. Firstly, we focus on the role of glial cells in the development and progression of MS
disease, then briefly introduce the sphingosine 1-phosphate signaling cascade, and, thirdly, discuss the
step how siponimod ultimately interferes with these cell populations to exert beneficial effects.

2. General Aspects of MS Pathology and the Relevance of Glial Cells

It is generally accepted that the histopathological correlate of an initial attack or relapse is the focal
inflammatory demyelinating lesion. This focal lesion is mediated by an aberrant lymphocyte attack
against CNS elements. Although the autoantigens are still unknown, it is believed that the autoreactive
immune response of MS patients is directed against a particular component (or multiple components)
of the myelin sheath. These inflammatory lesions can be widely found in white matter areas [10],
and the neuroanatomical location of the lesion can cause specific clinical symptoms. For example,
optic nerve tract lesions may cause vision loss and cerebellar lesions may cause coordination problems
or ataxia of the limbs, gait, and trunk, while lesions in the corticospinal tract can be related to motor
dysfunction [11]. Under the microscope, focal lesions show peripheral immune cell recruitments
(mainly macrophages and CD8+-lymphocytes), a loss of myelin and oligodendrocytes, the intense
activation of astrocytes and microglia, and acute axonal injury (see Figure 1). At the paraclinical level,
oligoclonal immunoglobulin G in cerebrospinal fluid and gadolinium-enhanced lesions on magnetic
resonance scans are considered to be the direct result of focal inflammatory CNS lesions. Although not
the focus of this article, several studies have shown that, during RRMS, not only white matter regions
are affected but, also, various structures of the brain gray matter [12,13].
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highlight the cytotoxic CD8+ lymphocytes in the brain parenchyma. The paraffin-embedded 
postmortem brain tissue was obtained through a rapid autopsy protocol from donors with mainly 
progressive MS in collaboration with the Netherlands Brain Brank, Amsterdam, The Netherlands. 
The study was approved by the institutional ethics review board, and all donors or their relatives 
provided written consent for the use of brain tissues and clinical information for research purposes. 
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Figure 1. Shows a representative chronic active lesion from a patient with progressive multiple sclerosis
(MS). (A) Shows anti-proteolipid protein-stained sections obtained from a white matter tissue block of
a patient with progressive MS. The white arrowheads mark the boundary of the lesion. (B) Shows the
same lesion processed for anti-MHC II immunohistochemistry. (C,D) Show the anti-CD3 and anti-CD8
staining of the lesion at higher magnification, respectively. The arrowheads highlight the cytotoxic
CD8+ lymphocytes in the brain parenchyma. The paraffin-embedded postmortem brain tissue was
obtained through a rapid autopsy protocol from donors with mainly progressive MS in collaboration
with the Netherlands Brain Brank, Amsterdam, The Netherlands. The study was approved by the
institutional ethics review board, and all donors or their relatives provided written consent for the use
of brain tissues and clinical information for research purposes.
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Contrary to the focal features of RRMS, the pathologies of SPMS and PPMS are more diffuse.
For example, the brains of progressive MS donors show a significant axonal loss in both the demyelinated
and normal cortices [14], extensive subpial grey matter demyelination [10], injury to excitatory projection
neurons [15], diffuse neuroaxonal metabolic abnormalities [16] and diffuse microglial activation [17].
The underlying mechanisms of these diffuse CNS pathologies in progressive MS are complex but
may include transneuronal degeneration due to the destruction of efferent/afferent projections [18],
B cell-rich meningeal inflammation [19], the accumulation of peripheral immune cells in the choroid
plexus stroma [20], chronically active and slowly expanding lesions with smoldering inflammation [21],
accelerated biological aging [22], or complement activation [23]. Different aspects of the described
progressive MS pathologies can be visualized by different imaging techniques, including positron
emission tomography (PET) imaging, advanced magnetic resonance imaging (MRI), brain volume
measurement, optical coherence tomography (OCT), diffusion tensor imaging (DTI), or myelin water
imaging (MWI) [24–28].

In the course of MS disease, myelin-axonal units are progressively destroyed. As shown in
Figure 2A, demyelination is accompanied by acute axonal defects, such as the breakdown of the
anterograde axonal transport mechanism and the accumulation of intra-axonal organelles at sites
of inflammation. In addition to peripheral immune cells (such as lymphocytes and macrophages),
astrocytes and microglia are also important regulators of myelin and neuronal injury in MS. Astrocytes
(literally “star-like cells”) are the largest number of glial cells in the CNS. They play an important
role in development, health, and disease. For example, they maintain brain homeostasis through
the expression of neurotransmitter transporters; store and distribute energy substrates; control the
development of neural cells, synaptogenesis, and synaptic maintenance; and provide cytokines and
limiting membranes for brain defense. During CNS injuries, astrocytes are activated, which can be
identified by the strong upregulation of the glial fibrillary acidic protein (GFAP; see Figure 2C), and a
series of changes occur, called reactive astrogliosis. Additionally, during inflammatory stimulation,
astrocytes induce the expression of hundreds of genes relevant to antigen presentation, oxidative
stress, immune receptors, inflammation, blood-brain barrier disruption, and signal transduction [29].
In the context of MS, astrocytes can provide promyelinating neurotrophic factors, such as ciliary
neurotrophic factor [30], or tissue inhibitors of metalloproteinase-1 [31], orchestrate oligodendrocyte
differentiation (recently reviewed in [32]), or stabilize the blood-brain barrier and, thus, limit the
recruitment of peripheral immune cells [33] and CNS pathology [34]. Although these effects indicate
that astrocytes have proregenerative or protective functions, deleterious astrocytic effects have
also been shown, such as astrocyte-induced neurodegeneration [35], inflammation [36,37] and the
recruitment of peripheral immune cells. Indeed, astrocytes display a wide range of selective responses,
and multiple functional states that can promote lesion formation (i.e., proinflammatory phenotypes)
or resolution (i.e., anti-inflammatory phenotypes) exist. For example, the laboratory of Francisco
Quintana recently identified astrocytes in experimental autoimmune encephalomyelitis (EAE) and MS,
characterized by the reduced expression of nuclear factor erythroid 2-related factor 2 (NRF2) and the
high expression of MAF bZIP transcription factor G (MAFG), resulting in the repression of antioxidant
and anti-inflammatory transcriptional programs in astrocytes [36]. Therefore, the downregulation
of NRF2 expression appears to be a cellular event that promotes the shift from lesions resolving
to lesion-promoting astrocytes. Consistent with this, the metabolic injury to oligodendrocytes that
were experimentally induced via intoxication with cuprizone [38] is increased in Nrf2−/− compared
to wild-type mice [39], while the activation of NRF2, especially in GFAP+ astrocytes, improved the
pathology in a toxin-induced demyelination model [40].



Cells 2020, 9, 1771 4 of 17

Cells 2020, 9, x FOR PEER REVIEW 4 of 17 

 

 
Figure 2. (A) Shows anti-proteolipid protein staining of the control corpus callosum (left) and corpus 
callosum of a cuprizone-intoxicated (right) mouse. (B) Shows a section stained with the anti-amyloid 
precursor protein of a mouse intoxicated with cuprizone. The axonal spheroid highlighted by the 
arrowhead is displayed on the right site at a higher magnification. (C) Shows the anti-glial fibrillary 
acidic protein-stained sections of a cuprizone-experimental autoimmune encephalomyelitis (EAE) 
mouse [41]. The image on the left shows moderate, and the image on the right shows severe, 
astrogliosis. (D) Shows the ultrastructure of an axonal spheroid. (E) Shows a perivascular 
inflammatory infiltrate stained with anti-CD3 and anti-laminin to label T-lymphocytes and basement 
membranes, respectively. The arrow highlights the astrocyte basement membrane, while the 
arrowhead highlights the endothelial basement membrane. 

Astrocytes are also key regulators of the brain-blood interface. Peripheral immune cells can invade 
the brain via three main neuroanatomical routes: firstly, at the level of the postcapillary venule (i.e., 
blood-brain barrier; BBB), secondly, from the choroid plexus stroma into the ventricle, and from there, 
into the CNS parenchyma (i.e., the blood-liquor barrier), and thirdly, along with the spaces between 
penetrating brain arteries (i.e., the Virchow-Robin space). Here, we will focus on the BBB, which acts as 
a super-selective filter for molecules and cells to protect the brain from the blood milieu [42]. The two 
main barrier functions of the BBB are (i) endothelial cells, which express unique intercellular tight 
junctions to seal the paracellular space, and (ii) highly specialized basement membranes, which are 
formed from endothelial cells and astrocytes (see Figure 2E). For the sake of completeness, it should be 
mentioned that the BBB also contains pericytes and perivascular macrophages. The results of several 
studies clearly showed that a close endothelial-astroglial association is necessary for the induction, 
organization, and maintenance of the BBB [43]. For example, removal of the astrocytes from in vitro 
BBB coculture models leads to increased paracellular permeability for small tracers across the brain 
endothelial cell monolayer [44]. Beyond, the expression of vascular cell adhesion protein 1 (VCAM-1) 
by astrocytes is crucial for the entry of T cells into the CNS parenchyma [45], the loss of astrocyte 
polarity is a characteristic of the impaired BBB [46], and the transgenic inactivation of astroglial NF-
kappa B reduces the recruitment of peripheral immune cells in EAE [47]. Although we currently do not 
know whether neurotoxic astrocyte polarization can be equated with an astrocyte that facilitates the 
recruitment of peripheral immune cells, the modulation of astrocyte function by, for example, 
siponimod might be a promising therapeutic strategy. Remarkably, astrocytes as well express specific 
receptors to communicate with various lymphocyte subpopulations, such as Th1 and Th17 cells, as 
recently demonstrated [48]. Indeed, it is believed that astrocytes are the most subtle regulators of 
immunocompetent T cells and are central to the physiological immune reactivity of the CNS. It will be 
tempting to find out to what extent glial cells are involved in the transmission of regulatory signals 
between the immune system and the nervous system. 

Microglia, which originate from myeloid precursors in the embryonic yolk sac, are like astrocyte 
highly plastic immune cells. During the RRMS disease stage, microglia are believed to be critical for 
myelin phagocytosis, T cell antigen presentation, and the release of proinflammatory cytokines. 

Figure 2. (A) Shows anti-proteolipid protein staining of the control corpus callosum (left) and corpus
callosum of a cuprizone-intoxicated (right) mouse. (B) Shows a section stained with the anti-amyloid
precursor protein of a mouse intoxicated with cuprizone. The axonal spheroid highlighted by the
arrowhead is displayed on the right site at a higher magnification. (C) Shows the anti-glial fibrillary
acidic protein-stained sections of a cuprizone-experimental autoimmune encephalomyelitis (EAE)
mouse [41]. The image on the left shows moderate, and the image on the right shows severe, astrogliosis.
(D) Shows the ultrastructure of an axonal spheroid. (E) Shows a perivascular inflammatory infiltrate
stained with anti-CD3 and anti-laminin to label T-lymphocytes and basement membranes, respectively.
The arrow highlights the astrocyte basement membrane, while the arrowhead highlights the endothelial
basement membrane.

Astrocytes are also key regulators of the brain-blood interface. Peripheral immune cells can
invade the brain via three main neuroanatomical routes: firstly, at the level of the postcapillary venule
(i.e., blood-brain barrier; BBB), secondly, from the choroid plexus stroma into the ventricle, and from
there, into the CNS parenchyma (i.e., the blood-liquor barrier), and thirdly, along with the spaces
between penetrating brain arteries (i.e., the Virchow-Robin space). Here, we will focus on the BBB,
which acts as a super-selective filter for molecules and cells to protect the brain from the blood milieu [42].
The two main barrier functions of the BBB are (i) endothelial cells, which express unique intercellular
tight junctions to seal the paracellular space, and (ii) highly specialized basement membranes, which are
formed from endothelial cells and astrocytes (see Figure 2E). For the sake of completeness, it should be
mentioned that the BBB also contains pericytes and perivascular macrophages. The results of several
studies clearly showed that a close endothelial-astroglial association is necessary for the induction,
organization, and maintenance of the BBB [43]. For example, removal of the astrocytes from in vitro
BBB coculture models leads to increased paracellular permeability for small tracers across the brain
endothelial cell monolayer [44]. Beyond, the expression of vascular cell adhesion protein 1 (VCAM-1)
by astrocytes is crucial for the entry of T cells into the CNS parenchyma [45], the loss of astrocyte
polarity is a characteristic of the impaired BBB [46], and the transgenic inactivation of astroglial
NF-kappa B reduces the recruitment of peripheral immune cells in EAE [47]. Although we currently
do not know whether neurotoxic astrocyte polarization can be equated with an astrocyte that facilitates
the recruitment of peripheral immune cells, the modulation of astrocyte function by, for example,
siponimod might be a promising therapeutic strategy. Remarkably, astrocytes as well express specific
receptors to communicate with various lymphocyte subpopulations, such as Th1 and Th17 cells,
as recently demonstrated [48]. Indeed, it is believed that astrocytes are the most subtle regulators of
immunocompetent T cells and are central to the physiological immune reactivity of the CNS. It will be
tempting to find out to what extent glial cells are involved in the transmission of regulatory signals
between the immune system and the nervous system.

Microglia, which originate from myeloid precursors in the embryonic yolk sac, are like astrocyte
highly plastic immune cells. During the RRMS disease stage, microglia are believed to be critical
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for myelin phagocytosis, T cell antigen presentation, and the release of proinflammatory cytokines.
However, when the MS moves into the progressive phase, it is believed that microglia play an
important role in the slow expansion of chronic lesions, one of the pathological features of progressive
MS (see Figure 1). Microglia exist, in the same way as astrocytes, in a continuum of activation states
and can, therefore, be involved in both tissue injuries and repairs. On the one hand, it has been
shown that microglia mediate synapse loss, neuronal loss, and memory impairment in Alzheimer’s
disease (overview in [49] and [50]); mediate dopaminergic injuries via the NF-κB signaling pathway
in Parkinson’s disease [51]; or provide an environment for the initiation of T-cell cytotoxicity in
Rasmussen encephalitis [52]. On the other hand, microglia can equally mediate protective effects such
as reducing spreading depolarization and calcium overload [53], eliminating neutrophil invasion in
brain ischemia [54], promoting seizure-induced neurogenesis [55], or maintaining the vascular integrity
under hypoxia conditions [56]. In connection with MS, it has been shown that phagocytosis of myelin
debris by the microglia is a prerequisite for endogenous remyelination [57,58], but the cells can also
induce a core oxidative stress gene signature when activated, which leads to axonal damage [59].
Remarkably, astrocytes and microglia interact closely, as several studies have shown [60]. For example,
a recent study showed that the drug-induced prevention of microglia-mediated astrocyte conversions
to a neurotoxic phenotype is protective in a model of Parkinson’s disease [61]. The results from Martin
Stangel’s laboratory suggest that astrocytes can regulate the clearance of myelin debris by activating
and/or attracting microglia in a CXCL10-dependent manner [62]. Interestingly, aging is associated with
remyelination failure and is accompanied by a decrease in the ability of microglial cells to phagocytose
myelin. As was recently shown, the reduced expression of the scavenger receptor CD36 could be
the reason for this reduced phagocytic activity [63]. In summary, astrocytes and microglia cells are
important regulators of the pathology of MS diseases, and it is promising to shape their function
through therapeutic intervention.

3. Sphingosine-1 Phosphate Signaling

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that regulates a wide range of
physiological processes, including lymphocyte recirculation, cardiac function, or the maintenance of
the BBB [64]. Most S1P effects are mediated through one of the five G protein-coupled S1P receptor
subtypes called S1Pr1–5 (originally called EDG-1, 3, 5, 6, and 8) [65]. These receptors are expressed
differently on different cell types, including lymphocytes [66,67], cardiomyocytes [68,69], endothelial
cells, smooth vascular muscle cells, or fibroblasts.

The coordinated migration of cells is important for various biological processes, including wound
healing, embryonic development, and immune responses. Initially, S1Pr signal research focused
on the migration of progenitor cells. In 2000, Kuppermann and colleagues published a sentinel
paper that showed that S1Pr is crucial for cell migration during cardiovascular development [70].
In zebrafish, as with all vertebrates, the embryonic heart is created as a bilateral cell group in the
anterior lateral plate mesoderm. These two cell populations move medially and merge along the
midline to form the primitive heart tube [71]. In their studies, they first identified eight mutations
that disrupt heart development, including a mutation called miles apart m (93), also known as
Mil or Milm 93, through large-scale genetic tests in zebrafish. Using zebrafish carrying the miles
apart m (93) mutation, they observed normal myocardial differentiation but disrupted myocardial
precursor migration, indicating that separate signaling pathways regulate myocardial differentiation
and migration. Using genetic mosaics, mutant cells transplanted into wild-type embryos migrated
normally and contributed to the heart, while wild-type cells transplanted into mutant embryos did
not migrate properly. This elegant experiment has shown well that cells other than myocardial
progenitors must express the wild-type protein to orchestrate the migration of myocardial progenitor
cells (i.e., a non-cell-autonomous process is operant). Based on these findings, it has been speculated
that wild-type Mil could stimulate the release of a chemotactic factor or create an environment that
supports progenitor cell migration. In subsequent experiments, the authors were able to show that Mil
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is a G protein-coupled receptor, that the abovementioned miles apart m (93) mutation means that Mil
is unable to attach to downstream G proteins, and that Mil can respond to S1P. Today, we know that
Mil is most likely the S1Pr2 in humans and mice [72].

The S1Pr signaling not only regulates cell migration during the heart but, also, vascular
development. During early development, S1Pr1−/− mice show gross defects in their arterial and
capillary vessels. Remarkably, both vasculogenesis and angiogenesis begin normally in mutated S1Pr1
embryos, which leads to well-developed endothelial cell networks. The faulty process in S1Pr1−/−

embryos is the migration of cells that lead to support structures that surround arterial and capillary
blood vessels, the smooth vascular muscle cells, and pericytes [73]. The regulation of cell migration
by S1Pr is not limited to the development phase but regulates important physiological processes in
adulthood. From an immunological point of view, Norgauer’s laboratory showed that S1P induces
the chemotaxis of immature dendritic cells and promotes the release of Th2-related cytokines in
mature dendritic cells, which favors immunity dominated by Th2 lymphocytes [3]. At the same
time, Graeler et al. showed that CD4-Th and CD8 cytotoxic lymphocytes express S1P receptors
(predominantly S1Pr1 and S1Pr4) and that S1P causes chemotactic reactions in T cells [66]. Finally,
Mandala et al. showed that the functional antagonism at the S1P receptor blocks the escape of
lymphocytes from the lymph nodes [74] in a S1Pr1-dependent manner [75]. It was subsequently shown
in various experimental environments that this antimigratory effect leads to therapeutically useful
immunosuppression, including in models of antigen challenges [76], graft-versus-host disease [77],
respiratory tract infection [78], transplantation experiments [79–81], experimental colitis [82], type
1 diabetes [83], experimental arthritis [84], systemic lupus erythematosus [85], or, especially, in the
context of MS research in various EAE models [86,87], the autoimmune model of MS. Today, we know
that the migration of even neuronal cells such as astrocytes can be regulated by S1Pr signaling [88].

Most of these studies used FTY720 (2-amino-(2-[4-octylphenyl]ethyl)-1,3-propanediol hydrochloride;
also called fingolimod) to modulate S1Pr activity, and FTY720 was the first effective S1Pr-modulating
drug to be used in RRMS patients [89]. Fingolimod (Gilenya® and Novartis) was approved in 2010 as
the first oral treatment for RRMS in several countries. In 2018, Novartis announced that the U.S. Food
and Drug Administration (FDA) approved Gilenya® for the treatment of children and adolescents
aged 10 to under 18 with RRMS. It is the first disease-modifying therapy that is indicated for these
patients. Although originally described as an S1Pr agonist, it has now become generally accepted
that fingolimod acts as a functional S1P inhibitor by inducing S1Pr internalization and intracellular
partial degradation [90]. It should be noted that S1P signaling is not only important for T- but, also,
B-cell functions. For example, it was shown that S1Pr1 is required for the correct positioning of B cells
within the spleen [91,92]. The presence of (B cell-rich) lymphoid follicle-like structures in the meninges
of some MS patients [93,94] and the clinical efficacy of the B-cell depleting antibody ocrelizumab [2]
suggest that B cells contribute to the course of the disease in MS. To what extent the S1Pr signal
transmission also coordinates the formation or dissolution of B-cell follicle-like structures in MS is yet
to be clarified.

The natural ligand of S1Pr, sphingosine-1-phosphate, is derived by phosphorylation of the
membrane lipid sphingosine, a reaction catalyzed by type 1 or 2 sphingosine kinase (Sphk1/Sphk2).
Sphk2 is the dominant isoform that catalyzes S1P synthesis in the CNS [95], protects against
ischemic brain damage in stroke models [96], or maintains the plasticity of the hippocampus
through the S1P-mediated inhibition of histone deacetylases [97]. Just like sphingosine-1-phosphate,
fingolimod/FTY720 has to be activated by phosphorylation to the biologically active metabolite FTY720-P,
which is mainly catalyzed by Sphk2 [98,99]. Beyond, the activities of lipid phosphate phosphohydrolase
3 (LPP3), also known as phospholipid phosphatase 3 (PLPP3) or sphingosine-1-phosphate
phosphohydrolase (SPP1), can convert FTY720-P into its inactive, dephosphorylated metabolites [100]
and, thus, reverse the mechanism actions from Sphk2. In several studies, the dynamic regulation of
sphingosine kinases and phosphatases was observed in some disease models such as Alzheimer’s [101]
or brain tumors [102]. To what extent the expression of these enzymes changes in MS and how this
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may affect the therapeutic efficacy of fingolimod remains to be determined. Although this is not the
key enzyme for FTY720 phosphorylation, the upregulation of Sphk1 expression in astrocytes and
macrophages/microglia has been found in MS lesions [103]. Beyond, it has been shown that S1Pr
expression levels dynamically change during the formation of inflammatory lesion in MS, such as
increased S1Pr1 and S1Pr3 expression levels on reactive astrocytes in active and chronic inactive MS
lesions [104], indicating that astrocytes may act as target of fingolimod and siponimod within the CNS.
Induced S1Pr expression levels have as well been reported in the EAE model [105–107]. Interestingly, it
has been suggested that overexpression of the S1Pr1 on reactive astrocytes drives the neuropathology
of the MS rebound after fingolimod discontinuation [108].

4. From FTY720 to Siponimod

In 2013, Selmaj et al. reported the results of a phase 2 dose-finding study in patients with RRMS.
Siponimod reduced the number of active brain lesions and the annualized relapse rate by around
two-thirds, depending on the dose [109]. Based on these promising results, a placebo-controlled phase
III trial was conducted, in which the efficacy and safety of siponimod in patients with SPMS were
examined (Examination of the efficacy and safety of siponimod in patients with secondary progressive
multiple sclerosis (EXPAND)) [1]. The study showed that siponimod is clinically effective in SPMS
patients based on the primary outcome of a three-month confirmed disability progression reduction
(defined by a 0.5 or 1 point increase in the expanded disability status scale (EDSS) compared to the
baseline). The key secondary objective was achieved with a 26% reduction in the confirmed disability
progression after six months, and a significant reduction in the annualized relapse rate and MRI
activity were noted. Using a matched-adjusted indirect comparison, it was shown that siponimod is
significantly more effective compared to interferon-beta therapies for the result of up to six months of
confirmed disability progression (CDP) [110]. In March 2019, siponimod was approved in the United
States for the treatment of adults with MS, including patients with CIS, RRMS, and active SPMS.
In January 2020, siponimod was approved in the European Union for the treatment of adults with SPMS
with an active disease that has been demonstrated by relapses or imaging features of inflammatory
activity. It is noteworthy that fingolimod, the first-generation S1Pr modulator, was ineffective in the
phase III INFORMS trial for primary progressive MS (i.e., Oral fingolimod in primary progressive
multiple sclerosis) [111].

There are several important differences between FTY720 and siponimod. Firstly, the chemical
structure of both drugs is different (see Figure 3). While fingolimod is an aminodiol consisting of
propane-1,3-diol with amino and 2-(4-octylphenyl)ethyl substituents at the 2-position, the chemical
structure of siponimod is much more complex [112]. Secondly, while fingolimod is a prodrug that
needs to be activated by Sphk2 (see above), siponimod does not require activation. Thirdly, while
fingolimod binds to four of the five S1P receptors—namely, S1Pr1, S1Pr3, S1Pr4, and S1Pr5—siponimod
predominantly interferes with the two receptor isoforms S1Pr1 and S1Pr5.
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Biomedical Research (Basel, Switzerland), described the rationale and the procedure of siponimod
development [112]. The basic principle was to develop a compound that spared the S1Pr3 receptor
subtype, since it was believed to be responsible for the bradycardia observed based on the lack of
S1P-induced heart rate reduction in S1Pr3 knockout mice. Siponimod has also been developed to have a
relatively short elimination half-life, which enables the rapid restoration of the blood lymphocyte count
after treatment has ended but enables once-daily oral dosing [116]. At the cellular level, the authors
observed that (i) siponimod is a selective modulator on S1Pr1 and S1Pr5 receptors and induces the
profound and prolonged internalization of S1Pr1 receptors, (ii) that siponimod improves EAE in a
therapeutic setting (i.e., suppresses ongoing disease symptoms), and (iii) that siponimod induces
a dose-dependent reduction in the peripheral absolute number of lymphocytes in humans [116].
Of note, it has been shown that, in contrast to S1Pr1, S1Pr5 is not downmodulated by agonists such as
siponimod or fingolimod. Consequently, S1P5 agonist function, and not functional antagonism, should
be considered when studying the effects of siponimod and fingolimod mediated via S1Pr5. Contrary to
expectations, the treatment with siponimod caused G protein-coupled inwardly rectifying potassium
(GIRK) channel activation in human atrial myocytes and bradycardia in healthy volunteers, suggesting
that this side effect is not mediated via S1Pr3 in humans (in contrast to mice). In this context, it is
important to notice that, at least for fingolimod, S1Pr-indeendant effects have been demonstrated [117].

The observed anti-inflammatory potency of siponimod in EAE has since been reproduced
by others [118]. In a recent study, the authors showed that the adoptive transfer of proteolipid
protein–primed Th17 cells into SJL/J recipient mice induces subpial demyelination, microgliosis,
and destruction of the glial limitans superficialis and that this inflammatory cortical demyelination
is improved by siponimod treatment [119]. Mechanistic experiments showed that S1Pr1/5 signaling
is required to optimize the formation of meningeal tertiary lymphoid tissue in the subarachnoid
space because of siponimod-attenuated fibronectin formation. In SPMS patients, RNA derived
from whole-blood samples of siponimod-treated patients have reduced expression levels of
immune-associated genes involved in T- and B-cell activation and receptor signaling, which is
consistent with the reduction in CD4+ T cells, CD8+ T cells, and B cells. Flow cytometric analyses
showed that, within the remaining lymphocyte subsets, the incidences of CD4+ and CD8+ naive
T cells were reduced, while anti-inflammatory Th2 and T regulatory cells (Tregs) were enriched [120],
indicating a shift towards an anti-inflammatory and suppressive homeostatic immune system that can
contribute to the clinical effectiveness of siponimod in SPMS.

As already mentioned, S1Pr1 and S1Pr5 are also expressed by cells of the CNS, including
astrocytes [104], oligodendrocytes [121,122], microglia, or neurons [7,123]. It is therefore of great
interest to know whether the drug can have beneficial effects in MS that are not mediated by
immunosuppression. To address this issue, siponimod was delivered directly to the brain using
a continuous intracerebroventricular infusion. While this route of siponimod delivery improved
the severity of EAE disease, the number of peripheral CD3+ cells was not affected [124]. Notably,
astrocytosis, microgliosis, and neuronal degeneration were less severe in mice treated with siponimod,
and interleukin 6 secretions were ameliorated in cultured microglia treated with siponimod.
Additionally, using an organotypic slice culture model, it was shown that siponimod attenuates
lysophosphatidylcholine-induced demyelination. At a more functional level, it has been shown that
siponimod can improve cortical network functionality in acute brain slices isolated from EAE mice [118].
Since peripheral immune cells (especially lymphocytes) do not play a role in organotypic slice culture
models, this experimental setup has shown convincingly that siponimod can have beneficial effects in
the context of MS by directly modulating the brain cell function. Accordingly, the protective effect of
siponimod is not only limited to EAE but has also been observed in other models such as intracerebral
hemorrhage [125], where it limits the formation of perihemorrhagic edema, and in experimental
stroke [126], where it limits peripheral immune cell recruitment, as well as in a mouse model of diffuse
large B-cell lymphoma [127].
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Direct interactions between siponimod and brain cells have also been demonstrated. For example,
Gentile et al. observed that siponimod reduces the release of interleukin 6 and the chemokine
CCL5/RANTES from activated microglial cells. Blocking the CCL5 or interleukin 6 receptor shows
beneficial effects in EAE [128,129]. In a recent study, Colombo et al. demonstrated that induced
pluripotent astrocytes from stem cells express the S1P receptor, show NF-κB translocation in response
to exposure to interleukin 1 or interleukin 17, and that siponimod ameliorates NF-κB translocation.
While glial cells exposed to these cytokines downregulated glutamate transporter protein expression,
siponimod-treated astrocytes maintained high levels of the glutamate transporter. Remarkably, similar
effects were observed when the cells were treated with FTY720. In the same study, the authors
demonstrated that siponimod and FTY720 induced NRF2 nuclear translocation, suggesting that this
important cellular antioxidant pathway could also be regulated by siponimod. Finally, coculture
assays with induced pluripotent astrocytes from stem cells and spinal neuronal cultures showed
that cytokine-stimulated astrocytes induced neurodegeneration, while this deleterious effect was
improved by siponimod and FTY720. These results suggest that astrocyte targeting by S1P receptor
modulators can save neurons from astrocyte-induced degeneration (i.e., shifting from lesion-promoting
to lesion-resolving astrocytes).

Finally, it should be noted that S1Pr5 is also expressed by oligodendrocytes and their progenitor
cells [121,130,131] and may, therefore, modify myelin repair (i.e., remyelination) but may also promote
oligodendrocyte survival in an inflammatory environment. While the relevance of fingolimod for
remyelination has been discussed in detail elsewhere [132], we consider it important to note that
siponimod [133] was one of the most efficient substances in a Xenopus in vivo model among a range of
molecules tested that favored remyelination. However, future studies with more complex organisms
will be needed to test the potential remyelination function of siponimod.

5. Concluding Remarks

The potential advantages of using siponimod compared with fingolimod are its greater receptor
specificity, more stable and predictable kinetics (due to the fact that siponimod is not a prodrug),
and, most importantly, an approved beneficial effect of siponimod in a SPMS clinical trial. We believe
that the current in vivo and in vitro evidence suggests that the effectiveness of siponimod in MS
is due to additional direct effects in the CNS. The orchestration of oligodendrocyte maturation,
together with indirect effects mediated by the function of astrocytes and/or microglia, appears to
be operant. The protective effects of fingolimod and siponimod in MS and its preclinical models
show that the sphingosine-1-phosphate pathway is an attractive target in both RRMS and progressive
MS. The ultimate goal would be to understand the relevance of each receptor subtype to specific
histopathological MS entities such as oligodendrocyte degeneration, demyelination, axonal injury,
or BBB stability and, in a second step, to develop specific modulators that act on these receptors.
In the future, new imaging techniques such as positron emission tomography (PET), single-photon
emission computed tomography (SPECT), bioluminescence imaging (BLI), and fluorescent molecular
tomography (FMT) could be used to visualize such histopathological entities in patients.
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