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Abstract

Tumor angiogenesis induces local hypoxia and recruits immunosuppressive cells, whereas hypoxia subsequently
promotes tumor angiogenesis. Immunotherapy efficacy depends on the accumulation and activity of tumor-
infiltrating immune cells (TIICs). Antangiogenic therapy could improve local perfusion, relieve tumor
microenvironment (TME) hypoxia, and reverse the immunosuppressive state. Combining antiangiogenic therapy
with immunotherapy might represent a promising option for the treatment of breast cancer. This article discusses
the immunosuppressive characteristics of the breast cancer TME and outlines the interaction between the tumor
vasculature and the immune system. Combining antiangiogenic therapy with immunotherapy could interrupt
abnormal tumor vasculature-immunosuppression crosstalk, increase effector immune cell infiltration, improve
immunotherapy effectiveness, and reduce the risk of immune-related adverse events. In addition, we summarize
the preclinical research and ongoing clinical research related to the combination of antiangiogenic therapy with
immunotherapy, discuss the underlying mechanisms, and provide a view for future developments. The combination
of antiangiogenic therapy and immunotherapy could be a potential therapeutic strategy for treatment of breast
cancer to promote tumor vasculature normalization and increase the efficiency of immunotherapy.
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Introduction
The signal imbalance between proangiogenic and antian-
giogenic molecules leads to tumor vascular dysfunction
[1, 2]. Angiogenesis, which refers to the formation of ab-
normally immature vessels, often accompanies tumori-
genesis. The abnormal structure of the tumor
vasculature and restricted blood perfusion prevent im-
mune cells from infiltrating tumors efficiently, which re-
sults in an unbalanced and immunosuppressive tumor
microenvironment (TME) [2].

Revolutionary changes in cancer treatment have oc-
curred with the continuous development of immune
checkpoint blockade (ICB) immunotherapy. However,
only 10–30% of breast cancer patients benefit from ICB
immunotherapy [3]. Hence, there is a need to explore
how to intensify treatment based on immunotherapy to
achieve more survival benefits. Although ICB could re-
activate dysfunctional or depleted T cells, these reacti-
vated T cells could not infiltrate into the center of solid
tumors to exert antitumor effects. Antiangiogenic ther-
apy has been widely studied for a long time [4], and
most antiangiogenic agents target vascular endothelial
growth factors (VEGFs) and VEGF receptors (VEGFRs)
[5]. In preclinical research, antiangiogenic therapy has
been shown to reverse abnormal tumor blood perfusion,
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promote immune cell infiltration and normalize the im-
mune TME [6, 7]. Given this evidence, tumor angiogen-
esis could interact with the immune TME. Targeting
angiogenesis represent a potential option to reverse
tumor-associated perfusion abnormalities and the im-
munosuppressive microenvironment.
In this article, we reviewed the crosstalk between the

breast cancer vascular system and the immune micro-
environment, discussed the mechanisms by which anti-
angiogenic therapy reverses the immunosuppressive
TME and emphasized the clinical evidence of antiangio-
genic therapy plus immunotherapy. We also discussed
biomarkers to monitor the response to antiangiogenic
agents plus immunotherapy and the challenges in this
emerging field.

Immunosuppressive TME induced by tumor
angiogenic factors
Enhanced angiogenesis is the hallmark of cancer. Tumor
vasculature is unevenly distributed and chaotic [8]. On
the one hand, restricted tumor vascular perfusion blocks
the transfer of chemotherapeutic and immunotherapeu-
tic agents to the tumor interior and eliminates infiltrated
immunosuppressive cells in the TME. On the other
hand, tumor-associated vascular endothelial cells can ex-
press programmed death-ligand 1 (PD-L1) and Fas lig-
and (FasL), selectively inhibit cytotoxic T cells (CTLs),
and promote regulatory T cell (Treg) function to en-
hance the immunosuppressive TME [9, 10]. It has been
reported that many tumor angiogenic factors contribute
to the immunosuppressive TME, including vascular
endothelial growth factors, angiopoietin 2, placental
growth factor, and transforming growth factor-β.

Vascular endothelial growth factors
As a critical factor in tumor angiogenesis, VEGFs could
induce an immunosuppressive TME through hypoxia
and a low pH [11]. VEGF can bind to VEGFR1 (FLT1)
and prohibit dendritic cell (DC) maturation and antigen
presentation [12], thus impeding T cell activation and
limiting the adaptive antitumor immune response [13].
Increased peripheral VEGF levels are associated with de-
creased peripheral mature DCs, and anti-VEGF treat-
ment could increase the number of mature DCs and
reverse VEGF-mediated immunosuppression [14]. Ele-
vated VEGF-A levels promote CD8+ T cell exhaustion
by enhancing the expression of PD-1 [15] and contribute
to Treg proliferation [16] and myeloid-derived suppres-
sor cell (MDSC) accumulation [17] in the TME. How-
ever, Palazon et al. demonstrated that hypoxia and
hypoxia-inducible factor-1α (HIF-1α) support the acqui-
sition of an effector phenotype by CD8+ T cells, but the
activated effector CD8+ T cells could produce high levels
of VEGF-A [18]. The above results indicate that the

regulation mechanism between VEGF and the TME im-
mune status needs be further investigated.
In addition, VEGF-A induces thymocyte selection-

associated HMG-bOX (TOX)-mediated depletion of
cytotoxic T lymphocytes (CTLs) [19]. TOX is a crucial
transcription factor in T cell development and plays a
vital role in T cell exhaustion [20]. VEGF-A upregulates
the expression of TOX and initiates TOX-mediated re-
programming into an exhausted state in CD8+ T cells
[19]. Knockout of VEGFR-2 downregulates TOX expres-
sion and reactivates tumor-specific exhausted CD8+ T
cells, indicating the therapeutic potential of targeting the
VEGF/VEGFR-2 axis [19].

Angiopoietin 2
Activated angiopoietin 2 (ANG2) upregulates adhesion
molecule expression and recruits bone mesenchymal
stem cells (BMSCs), Tregs, and M2-like macrophages
expressing the ANG receptor (tyrosine kinase with Ig
and EGF homology domains-2, TIE-2) [7, 21]. Addition-
ally, ANG2 suppresses monocyte antitumor function by
inhibiting TNF-α secretion [22] and promotes Treg acti-
vation and CTL inhibition through interleukin 10 (IL-
10) [23].

Placental growth factor
Placental growth factor (PlGF), as a member of the
VEGF family that induces an angiogenic phenotype, dir-
ectly interacts with VEGFR1 to stimulate tumor angio-
genesis and promote macrophage repolarization into the
M2-like phenotype, facilitating immune escape [24].
PlGF blockade induces vascular normalization and
macrophage phenotypic polarization from an M2-like
state to an M1-like state [25].

Transforming growth factor-β
Transforming growth factor-β (TGF-β) is another im-
portant factor that regulates pericyte and endothelial cell
proliferation and induces different angiogenic responses
according to the balance between activin receptor-like
kinase 1 (ALK1) and ALK5 signals. TGF-β/ALK1 signal-
ing promotes endothelial cell proliferation, migration
and tube formation by activating SMAD1/5 [26]. In
addition, TGF-β inhibits natural killer (NK) cells and T
cells to suppress tumor immune surveillance [27].

TME elements in regulating tumor angiogenesis
Tumor-infiltrating immune cells (TIICs) are deeply in-
volved in the process of tumor angiogenesis, and im-
munosuppressive cells can promote antiangiogenic
therapy resistance by inducing neovascularization in the
TME [28, 29] (Fig. 1). Immune cells can secrete proan-
giogenic or antiangiogenic factors to directly affect the
phenotype and function of the tumor vascular
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endothelium [14, 30, 31] or transform into other im-
mune cell types, which indirectly affects the quantity
and quality of tumor blood vessels [32, 33].

Macrophages
In a clinical trial evaluating immunotherapy in triple-
negative breast cancer (TNBC), the expression level of
PD-L1 on tumor-associated macrophage (TAMs) was
positively correlated with the response to immunother-
apy, indicating the vital role of TAMs in the TME [34].
According to differences in functions and secreted cyto-
kines, macrophages are divided into M1-like (antiangio-
genic phenotype) and M2-like (proangiogenic
phenotype) macrophages [35–37]. M1-like macrophages
inhibit angiogenesis and induce vascular maturation by
secreting antiangiogenic cytokines (IL-12 and TNF-α)
[38, 39]. M1-like macrophages secrete IL-12 to polarize
other TAMs into the M1-like phenotype, further

reducing the microvascular density through a positive
feedback loop [39–41]. However, previous studies have
demonstrated that M2-like macrophages are more dom-
inant than M1-like macrophages in the TME [37, 39].
M2-like macrophages promote tumor angiogenesis by
producing proangiogenic growth factors (VEGF-A, epi-
dermal growth factor (EGF), and fibroblast growth factor
(FGF)), proangiogenic CXC chemokines (CXCL8/IL-8
and CXCL12), and angiogenesis-related factors (TGF-β
and TNF-α). These factors enhance the migration and
proliferation of endothelial cells and polarize M1-like
macrophages into an M2-like phenotype.
The success of antiangiogenic therapy is partly based

on macrophage polarization from an M2-like to an M1-
like phenotype [42]. Eradication of macrophages with
anti-colony stimulating factor 1 (CSF1) antibodies elimi-
nates the benefits of antiangiogenic therapy, suggesting
the importance of macrophages in antiangiogenic

Fig. 1 Abnormal tumor vasculature triggers immunosuppression in the tumor microenvironment (created with BioRender.com). Malformed and
dysfunctional vascular systems in breast cancer cause perfusion restriction, leading to hypoxia and acidosis in the TME. Tumor vasculature
abnormalities promote immunosuppression through multiple mechanisms. VEGF induces tumor angiogenesis, and tumor vascular endothelial
cells with PD-L1 and Fas-L expression recruit immunosuppressive cells. CSF1, TGF-β, and CXCL12 polarize TAMs from a protumorigenic M1-like
phenotype into an antitumorigenic M2-like phenotype. VEGF, CXCL8, and CXCL12 inhibit DC maturation, resulting in impaired antigen
presentation and leading to disrupted T cell activation. TGF-β and IL-10 induce CD8+ T cell exhaustion, and TGF-β inhibits NK cell function. Tregs
and MDSCs accumulate, activate, and expand in the TME. The CAFs in the TME promote tumor angiogenesis by producing VEGF, PDGF-c, PDPN,
and MMP13. The PD-L1 pathway is normally activated as a mechanism to evade the antitumor immune response. Overall, aberrant tumor
angiogenesis results in an immunosuppressive TME. ANG2, Angiopoietin 2; CAFs, Cancer-associated fibroblast; CCL28, CC chemokine ligand 28;
CXCL8, CXC chemokine ligand 8; CXCL12, CXC chemokine ligand 12; CSF1, Colony-stimulating factor 1; DC, Dendritic cell; Fas-L, FAS antigen
ligand; FGF, Fibroblast growth factor; MMP, Matrix metallopeptidase; NK, Natural killer; PD-1, Programmed cell death protein 1; PD-L1,
Programmed cell death 1 ligand 1; PDGF, Platelet-derived growth factor; PDPN, Podoplanin; ROS, Reactive oxygen species; TAM, Tumor-associated
macrophage; TGF-β, Transforming growth factor beta; TME, Tumor microenvironment; Tregs, Regulatory T cells; VEGF, Vascular endothelial
growth factor
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efficacy [43]. In mouse breast cancer models, elimination
of macrophages with clodronate liposomes inhibited
tumor angiogenesis and growth [44, 45].
TIE2-expressing macrophages (TEMs) are another

unique subtype of TAMs with the capacity to promote
tumor angiogenesis [43]. TEMs can bind to ANG2 se-
creted by endothelial cells or tumor cells and further en-
hance angiogenesis [46]. Targeted inhibition of TEMs
has been indicated to induce tumor vascular
normalization and promote tumor regression [47].

Dendritic cells
DCs, an essential adaptive immune component of the
TME, regulate tumor angiogenesis in accordance with
the maturation state. Mature DCs suppress tumor angio-
genesis by secreting antiangiogenic cytokines (e.g., IL-12
and IL-18) [48, 49]. Moreover, mature DCs release
interferon-α (IFN-α) to directly inhibit the proliferation
of endothelial cells [50]. In the TME, tumor cells recruit
immature DCs from the peripheral blood by releasing
multiple cytokines (e.g., VEGF, β-defensin, CXCL12,
HGF, and CXCL8), which lack the ability to inhibit
tumor angiogenesis [14].

CD8+ CTLs
CD8+ CTLs play a key role in inhibiting tumor angio-
genesis by secreting IFN-γ [51, 52], which directly in-
hibits endothelial cell proliferation and tumor
vascularization [53] and polarizes M2-like TAMs to an
M1-like phenotype [54]. IFN-γ also enhances blood ves-
sel maturation to promote tumor vascular remodeling
and inhibit tumor growth by reducing VEGF-A levels
and increasing CXCL9, CXCL10 and CXCL11 levels [55,
56].

Th1, Th2 and Th17 cells
CD4+ T helper 1 (Th1) cells help normalize tumor ves-
sels by producing IFN-γ in the TME. In a breast cancer
model, Th1 cell activation was shown to improve peri-
cyte coverage, reduce abnormal hyperplasia of tumor
vessels, and induce vascular normalization [57, 58]. Th1
cells also inhibit tumor angiogenesis by polarizing M2-
like TAMs into M1-like macrophages and inducing DC
maturation [8, 59]. Unlike Th1 cells, Th2 cells recruit
M2-like macrophages to promote tumor angiogenesis by
expressing IL-4, IL-5 and IL-13 [32, 41, 60]. Th17 cells,
another subtype of CD4+ T helper cells, promote endo-
thelial cell proliferation and tumor angiogenesis by ex-
pressing IL-17, a poor prognostic factor in breast cancer
[61, 62].

Tregs
Hypoxic conditions in the TME contribute to Treg pro-
liferation by CCL28 and VEGF overexpression in tumor

cells [63, 64]. Tregs secrete VEGF, recruit endothelial
cells and promote tumor angiogenesis directly [65]. Fur-
thermore, Tregs indirectly facilitate tumor angiogenesis
by inhibiting Th1 cell activation and polarizing TAMs
into the M2-like phenotype [35, 41]. Targeted removal
of Tregs reduces VEGF levels and inhibits tumor angio-
genesis in the TME [66].

MDSCs
In the TME, MDSCs promote tumor angiogenesis by
producing VEGF, FGF2, Bv8, and matrix metalloprotein-
ase (MMP9) [67, 68]. CD11b+ Gr1+ MDSCs increase
intratumor vascular density and reduce tumor necrosis
[69, 70]. In addition, MDSCs can be directly involved in
tumor angiogenesis by acquiring endothelial cell proper-
ties [69, 71]. Reduced MDSCs in the TME are associated
with reduced tumor angiogenesis and tumor growth in-
hibition [72, 73]. Several studies have linked the accu-
mulation of MDSCs to an increase in intratumor VEGF
concentrations during disease progression [74]. VEGF
stimulates the recruitment of MDSCs, promoting im-
munosuppression and angiogenesis [75, 76]. MDSCs
overcome VEGF inhibition by secreting large amounts
of VEGF or interfere with the effects of VEGF-targeted
therapy by activating the VEGF-independent proangio-
genic signaling pathway [77].

Cancer-associated fibroblasts (CAFs)
CAFs account for 50–90% of solid tumors and have
complex interactions with tumor cells and the extra-
cellular matrix (ECM) [78, 79]. In breast cancer, CAFs
secrete stromal cell-derived factor-1 (SDF1), CXC
chemokine 12 (CXC12) and VEGF to promote angio-
genesis [80–82]. In addition, CAFs secrete podoplanin
(PDPN), which can stimulate angiogenesis and lym-
phangiogenesis by upregulating VEGF-C but not
VEGF-A in breast cancer [83–85]. Galectin-1 derived
from CAFs accelerates angiogenesis and promotes
tumor invasion by enhancing VEGF expression in
tumor cells and VEGFR2 phosphorylation in epithelial
cells (ECs) [86–89]. In the hypoxic TME of breast
cancer, G-protein-coupled estrogen receptor (GPER),
HIF-1α and reactive oxygen species (ROS) are in-
volved in CAF activation and VEGF expression upreg-
ulation to promote hypoxia-dependent tumor
angiogenesis [90, 91]. CAFs can release ECM-bound
VEGF by secreting MMP-13 [92]. CAFs also promote
tumor angiogenesis in a VEGF-independent manner.
In chemotherapy-resistant tumors, increased expres-
sion of platelet-derived growth factor-c (PDGF-c) by
CAFs contributes to tumor angiogenesis during anti-
VEGF therapy [93].
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Antiangiogenic therapy reverses the
immunosuppressive TME
Antiangiogenic therapy promotes TIIC accumulation
Antiangiogenic therapy could normalize tumor vessels
by pruning immature vessels [94], provides paths for im-
mune cell infiltration and recruits effector TIICs [95].
Firstly, antiangiogenic treatment has been identified to
induce DC maturation and promote antigen presenta-
tion [18, 96]. Secondly, it upregulates the expression of
adhesion molecules (e.g., intercellular adhesion
molecule-1 (ICAM1) and vascular cell adhesion
molecule-1 (VCAM1)) during the vascular normalization
window and helps T cells cross the endothelial barrier
and promote CD8+ T cell accumulation [7, 97]. Thirdly,
it transforms M2-like TAMs into the M1 phenotype
[98]. Meanwhile, antiangiogenic therapy reduces the
levels of immunosuppressive TIICs including Tregs and
MDSCs in peripheral blood, accompanied by an im-
provement in the Th1 cell response [99]. High endothe-
lial venules (HEVs) are specialized vascular units
organized in tertiary lymphoid structures that recruit
immature T cells and help immature T cells differentiate
into CTLs [100]. Endothelial cells in HEVs support the
homing and migration of effector immune cells into the
tumor via ICAM1 [101]. HEVs are remodeled by VEGF-
D in tumor tissues, expand and lose their typical morph-
ology and lymphocyte transport-related molecular fea-
tures (loss of CCL21 expression) [102–104].
Antiangiogenic therapy helps restore the typical morph-
ology of HEVs and promotes lymphatic drainage [100].
Antiangiogenic therapy also upregulates PD-L1 expres-
sion on endothelial cells and tumor cells in mouse breast
cancer models [9, 101], which sensitizes the tumor cells
to anti-PD-1 therapy [7].

High dose or low dose?
High-dose or long-term antiangiogenic therapy causes
large-scale vascular pruning in vitro, which aggravates
hypoxia or acidosis in the TME and promotes immuno-
suppression, suggesting that the optimal doses of antian-
giogenic drugs need to be further explored [105, 106].
When excessive vessels are overpruned or alternative an-
giogenic pathways are activated, the window of vascular
normalization could close [107]. In a study of a hepato-
cellular carcinoma model, blocking VEGF signaling with
high-dose sorafenib aggravated TME hypoxia and pro-
moted the recruitment of immunosuppressive Tregs and
M2-like macrophages [7]. In addition, excessive antian-
giogenic therapy could produce a hypoxic environment
that favors cancer stem cell survival [108]. In contrast,
lower doses of antiangiogenic agents are likely to main-
tain long-term vascular normalization [2]. The antitu-
mor activities of TIICs could be improved by
normalizing vessels, reducing tumor hypoxia, and

restoring the physiological pH [109]. Hence, to realize
the full potential of antiangiogenic therapy, the antian-
giogenic regimen and dose need to be adjusted accord-
ing to the baseline level of the microvascular density
(MVD) and pretreatment level of circulating VEGF [110,
111].

Mono-blockade or dual-blockade?
Antiangiogenic therapy could create a vascular
normalization window and improve the delivery of
therapeutic drugs and effector immune cells [112]. The
process of vascular normalization is short and reversible,
and the normalization window is typically short (from
weeks to months), depending on the type and dose of
antiangiogenic agent [7, 113]. Tumors can evade antian-
giogenic therapy through upregulation of alternative an-
giogenic pathways (e.g., ANG2/TIE2 signaling) [42, 43].
In melanoma, peripheral ANG2 levels represent an ef-
fective predictor of ICB immunotherapy response with
increased ANG2 levels indicating no response to ICB
immunotherapy [114]. Compared with anti-VEGF or
anti-ANG2 monotherapy, dual blockade of VEGF and
ANG2 relieves TME immunosuppression [43] and pro-
longs the vascular normalization window [115] and over-
all survival (OS) in preclinical studies [9, 116, 117].
Furthermore, the dual blockade of VEGF and ANG2
promotes the accumulation of CD4+ and CD8+ T cells
and increases IFN-γ levels in the TME [9, 117]. How-
ever, it is crucial to select the proper doses for dual anti-
angiogenic therapy to avoid excessive vascular pruning
and increase the delivery of chemotherapeutic drugs
[118]. Therefore, targeting VEGF and ANG2 simultan-
eously improves the efficacy of antiangiogenic therapy
and promotes the restoration of antitumor immunity in
the TME.

Immunotherapy promotes vascular normalization
Immunotherapy normalizes vessels in various tumor
models, and vascular normalization is attributed to the
accumulation and increased antitumor activities of Th1
cells in breast cancer [7, 100]. In CD4+ T cell-deficient
mouse mammary tumor models, pericyte coverage of
blood vessels was reduced, and tumor tissue hypoxia
was increased, suggesting that CD4+ T cell deficiency
led to vascular abnormalities [57]. ICB activates CD4+
and CD8+ T cells in the TME, remodels the tumor vas-
culature, and indirectly enhances their antitumor activity
[30]. The accumulation and reactivation of effector T
cells in the TME subsequently helps long-term tumor
control indirectly [119]. In addition, tumor tissue hyp-
oxia leads to an increase in Tregs [66, 120, 121]. Tregs
promote tumor angiogenesis, and the depletion of Tregs
activates CD8+ T cells and promotes vascular
normalization [66, 122]. Understanding the vascular
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normalization function of ICB immunotherapy is helpful
to optimize the administration sequence of ICB and
antiangiogenic agents to expand the window of
normalization and extend the survival time of breast
cancer patients [123].
As a new target of immunotherapy, stimulator of

interferon gene (STING) has been associated with tumor
vascular system regulation and has shown a synergistic
effect with anti-VEGF2 antibodies and ICB [52]. Acti-
vated STING signaling inhibits tumor angiogenesis and
induces vascular normalization through activation of
type I IFN signaling [14]. Intriguingly, CD8+ CTLs are
implicated in vascular remodeling triggered by STING
signaling. STING agonists and anti-VEGF2 antibodies
synergistically promote vascular normalization and pro-
long antitumor immunity [14]. It is worth noting that
STING-based immunotherapy is effective in overcoming
antiangiogenic therapy or ICB monotherapy resistance
[52]. Thus, the tumor vascular normalization effects of
immunotherapy provide a new understanding of tumor
vascular remodeling and immune reprogramming.
Nevertheless, the conditions required for
immunotherapy-induced vascular normalization, the
duration of the response, and the distinction from anti-
angiogenic therapy-mediated vascular normalization re-
main unclear [30, 119].

The influence of tumor MHC-I expression
To avoid recognition by CD8+ T cells, tumor cells have
adopted an immune evasion strategy of loss of MHC I
expression [124–127]. The majority of early-stage tu-
mors are MHC-I positive [128]. Tumor-resistant CD8+
T cells exert evolutionary selection pressure on tumor
MHC-I-positive cells, resulting in defective or negative
MHC-I expression in tumors [129, 130]. A study showed
that deletion of MHC-I expression was associated with
resistance to ICB immunotherapy [131]. The low MHC-
I expression hides tumor mutation neoantigens, which
explains why some tumors (even with high TMB) do not
respond to ICB [132]. Furthermore, during immunother-
apy (interferon-α/autologous vaccination), metastases
with high MHC-I expression were regressive, whereas
metastases with low MHC-I expression were progressive
[130].
Antiangiogenic therapy potentially represents an op-

tional approach to overcome MHC-I low expression tu-
mors with immunotherapy resistance. Wallin et al.
demonstrated that the combination of bevacizumab and
atezumab for metastatic renal cell carcinoma promoted
antigen-specific T cell migration and elevated intratumor
MHC-I, Th1 and T effector cell markers and chemo-
kines (most notably CX3CL1) [133]. In addition, antian-
giogenic therapy normalizes tumor vasculature by
reducing microvessel density and improving pericyte

coverage, avoiding the influence of tumor MHC-I ex-
pression. Therefore, it is necessary to design prospective
clinical trials to explore the antitumor effects of antian-
giogenic therapy on tumors with low MHC-I expression.

Antiangiogenic plus immunotherapy promotes
TME normalization
Antiangiogenic therapy and immunotherapy in different
molecular subtypes of breast cancer
Previous literature suggests that microvascular density
(MVD) levels are higher in TNBC than in other breast
cancer subtypes [134] and that angiogenesis in TNBC is
increased [135, 136]. In neoadjuvant chemotherapy, the
addition of bevacizumab improved the pCR rate in
TNBC patients [137–139]. In metastatic TNBC patients,
chemotherapy combined with bevacizumab improved
progression-free survival (PFS) [140–143]. However,
adding bevacizumab to chemotherapy resulted in an in-
creased incidence of adverse events and did not improve
overall survival in patients with metastatic TNBC [144].
In adjuvant chemotherapy, chemotherapy combined
with bevacizumab did not improve invasive disease-free
survival (iDFS) or OS in TNBC patients [145]. In sum-
mary, the addition of anti-vascular therapy to TNBC
treatment may improve the clinical response, but there
is no clinical evidence for improvement in OS. The clin-
ical benefit of antiangiogenic monotherapy in TNBC re-
mains controversial, and the therapeutic effects of
multitarget tyrosine kinase inhibitors (TKIs) need to be
further evaluated [146]. In the luminal or HER2-
enriched subtype of breast cancer, anti-HER2 trastuzu-
mab and metronomic chemotherapy could also induce
vascular normalization by upregulating the expression of
thrombospondin-1 (THBS1) in breast cancer [147, 148].
Similarly, cyclin-dependent kinase 4 (CDK4) and CDK6
inhibitors could enhance the efficacy of immunotherapy
through vascular normalization [149].
Recently, most studies of ICB immunotherapy in

breast cancer have focused on TNBC. Based on the posi-
tive results of the IMpassion130 trial, atezolizumab com-
bined with paclitaxel was approved by the FDA for first-
line treatment of inoperable locally advanced or meta-
static PD-L1+ TNBC [3]. The KEYNOTE-355 trial was a
randomized, double-blind, phase III trial that evaluated
pembrolizumab plus chemotherapy (albumin-bound
paclitaxel, paclitaxel or gemcitabine/carboplatin) as a
first-line treatment for locally advanced or metastatic
TNBC. The primary endpoint of progression-free sur-
vival (PFS) was achieved in PD-L1+ patients with a com-
bined positive score (CPS) ≥ 10 [150]. Compared with
those for immunotherapy in advanced breast cancer, the
results for immunotherapy in the neoadjuvant setting
are more encouraging. In the phase II I-SPY2 trial, the
pathological complete response (pCR) rate was increased
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by 38% (22 to 60%) by the addition of pembrolizumab.
This result might be attributed to the immunostimula-
tory effect of anthracyclines, which boosts intratumoral
immunity and antigen presentation [151]. The phase II
GeparNeuvo study showed an increased pCR rate in the
durvalumab-pretreated group (61.0% vs. 41.4%) [152,
153]. In the phase III KEYNOTE-522 trial, the addition
of pembrolizumab to neoadjuvant chemotherapy in-
creased the pCR rate of patients with early TNBC
(64.8% vs. 51.2%), and pembrolizumab immunotherapy
extended event-free survival (EFS) by 18months (HR
0.63; 95% CI 0.43–0.93) [154]. Immunotherapy is more
effective in the neoadjuvant phase, which may be due to
better PD-L1 positivity rates being found in neoadjuvant
patients with better baseline levels and physical status
compared with advanced breast cancer patients.

The exploration of antiangiogenic plus immunotherapy
Studies have been designed to study the feasibility and
function of antiangiogenic plus immunotherapy (A + I)

combined therapy in TME normalization (Fig. 2). In
unresectable hepatocellular carcinoma, compared with
sorafenib, atezolizumab in combination with bevacizu-
mab reduced mortality (HR 0.58; 95% CI 0.42–0.79; P <
0.001) and improved overall survival (67.2% vs 54.6%)
[155]. In metastatic non-squamous non-small cell lung
cancer, the addition of atezolizumab to bevacizumab
combination chemotherapy significantly improved over-
all survival (19.2 vs. 14.7 months; HR 0.78; 95% CI 0.64
to 0.96; P = 0.02) [156]. In addition, PD-L1 expression in
tumor tissue could not serve as a biomarker to predict
the response to A + I combination therapy [156]. In ad-
vanced renal cell carcinoma, compared with sunitinib,
treatment with axitinib combined with pembrolizumab
[157] or with alvumab [158] increased progression-free
survival. In advanced endometrial cancer, lenvatinib plus
pembrolizumab showed good antitumor activity [159].
In breast cancer, immunotherapy was administered to
patients who received first-line bevacizumab to deter-
mine whether ICB could restore sensitivity to

Fig. 2 Antiangiogenic therapy combined with immunotherapy improves the tumor immune microenvironment (created with BioRender.com). In
breast cancer, antiangiogenic therapy (bevacizumab or VEGFR-TKI) induces tumor vascular normalization, improves blood perfusion, and
promotes immune cell recruitment and dendritic cell (DC) maturation. The immunosuppressive state is further relieved using immune checkpoint
inhibitors (anti-PD-1/PD-L1 monoclonal antibodies, mAbs). After A + I combination therapy, the immunosuppressive microenvironment is
transformed into an immune-supporting microenvironment with increased numbers of M1-like macrophages, mature DCs, CD8+ CTLs, Th1 CD4+
T cells, and activated NK cells and decreased numbers of Tregs, thus effectively exerting an antitumor effect. CTL, Cytotoxic T cell; ANG2,
Angiopoietin 2; DC, Dendritic cell; Fas-L, FAS antigen ligand; FGF, Fibroblast growth factor; MMP, Matrix metallopeptidase; NK, Natural killer; PD-1,
Programmed cell death protein 1; PD-L1, Programmed cell death 1 ligand 1; TAM, Tumor-associated macrophage; TME, Tumor microenvironment;
Tregs, Regulatory T cells; VEGF, Vascular endothelial growth factor
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antiangiogenic agents. A recently published phase Ib
study recruited patients with metastatic HER2-negative
breast cancer who had progressed after at least 6 weeks
of first-line treatment with bevacizumab, and these pa-
tients were treated with durvalumab plus bevacizumab
[160, 161]. Interestingly, the patients whose disease
remained stable at the first evaluation (2 months)
showed a 1.2- to 3.5-fold increase in CD8+ effector
memory T cell levels in the peripheral blood, but no
such change was observed in patients with disease pro-
gression [160, 161]. The benefits of antiangiogenic drugs
are time and dose dependent, and determining the win-
dow of normalization of tumors is challenging [119].
Clinical trials have shown that the combination of low-
dose regorafenib with nivolumab is superior to high-
dose therapy in advanced gastric or colorectal cancer
[162], suggesting that the administration of immuno-
therapy with antiangiogenic therapy protects against ex-
cessive pruning of blood vessels [163]. Further studies
are needed to investigate the clinical benefits of A + I
combination therapy in breast cancer, especially for
TNBC [164].

Antiangiogenic therapy reduces the adverse events of ICB
immunotherapy
Most adverse events related to immunotherapy are
linked with a hyperactive immune response, such as T
cell-mediated autoimmune inflammation and immune
homeostasis disorder, which may lead to immune-
related damage to normal tissues, including the gastro-
intestinal tract, skin and liver. These adverse events
could be alleviated by interrupting or reducing the dose
of ICB immunotherapy [165]. Considering that vascular
normalization could improve the delivery of therapeutic
drugs, the proposed combination strategy may require
lower doses of ICB to enhance immune responses while
reducing the risk of adverse effects [7]. Notably, ICB im-
munotherapy increases the risk of brain edema, occa-
sionally leading to death [166]. In contrast,
antiangiogenic drugs could reduce brain edema, provid-
ing theoretical support for combined low-dose antian-
giogenic therapy and immunotherapy in the treatment
of brain metastases [167]. Based on current clinical data,
some ICB agents (e.g., SHR-1210) could cause reactive
capillary hemangioma [168], whereas antiangiogenic
therapy could suppress hemangioma and reduce anti-
PD-1-related adverse effects [169]. For antiangiogenic
therapy, the common adverse effects include hyperten-
sion, hemorrhage, thrombosis, and proteinuria. Breast
cancer is a type of tumor with connective tissue hyper-
plasia, and increases in the levels of extracellular matrix
molecules (including type I collagen and hyaluronan)
compress vessels and lead to hypoxic conditions. Angio-
tensin receptor blockers (ARBs) normalize the matrix

and decompress vessels, reducing the adverse effects of
antiangiogenic therapy [170]. In addition, ARBs activate
both the innate and adaptive immune systems [171] and
might improve the effects of A + I combination therapy
[172, 173].

Serum-based biomarkers
A + I combination therapy improves the tumor tissue
perfusion status and activates the local immune re-
sponse; therefore, it is of clinical importance to identify
relevant biomarkers reflecting the vascular-immune sta-
tus in the TME. Serum biomarkers, which have previ-
ously been used to monitor response to antiangiogenic
therapies [174, 175], could be explored for predicting re-
sponse to antiangiogenic combination immunotherapy.
Serum ANG2, a key factor in vascular maturation [176],
was negatively associated with clinical response rates
and overall survival to anti-CTLA4 immunotherapy in
melanoma [114]. In tumor vaccine-treated NSCLC pa-
tients, ANG2 and VEGF-A serum levels could be pre-
dictive factors for long-term remission and survival [30].
Together, these findings support a correlation between
tumor vascular remodeling and antitumor immune re-
sponse generation, suggesting a potential role for the use
of vascular-related biomarkers to predict clinical re-
sponse to anti-vascular combination immunotherapy.
However, serum-based biomarkers are disturbed by the
host physical status, and whether they truly reflect the
status of the TME requires further investigation. In
addition, whether novel serum biomarkers, such as exo-
somes, circulating tumor DNA (ctDNA), serum RNA,
immune cell subpopulation counts and lactate dehydro-
genase (LDH) levels, have clinical predictive significance
deserves further exploration.

Tissue-based biomarker
The main limitation of tissue-based biomarkers is the
need for repeat biopsies. In metastatic breast cancer,
tumor tissue PD-L1 expression and tumor mutational
burden (TMB) could be predictors of immunotherapy
efficacy [3, 7]. In contrast, for breast cancer neoadjuvant
treatment, predictors of immunotherapy efficacy still
need to be further explored [153]. Mpekris et al. investi-
gated the complex interactions among tumor cells, im-
mune cells (M1/M2-like TAMs, NK cells, CD4+ / CD8+
T cells, and Tregs), and endothelial cells and developed
a mathematical model for tumor tissue perfusion assess-
ment and immunotherapy efficacy prediction [119]. The
model was designed considering the levels of proangio-
genic molecules (e.g., ANG1, ANG2, PDGF-b, VEGF
and CXCL12) in the TME and the vascular
normalization effect of CD4+ and CD8+ T cells [119].
The model predictions exhibit good correlation with the
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preclinical results, which need further validation in pro-
spective clinical studies.
The efficacy of immunotherapy depends on tumor perfu-

sion, and any approach to improve perfusion could simul-
taneously enhance immunotherapy. The incidence of HEVs
in tumors might also predict the effect of A + I combination
therapy [146]. The formation of HEVs has been demon-
strated to improve the effects of ICB immunotherapy [177].
In breast cancer models, HEV formation was mediated by
lymphotoxin-β receptor (LT-βR) signal transduction. Treat-
ment with an agonistic LT-βR antibody induced HEV de-
velopment and increased CTL activation, further enhancing
the efficacy of antiangiogenic therapy [101].
In addition, functional measurements of vascular

changes by noninvasive measures, such as dynamic con-
trast enhanced (DCE) MRI [178], dynamic optical breast
imaging (DOBI) [179], and shear-wave elastography
(SWE) [180], might be helpful in A + I combination ther-
apy. These functional measurements could provide im-
portant information about the TME status and allow
dynamic monitoring during treatment. The biomarkers
and cells described above in the breast cancer TME are
summarized in Table 1.

Prospects of antiangiogenic therapies in breast cancer
To verify clinical efficacy, several clinical trials using dif-
ferent combinations of antiangiogenic therapies and im-
munotherapies have been conducted (Table 2).
According to the Clinicaltrials.gov registry, most on-
going clinical trials (9/11) focus on patients with ad-
vanced breast cancer, whereas 2/11 trials focus on the
use of antiangiogenic therapy and immunotherapy in the
neoadjuvant phase.
Due to the narrow window of antiangiogenic ther-

apy and the low positivity rate of PD-L1 in patients
with advanced breast cancer, the combined use of
antiangiogenic therapy and immunotherapy in early-
stage breast cancer may produce better clinical bene-
fits. Combining antiangiogenic therapy and immuno-
therapy may be more promising in the neoadjuvant
setting, whereas the timing of antiangiogenic therapy
and surgery should also be considered. In addition,
current combined antiangiogenic treatments mainly
focus on monoclonal antibodies (e.g., bevacizumab).
Investigating the effects of multitarget TKIs in com-
bination with immunotherapy is also needed in future
clinical trials.

Table 1 Biomarkers and cells in the breast cancer microenvironment

TME elements Function

M1-like TAMs Suppress angiogenesis (IL-12 and TNF-α); Induce vascular maturation

M2-like TAMs Promote angiogenesis (VEGF-A, EGF and FGF); Enhance ECs migration and proliferation; Polarize M1-like into M2-
like TAMs

Mature dendritic cells Suppress angiogenesis (IL-12 and IL-18); inhibit EC proliferation

Immature dendritic cells Lack the ability to inhibit angiogenesis

CD8+ CTLs Suppress angiogenesis (IFN-γ)

Th1 cells Suppress angiogenesis (IFN-γ); improve pericyte coverage

Th2 cells Promote angiogenesis (IL-4, IL-5 and IL-13); recruit M2-like TAMs

Th17 cells Promote angiogenesis (IL-17); promote ECs proliferation

Tregs Promote angiogenesis (VEGF); inhibit Th1 cell activation; promote M2-like TAMs

MDSCs Promote angiogenesis (VEGF, FGF2, Bv8 and MMP9); acquire endothelial cell properties

CAFs Promote angiogenesis (VEGF, CXC12, SDF1 and PDGF-c); enhance VEGF expression (PDPN and LGALS1); release
ECM-bound VEGF

Serum-based biomarkers Function

ANG2 and VEGF-A Key factor of angiogenesis; predict long-term remission and survival

Tissue-based biomarkers Function

HEVs Specialized vascular units organized in tertiary lymphoid structures; help immature T cells differentiate into CTLs;
the formation of HEVs indicates the improvement of ICB immunotherapy efficacy

TME model Investigate the complex interactions between tumor cells, immune cells (M1/M2-like TAMs, NK cells, CD4+ / CD8+

T cells, and Tregs), and endothelial cells; assess tissue perfusion and predict immunotherapy efficacy

Noninvasive measures (DCE-MRI,
DOBI, SWE)

Measure vascular changes and provide information on TME status

ANG2 Angiopoietin 2, CAF Cancer-associated fibroblast, CTL Cytotoxic T lymphocyte, DCE Dynamic contrast enhanced, DOBI Dynamic optical breast imaging, EC
Epithelial cell, EGF Epidermal growth factor, FGF Fibroblast growth factor, HEV High endothelial venules, ICB Immune checkpoint blockade, MDSC Myeloid-derived
suppressor cell, MMP Matrix metallopeptidase, SWE Shear-wave elastography, TAM Tumor-associated macrophage, TME Tumor microenvironment, VEGF Vascular
endothelial growth factor
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Table 2 Currently enrolled clinical studies of antiangiogenic immunotherapy combinations for breast cancer (data source:
clinicalTrials.gov, Oct 2020)

No Title Status Conditions Interventions Locations

1 A Study to Describe the Diagnosis, Anti-
Cancer Treatment and Clinical Outcome
in Patients with Newly Diagnosed
Breast Cancer in Latin America

Recruiting Breast Cancer Drug: Bevacizumab, Drug: Trastuzumab,
Drug: Ado-trastuzumab emtansine,
Drug: Pertuzumab, Drug: Atezolizumab,
Drug: Capecitabine

Instituto Alexander Fleming,
Buenos Aires, Argentina, and
more

2 A Multi-cohort Phase II Study of HER2-
positive and Triple- negative Breast Can-
cer Brain Metastases.

Not yet
recruiting

Breast Cancer Drug: Pyrotinib, Drug: Temozolomide
Injection, Drug: SHR-1316 (PD-L1), Drug:
Bevacizumab, Drug: Cisplatin/
Carboplatin

Fudan University Shanghai
Cancer Center

3 Pre-operative Immunotherapy
Combination Strategies in Breast Cancer

Recruiting Breast Cancer,
Estrogen
Receptor-
positive Breast
Cancer

Drug: Atezolizumab, Drug: Cobimetinib,
Drug: Ipatasertib, Drug: Bevacizumab

Barts Health NHS Trust,
London, United Kingdom

4 Safety and Efficacy of Toripalimab in
HER2- Metastatic Breast Cancer Patients
Treated with Metronomic Vinorelbine

Recruiting Metastatic Breast
Cancer

Drug: Vinorelbine 40mg, Biological:
Toripalimab 240mg (PD-1), Biological:
Bevacizumab 15 mg/kg, Drug:
Cyclophosphamide 50mg, Drug:
Capecitabine 500 Mg Oral Tablet, Drug:
Cisplatin, Radiation: Hypofractionated
radiotherapy

Cancer Hospital, Chinese
Academy of Medical
Sciences, Beijing, Beijing,
China, and more

5 SAFIR02_Breast - Efficacy of Genome
Analysis as a Therapeutic Decision Tool
for Patients with Metastatic Breast
Cancer

Active,
not
recruiting

Metastatic Breast
Cancer

Drug: AZD2014, Drug: AZD4547, Drug:
AZD5363, Drug: AZD8931, Drug:
MEDI4736, Drug: Anthracyclines, Drug:
Taxanes, and 12 more

Institut de Couldcérologie de
l’Ouest/Paul Papin, Angers,
France, and more

6 A Study Evaluating the Efficacy and
Safety of Multiple Immunotherapy-
Based Treatment Combinations in Pa-
tients with Metastatic or Inoperable Lo-
cally Advanced Triple- Negative Breast
Cancer

Recruiting Triple-negative
Breast Cancer

Drug: Capecitabine, Drug: Atezolizumab,
Drug: Ipatasertib, Drug: SGN-LIV1A,
Drug: Bevacizumab, Drug: Chemother-
apy (Gemcitabine + Carboplatin or Eri-
bulin), Drug: Selicrelumab, Drug:
Tocilizumab, Drug: Nab-Paclitaxel, Drug:
Sacituzumab Govitecould

University of California San
Diego Medical Center;
Moores Cancer Center, La
Jolla, California, United States,
and more

7 QUILT-3.067: NANT Triple Negative
Breast Cancer (TNBC) Vaccine:
Molecularly Informed Integrated
Immunotherapy in Subjects with TNBC
Who Have Progressed on or After
Standard-of-care Therapy.

Active,
not
recruiting

Triple-negative
Breast Cancer

Drug: Aldoxorubicin HCl, Biological: N-
803, Biological: ETBX-011, Biological:
ETBX-051, Biological: ETBX-061, Bio-
logical: GI-4000, Biological: GI-6207, Bio-
logical: GI-6301, Biological: haNK for
Infusion, Biological: avelumab, and 8
more

Chan Soon-Shiong Institute
for Medicine, El Segundo,
California, United States

8 A Study of Multiple Immunotherapy-
Based Treatment Combinations in Hor-
mone Receptor (HR)-Positive Human
Epidermal Growth Factor Receptor 2
(HER2)-Negative Breast Cancer

Recruiting Breast
Neoplasms

Drug: Atezolizumab, Drug: Bevacizumab,
Drug: Entinostat, Drug: Exemestane,
Drug: Fulvestrant, Drug: Ipatasertib,
Drug: Tamoxifen, Drug: Abemaciclib

University of Alabama at
Birmingham, Birmingham,
Alabama, United States, and
more

9 Evaluation of IPI-549 Combined with
Front-line Treatments in Pts. With Triple-
Negative Breast Cancer or Renal Cell
Carcinoma (MARIO-3)

Recruiting Breast Cancer,
Renal Cell
Carcinoma

Drug: IPI-549, Drug: Atezolizumab, Drug:
nab-paclitaxel, Drug: Bevacizumab

Ironwood Cancer and
Research Center, Chandler,
Arizona, United States, and
more

10 I-SPY 2 TRIAL: Neoadjuvant and
Personalized Adaptive Novel Agents to
Treat Breast Cancer

Recruiting Breast
Neoplasms,
Breast Cancer,
Breast Tumors,
Angiosarcoma

Drug: Standard Therapy, Drug: AMG 386
with or without Trastuzumab, Drug:
AMG 479 (Ganitumab) plus Metformin,
Drug: MK-2206 with or without Trastu-
zumab, Drug: AMG 386 and Trastuzu-
mab, Drug: T-DM1 and Pertuzumab,
Drug: Pertuzumab and Trastuzumab,
Drug: Ganetespib, Drug: ABT-888, Drug:
Neratinib, and 11 more

University of Alabama at
Birmingham, Birmingham,
Alabama, United States, and
more

11 A Phase I/II Study of MEDI4736 in
Combination with Olaparib in Patients
With Advanced Solid Tumors.

Active,
not
recruiting

Ovarian, Breast,
SCLC, Gastric
Cancers

Drug: Olaparib, Drug: MEDI4736, Drug:
Bevacizumab

Research Site, Newnan,
Georgia, United States, and
more
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Conclusion
Antiangiogenic therapies normalize tumor vasculature,
improve tissue perfusion, and promote the aggregation
of TIICs in the TME. This mechanism forms the basis
for combining antiangiogenic therapy with immunother-
apy. With the advancement of preclinical and clinical
studies, persuasive evidence supports that A + I combin-
ation therapy could reverse the immunosuppressive
TME and yield overall prognostic improvement for
breast cancer patients. However, A + I combination ther-
apy has complex biological effects that might increase
the risk of hemorrhage, hypertension, and immune-
related adverse effects. A considerable number of clinical
trials are currently underway to determine whether A + I
combination therapy promotes TME normalization and
improves breast cancer survival, especially for TNBC.
Given the high cost and side effects of A + I combination
therapy, further investigation on relevant biomarkers for
A + I combination therapy, especially serum-based bio-
markers and tissue-based noninvasive measurements for
TME status detection, is needed.
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