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Amplification on Undirected 
Population Structures: Comets Beat 
Stars
Andreas Pavlogiannis1, Josef Tkadlec1, Krishnendu Chatterjee1 & Martin A. Nowak2

The fixation probability is the probability that a new mutant introduced in a homogeneous population 
eventually takes over the entire population. The fixation probability is a fundamental quantity of 
natural selection, and known to depend on the population structure. Amplifiers of natural selection are 
population structures which increase the fixation probability of advantageous mutants, as compared to 
the baseline case of well-mixed populations. In this work we focus on symmetric population structures 
represented as undirected graphs. In the regime of undirected graphs, the strongest amplifier known 
has been the Star graph, and the existence of undirected graphs with stronger amplification properties 
has remained open for over a decade. In this work we present the Comet and Comet-swarm families of 
undirected graphs. We show that for a range of fitness values of the mutants, the Comet and Comet-
swarm graphs have fixation probability strictly larger than the fixation probability of the Star graph, for 
fixed population size and at the limit of large populations, respectively.

Evolutionary dynamics study populations of reproducing individuals and the composition of the population 
over the course of time. A fundamental quantity is the fixation probability1–10, which characterizes the chances of 
an invading mutant to get fixed in a homogeneous population of residents. The most well-known mathematical 
model for studying evolutionary dynamics on finite populations is the birth-death Moran process11. Initially, a 
population of N individuals consists of two types: N − 1 residents, and 1 invading mutant. The residents are asso-
ciated with a normalized fitness of 1, whereas the invading mutant has a fitness advantage r > 1, which is constant 
and independent of the composition of the population. The population size remains fixed over the course of time. 
At each time point, an individual is chosen for reproduction with probability proportional to its fitness, and its 
offspring replaces an individual chosen uniformly at random. In this setting, the population is well-mixed, as the 
reproducing individual may replace any other individual. The fixation probability is defined as the probability that 
the Moran process results in a population of N mutants (i.e., the mutants get fixed in the population). The fixation 
probability, ρ, for well-mixed populations is a function of r and N, and equals
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It is well-known that population structure affects the evolutionary dynamics5, 12–24. Evolutionary graph theory 
models the population structure as a graph, where each vertex of the graph is occupied by one individual3, 5, 25. 
The edges of each vertex define the neighboring sites of that vertex in space. The generalized Moran process on 
a graph is identical to the Moran process on well-mixed populations, with the exception that each offspring can 
only replace a neighbor of the reproducing individual. The well-mixed population then follows as a special case of 
the generalized Moran process, where the individuals are spread on the vertices of a Clique (or complete graph) 
KN. A graph of N vertices GN is said to amplify selection5, if the fixation probability ρ(r, GN) of a randomly placed 
initial mutant on GN is larger than the fixation probability on a well-mixed population of the same size (i.e., if  
ρ(r, GN) > ρ(r, KN)). The emerging question is then to what extent the population structure can amplify the fixa-
tion probability5, 20, 21, 26, 27.

In this work, we focus on the most commonly studied case, where the population structure is modeled as an 
undirected graph, and the initial mutant arises with uniform probability on each vertex. Ever since the landmark 
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work of ref. 5, there has been immense interest in identifying selection amplifiers in this regime15, 16, 26, 28–30. Due 
to its combinatorial nature, the focus of such work has been primarily on simple structures with high degree 
of symmetry (e.g., Paths, Stars and Cycles). The intricacy of the problem has also given rise to computational 
approaches31–37, which rely on numerical calculations and Monte Carlo simulations to search for amplifiers 
among small graphs.

One graph that has attracted considerable attention is the Star graph SN, with fixation probability approxi-
mated by
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for large enough N. More precise formulas have been derived in various works15, 30, 38. As N → ∞, the fixation 
probability on the Star becomes ρ(r, S∞) = 1 − r−2. In contrast, the corresponding probability for the well-mixed 
population is ρ(r, K∞) = 1 − r−1. Hence, the Star is a quadratic amplifier, as it effectively amplifies the selective 
advantage of mutants from r to r2, where the well-mixed population is used as the basis of comparison. For over a 
decade of active study, the Star graph has been the strongest amplifier known for undirected graphs in the limit of 
large populations (as N → ∞). While for directed graphs stronger amplifiers are known (such as the Superstar5), 
the absence of stronger undirected amplifiers as compared to the Star graph has led to the conjecture that in the 
limit of large populations, among undirected graphs the Star graph is the strongest amplifier. The conjecture can 
be formalized as follows:

Conjecture 1. For all values of r ≥ 1, for every infinite family of undirected graphs (GN)N≥1, we have 
ρ ρ≤→∞ →∞r G r Sliminf ( , ) liminf ( , )N N N N .

In the case of finite populations, exhaustive numerical calculations have revealed that there exist graphs of 9 
vertices which for some values of r yield higher fixation probability that the fixation probability on S9

26. However, 
amplification stronger than that on the Star graph has remained rare even in the case of finite populations.

In this work we present graphs with higher fixation probability than that on the Star graph, both for finite 
populations and at the limit of large populations, for some values of r. First, we present a graph GN for a fixed size 
N which we call a Comet, and show that there exist values of r > 1 such that ρ(r, GN) > ρ(r, SN). Second, we present 
a family of graphs (MN)N≥1 and show that there exist values of r > 1 such that ρ ρ>→∞ →∞r M r Slim ( , ) lim ( , )N N N N . 
This refutes Conjecture 1. The new graph family is called the Metastar family, which is a simple and natural exten-
sion of the Star family by replacing every leaf node with a graph Gm of small size. Our main result gives the fixa-
tion probability on Metastars as a function of the fixation probability on the small graph Gm. We show that the 
Metastar family instantiated with Comet graphs as Gm leads to the refutation of the conjecture. Hence the coun-
terexample is a simple and natural extension of the Star family.

The Generalized Moran Process
We denote by GN = (VN, EN) an undirected graph of N vertices, which is connected. Given a vertex u ∈ VN, we 
denote by Nh(u) the set of neighbors of u, i.e., the vertices v ∈ VN such that (u, v) ∈ EN. The degree of u is the 
number of neighbors of u, i.e., deg(u) = |Nh(u)|. A population of N individuals is spread on the vertices of GN. 
Each individual is either a resident or a mutant. Mutants are associated with a fitness advantage r ≥ 1, whereas the 
fitness of residents is normalized to 1. A configuration X ⊆ VN of GN is the set of vertices of GN that are occupied 
by mutants. The generalized Moran process on GN is a discrete-time random process. Given a configuration Xi at 
time i, the next configuration at time i + 1 is determined by the following two events in succession.

	 1.	 One individual is chosen at random to reproduce, with probability proportional to its fitness. That is, the 
probability to reproduce is r/F(Xi) for a mutant, and 1/F(Xi) for a resident, where

= ⋅ + −r NF(X ) X Xi i i

is the total population fitness. Let u be the vertex occupied by the reproducing individual.
	 2.	 A neighbor v ∈ Nh(u) is chosen uniformly at random. The individual occupying v dies, and the offspring of 

the reproducing individual is placed on v.

The mutants reach fixation in GN if at some time point i we reach Xi = V, i.e., all vertices of GN are occupied by 
mutants. The mutants reach extinction if at some time point i we reach Xi = ∅, i.e., all vertices of GN are occupied 
by residents. We denote by ρ(r, GN) the probability that the mutants reach fixation in the generalized Moran pro-
cess starting with a single, uniformly placed mutant on GN.

The Clique and Star graphs.  The Clique graph KN consists of N vertices and an edge between each pair of 
vertices. The Star graph SN consists of a single root vertex and N − 1 leaf vertices, and an edge between the root 
and each of the leaves. It is known that3
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In particular, the exact fixation probability on SN is given by ref. 30
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The Comet Family of Amplifiers
In this section we introduce a new graph family called the Comet graph, and show that for some fixed population 
sizes and values of r, Comets amplify selection more strongly than Stars.

The Comet graph CN
m.  Let m be any integer with 1 ≤ m ≤ N. The Comet graph CN

m consists of a Clique Km of 
m vertices, where one vertex of the Clique is the root of a Star SN−m+1 of N − m + 1 vertices. Figure 1 shows an 
illustration. We refer to the Clique-part and the leaves of the Star-part of CN

m as the head and the tail of the Comet, 
respectively. Observe how the Clique and Star graphs of N vertices are a special case of the Comet graph, without 
a tail (i.e., =K CN N

N) and the largest possible tail 1 (i.e., =S CN N
1 ), respectively.

Amplification on Comet graphs.  The Comet CN
m has the interesting property that for some values of m and 

r, it amplifies selection more strongly that the Star graph. Figure 2 shows the fixation probabilities on Comet 
graphs produced by keeping the population size N fixed, and varying the portion of the vertices that appear in the 
tail of the Comet. Remarkably, there is a range of graphs in between the two endpoints which amplify selection 
more strongly than the Star. For instance, we have ρ . ≥ .C(1 05, ) 0 113200

120  and ρ(1.05, S200) < 0.093 which serves as 
a witness for stronger amplification than that on the Star graph.

Figure 1.  The Comet graph CN
m consists of a Clique Km and a Star SN−m+1 graph.

Figure 2.  Fixation probabilities on the Comet graphs CN
m. The Clique graph KN and the Star SN graph appear in 

the leftmost and rightmost points respectively. The X-axis shows the percentage of the vertices that appear in the 
tail of the Comet, with the remaining vertices appearing in the head of the Comet. In each case, all data-points 
which appear higher that the rightmost point of the plot correspond to Comets which amplify selection more 
strongly than the Star.
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The Metastar Family of Amplifiers
In this section we refute Conjecture 1 for the limit of large populations. We introduce the Metastar graph, and 
compute the fixation probability of new mutants arising uniformly at random. Intuitively, the Metastar is identical 
to the Star, where each leaf vertex is replaced by a graph of small size. We will afterwards show how the Metastar 
family can be instantiated with such small graphs to refute Conjecture 1. We start with defining a variant of the 
generalized Moran process, called the lazy generalized Moran process.

The v-lazy generalized Moran Process
The v-lazy generalized Moran process.  Given a distinguished vertex v ∈ VN, the v-lazy generalized 
Moran process on GN is identical to the generalized Moran process on GN, except for the following modification. 
Whenever the reproducing individual occupies v, a biased coin with probability of heads 1/(deg(v) + 1) is flipped, 
so that

	 1.	 If the coin comes up heads, the individual replaces itself (i.e., the population remains unchanged).
	 2.	 If the coin comes up tails, the individual replaces one of its neighbors, chosen uniformly at random, as in 

the generalized Moran process.

Intuitively, the vertex v is considered a neighbor to itself when it comes to replacing a neighboring individual.

Fixation probabilities.  We consider fixation probabilities in the v-lazy generalized Moran process under 
two particular scenarios: (i) the initial mutant is placed on a vertex chosen uniformly at random, and (ii) the ini-
tial mutant is placed on a specific vertex. To refer to such events, we rely on the following notation.

•	 ρ(r, GN, v) is the probability that the mutants reach fixation in the v-lazy generalized Moran process starting 
with a single, uniformly placed mutant on GN.

•	 ρ+(r, GN, v) is the probability that the mutants reach fixation in the v-lazy generalized Moran process starting 
with a single mutant placed on v.

•	 ρ−(r, GN, v) is the probability that the mutants reach extinction in the v-lazy generalized Moran process start-
ing with a single resident placed on v.

The Metastar Family
Let Gm = (Vm, Em) be any fixed graph of m vertices, and distinguish some v ∈ Vm as the attachment vertex of Gm. 
Given some ∈ +n , we let N(n) = n · m + 1, and construct the Metastar graph N n

G
( )

m  parameterized by Gm as 
follows.

	 1.	 We introduce n copies of Gm, and a new root vertex s.
	 2.	 We add an edge between the attachment vertex v of each copy of Gm and the root vertex s.

Figure 3 provides an illustration. From this point, we identify the i-th leaf of N n
G

( )
m  with the i-th copy of Gm.

Fixation Probabilities on the Metastar
We now focus on the fixation probability on the Metastar. Since the graph is parameterized by Gm, this probability 
depends on Gm. However, because of the structure of N n

G
( )

m , it does so in a modular way. This section outlines 
some key characteristics of the Moran process on Metastars, and presents intuitive arguments for the fixation 
probability. We refer to the Supplementary Information for the formal proofs. We first introduce some terminol-
ogy which will help with the exposition of these ideas.

	 1.	 A leaf of N n
G

( )
m  is called heterogeneous if mutants and residents coexist in that leaf, and homogeneous 

otherwise. A mutant leaf (resp. resident leaf) is a homogeneous leaf that contains only mutants (resp. 
residents).

Figure 3.  The Metastar graph N n
G

( )
m  is identical to the Star graph, where every leaf is replaced by a small graph 

Gm.
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	 2.	 We say that a leaf i hits the root s when the individual placed on the attachment vertex of the i-th copy of Gm 
places an offspring on s. Similarly, the root s hits leaf i when the individual placed on s places an offspring 
on the attachment vertex of the i-th copy of Gm. We also say that a leaf i hits another leaf j at times (t1, t2) 
with t1 < t2 if leaf i hits the root at time t1 and the root hits leaf j at time t2, and the root is not hit again in the 
interval [t1, t2].

Key idea: The key idea in analyzing the fixation probability on N n
G

( )
m  is to show that as n → ∞, every time the root 

hits a leaf i, or some leaf i hits another leaf j, the involved leaves are homogeneous with high probability. This is 
formally captured in the following two lemmas.

Lemma 1. Consider that at some point the root hits a leaf i. The probability that the i-th leaf is heterogeneous the next 
time the root hits leaf i is O n(1/ ).

Proof Idea. Since the graph Gm of leaf i has constant size, the expected time for leaf i to reach a homogeneous 
state is O(n). On the other hand, the root s will need in expectation Ω(n2) rounds to hit leaf i, as (i) s has n neigh-
bors, and (ii) s reproduces approximately once every N(n) = Ω(n) rounds. The desired result then follows easily 
by applying concentration bounds. We refer to Lemma S1 in the Supplementary Information for the formal 
proof.	 □

Note that the complementary case of Lemma 1 does not hold, i.e., a heterogeneous leaf i will hit the root 
several times before leaf i becomes homogeneous. However, most of these events have no effect, as an offspring 
placed on the root by leaf i will be replaced by offsprings of other leaves, with high probability. The crucial event is 
the one in which a heterogeneous leaf i hits the root, and subsequently the root hits another leaf j before the root 
is hit again. Consider that leaf i becomes heterogeneous at some time t, and leaf i hits leaf j at times (t1, t2), with 
t1 > t. We call times (t, t1, t2) a heterogeneous hit if leaf i has remained heterogeneous throughout the interval [t, t1]. 
The following lemma states that heterogeneous hits are rare.

Lemma 2. Consider that at some time t the i-th leaf is heterogeneous. The probability of a heterogeneous hit (t, t1, t2) 
is O n(1/ ).

Proof Idea. Note that in order for leaf i to hit leaf j, the following two events need to occur in succession.

	(A)	 Leaf i hits the root s, and afterwards.
	(B)	 The root s reproduces before it is hit.

First, we rely on Lemma 1 to conclude that with high probability, the root s does not hit leaf i before the lat-
ter becomes homogeneous. Hence, the probability that leaf i has remained heterogeneous in the interval [t, t1] is 
approximately the probability that the v-lazy generalized Moran process on Gm has not reached a homogeneous 
state.

Since s has n neighbors, the probability of event B happening in each round is O(1/n). Hence, in expectation, 
event A will need to happen Ω(n) times before leaf i hits leaf j. On the other hand, event A occurs with rate 
O(1/n). Thus the expected time required for leaf i to hit leaf j is Ω(n2). Finally, since the graph Gm occupying leaf 
i has constant size, the expected time to reach a homogeneous state is only O(n). The desired result then follows 
easily by applying concentration bounds. We refer to Lemma S2 in the Supplementary Information for the formal 
proof.	 □

We are now ready to sketch the behavior of the Metastar. The initial mutant arises with high probability in one 
of the leaves, and is placed uniformly at random on one vertex of the corresponding graph Gm. Lemma 1 implies 
that we can focus on that leaf in isolation. Since v is attached to the root s, the corresponding evolutionary process 
on Gm alone is the v-lazy generalized Moran process, and hence the invading mutant fixates in the initial leaf with 
probability ρ(r, Gm, v). From that point on, Lemma 1 and Lemma 2 guarantee that the Metastar behaves like the 
Star, with the exception that

	 1.	 When the root hits a resident leaf with a mutant offspring, the leaf turns mutant with probability approxi-
mately ρ+(r, Gm, v).

	 2.	 When the root hits a mutant leaf with a resident offspring, the leaf turns resident with probability approxi-
mately ρ−(r, Gm, v).

In the case of the Star, both probabilities equal 1, since each leaf consists of a single vertex. Thus, if we focus on 
the ratio of probabilities of increasing the number of mutant leaves by one over decreasing it by one, this forward 
bias is amplified from r2 (in the case of the Star) to r2 · ρ+(r, Gm, v)/ρ−(r, Gm, v). We refer to the SI for the formal 
proof. The following theorem states the fixation probability on the Metastar.

Theorem 1. Let Gm be a fixed graph and v the attachment vertex of Gm. Denote p = ρ(r, Gm, v) and α = ρ−(r, Gm, v) 
and β = ρ+(r, Gm, v). The fixation probability of a single mutant placed uniformly at random on N n

G
( )

m  is
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Note that for the special case where m = 1 and Gm consists of a single vertex Gm = ({v}, ∅), we have 
p = α = β = 1, and eq. (1) gives the fixation probability on the Star graph. As n → ∞, we have N → ∞, and obtain 
that

ρ α β≥ ⋅ − ⋅ .
→∞

−r p rlim ( , ) (1 ( / )) (2)N N
G 2m

Instances of the Metastar Family
In this section we present instances of the Metastar family. In particular we will instantiate the graphs Gm of the 
Metastar family with the Comet graphs of the previous Section.

Metastar: The Comet-swarm N n
C
( )
200
100

 .  We consider the Metastar N n
C

( )
200
100

  where each of the n leaves is a 
fixed-sized Comet C200

100, and the attachment vertex v of C200
100 is some arbitrary vertex of its tail (Fig. 4). We refer to 

this graph as the Comet-swarm, and obtain instances of various population sizes by increasing the number of 
leaves n.

As the size of C200
100 is fixed, we can obtain the probabilities ρ=p r C v( , , )200

100  and α ρ= − r C v( , , )200
100  and 

β ρ= + r C v( , , )200
100  for any r, by direct calculations. Figure 5 shows the fixation probability ρ→∞lim ( )N N

C200
100

 
obtained from Eq. 2 for various values of r. In particular, we have

ρ ρ. = . . = .
→∞ →∞

Slim (1 1, ) 0 209 and lim (1 12, ) 0 203;
N N

C

N
N

200
100



and thus obtain the following refutation of Conjecture 1 for the limit of large populations.

Counterexample 1. For any r ∈ [1.1, 1.12], we have that 

ρ ρ> .
→∞ →∞

r r Slim ( , ) lim ( , )
N N

C

N
N

200
100



Figure 4.  The Comet-swarm N
C200

100
.

Figure 5.  Fixation probabilities on N
C200

100
  for different values of relative fitness r and as N → ∞. For a range of 

values of r the Metastar amplifies more strongly than the Star.
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Discussion
The generalized Moran process studies the evolution of populations on spatial structures. To understand the 
impact of the underlying topology, efforts have focused on characterizing the extremes of this process, i.e., the 
maximum amplification of selection that can be attained. The combinatorial nature of the problem makes it 
difficult for mathematical analysis, and most works focus on either simple graphs or asymmetric topologies, 
represented as directed graphs5. Directed graphs can exhibit extreme behavior, from strongly amplifying selec-
tion (fixation with probability 1) to strongly suppressing it (fixation with probability 0). There even exist directed 
graphs where neither fixation nor extinction is possible. On the other hand, symmetric structures enjoy smoother 
behavior, as the population always resolves to a homogeneous state. In many cases symmetry is a very natural 
property, i.e., if an individual A can influence and individual B, then B can also influence A. Thus, amplification 
on undirected graphs is a very natural question to study.

It has been conjectured that the Star graph is the strongest amplifier of natural selection among undirected 
population structures. In this work we refute the conjecture both for fixed population sizes (with the Comet 
graph) and at the limit of large populations (with the Comet-swarm Metastar family of graphs), for a range of 
values of r. The Metastar family is a simple and natural extension of the well-studied Star family, where every leaf 
node is replaced with a graph of small size. We show that this simple and natural extension of Stars is sufficient for 
refuting the long-standing conjecture. Our results shed new light into the world of selection amplifiers, and we 
hope that they will inspire further research on this fascinating topic.
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