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YY1 inhibits differentiation and function of
regulatory T cells by blocking Foxp3 expression
and activity
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Regulatory T (Treg) cells are essential for maintenance of immune homeostasis. Foxp3 is the

key transcription factor for Treg-cell differentiation and function; however, molecular

mechanisms for its negative regulation are poorly understood. Here we show that YY1

expression is lower in Treg cells than Tconv cells, and its overexpression causes a marked

reduction of Foxp3 expression and abrogation of suppressive function of Treg cells. YY1 is

increased in Treg cells under inflammatory conditions with concomitant decrease of

suppressor activity in dextran sulfate-induced colitis model. YY1 inhibits Smad3/4 binding to

and chromatin remodelling of the Foxp3 locus. In addition, YY1 interrupts Foxp3-dependent

target gene expression by physically interacting with Foxp3 and by directly binding to

the Foxp3 target genes. Thus, YY1 inhibits differentiation and function of Treg cells by

blocking Foxp3.
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R
egulatory T (Treg) cells play critical roles in maintaining
immune homeostasis. Treg cells inhibit differentiation
and proliferation of conventional T (Tconv) cells including

Th1, Th2, Th17 and Tfh cells. Treg cells thereby prevent
excessive immune responses against self-antigens, food antigens,
commensal microorganisms and cancers1–3. Treg cells can develop
either in the thymus (tTreg) or by differentiation from naı̈ve CD4
T cells in the periphery (pTreg).

Foxp3, an X-chromosome-encoded member of the Forkhead
family, is the lineage-determining transcription factor for Treg

cells2–4. Foxp3 is involved in the control of differentiation and
function of Treg cells. Loss of Foxp3 function causes the fatal
autoimmune disease immune dysregulation, polyendocrinopathy,
enteropathy, X-linked in humans and mice5–7. Ectopic expression
of Foxp3 in CD4þCD25– T cells confers suppressive function
and induces expression of Treg cell signature genes including
Cd25, Ctla4, Icos and Gitr8,9. Furthermore, sustained Foxp3
expression is essential for maintenance of the Treg-cell phenotype
and associated functions1,10. Deficiency of Foxp3 expression in
Treg cells causes both defective function of Treg cells and the
acquisition of Tconv-cell properties5–7. Taken together, these
previous studies show that Foxp3 is indispensable for the
differentiation and function of Treg cells, specifying the Treg cell
lineage.

Understanding the positive and negative regulation of Foxp3 is
critically important in controlling Treg cell-regulated immune
responses, including those involved in autoimmune diseases,
allergies, organ transplantation and cancer7. For example,
upregulation of Treg function is likely to be beneficial for
autoimmune diseases, allergy and organ transplantation. By
contrast, downregulation of Treg function could enhance
protective immunity against infectious agents and cancer7.

A number of transcription factors play roles in the induction of
Foxp3 and downstream signalling pathways by TCR/CD28
stimulation. For example, at the Foxp3 locus, NFAT, AP1, SP1
and c-Rel bind to the promoter; AP1 and NFAT bind conserved
non-coding sequence 1 (CNS1); CREB and ATF bind to CNS2
and c-Rel binds to CNS3 in response to TCR/CD28 activa-
tion3,11,12. interleukin (IL)-2 signalling is important for the
induction of Foxp3 gene by STAT5, which binds to the promoter
and CNS2 of the Foxp3 locus3,11,12. Transforming growth factor
(TGF)-b also plays a crucial role in the induction of the Foxp3
gene. Following TGF-b-induced phosphorylation of Smad3 and
its dimerization with Smad4, the heterodimer translocates
into the nucleus and binds to CNS1 to induce Foxp3 gene
expression3,4,11,12. Other transcription factors including Foxo1,
Foxo3, Runx1, Runx3, RXR/RAR and Notch1 were also shown to
be involved in the induction of Foxp3 expression3,11,13.

Compared with a large number of positive regulators of Foxp3,
only a few negative regulators of Foxp3 are known until now.
GATA3, a crucial regulator of Th2 differentiation, binds to the
Foxp3 promoter and represses Foxp3 expression during Th2
differentiation12,14. In addition, STAT3 competes with STAT5 to
bind to the Foxp3 promoter and CNS2, and represses Foxp3
expression in response to IL-6 (refs 12,15). Furthermore, RORgt
directly binds to the Foxp3 promoter and causes loss of Foxp3
expression during Th17 differentiation16.

YY1, encoded by Yy1, is a transcription factor that
functions either as an activator or repressor depending on the
chromatin context17–19. YY1 interacts with many factors
including transcription factors, co-activators and co-repressors.
Previous studies show that YY1 has pleiotropic effects on
many different cellular processes, including cell growth and
differentiation, apoptosis, development and tumorigenesis17–20.
Th2-cell differentiation also involves YY1 (refs 21,22), which
mediates chromatin remodelling and chromosomal looping of the

Th2 cytokine locus to regulate Th2 cytokine genes23. However,
the roles of YY1 in Treg-cell function have not been investigated.

In the present study, the role of YY1 on Treg-cell differentiation
and function was examined. YY1 was selectively downregulated
in Treg cells, and YY1 overexpression caused a reduction of Foxp3
expression and a loss of suppressive function during Treg

differentiation. YY1 inhibited induction of the Foxp3 gene by
impeding the TGF-b-Smad3/4 signalling pathway. Moreover,
YY1 physically interacted with Foxp3 and blocked Foxp3-target
genes. These results strongly suggest that YY1 inhibits the
differentiation and function of Treg cells by blocking expression of
Foxp3 and its target genes.

Results
YY1 is expressed at low levels in Treg cells. Previous studies
identified YY1 as a protein-binding partner24 of and the Yy1
locus as a cis-target (binding site) of Foxp3 (refs 24–26). The role
of YY1 in Treg-cell differentiation was of particular interest
because YY1 expression was selectively low in induced Treg cells
compared with in vitro-differentiated conventional T (Tconv) cells
(Fig. 1a,b). The expression of YY1 in CD4 T cells isolated from
the mouse thymus, spleen and peripheral and mesenteric lymph
nodes was then studied. YY1 expression levels were lower in
CD4þCD25þ Treg cells than in CD4þCD25� Tconv cells from
all the lymphoid tissues examined (Fig. 1b–d). The expression
levels of YY1 were also investigated in enriched CD4 T cells
using Foxp3-eGFP reporter mice (Fig. 1e). The majority of
YY1-expressing cells were non-Treg (CD4þGFP� ) cells (Fig. 1e).
Yy1 expression was high in effector/memory CD4 T cells, but low
in Treg and naı̈ve CD4 T cells (Fig. 1f).

Influence of Foxp3 on YY1 expression. To examine whether the
low expression of YY1 in Treg cells is caused by Foxp3, over-
expression or knockdown (KD) of Foxp3 was used. When murine
Th0 cells were transduced with a Foxp3 overexpression vector
(MIEG3-Foxp3) and then cultured for 4 days, levels of YY1
decreased (Fig. 1g,h). Whereas when the cells were transduced
with a Foxp3 KD vector (sh-Foxp3) and then cultured for 4 days,
the levels of YY1 increased (Fig. 1i). Electrophoresis mobility shift
assay (EMSA) and chromatin immunoprecipitation (ChIP) assays
using Treg and Tconv cells showed that Foxp3 directly bound
to the promoter of the Yy1 gene in Treg cells (Fig. 1j,k), which is
consistent with previous Foxp3 ChIP-seq data24–26. Two possible
Foxp3-binding sites in the promoter are shown in Supplementary
Fig. 1. In addition, Histone H3 lysine 4 monomethylation
(H3K4me1), a marker for active chromatin, was reduced at the
promoter of the Yy1 gene in Treg cells compared with Tconv cells
(Fig. 1l). These results suggest that Foxp3 represses the induction
of YY1 in Treg cells.

YY1 inhibits expression of Foxp3 and Treg signature markers.
To examine the role of YY1 during Treg differentiation, YY1 was
introduced into naı̈ve murine CD4 T cells that were then
subjected to Treg differentiation conditions. Foxp3 expression was
markedly decreased in YY1-transduced Treg cells compared
with those in control vector-transduced Treg cells (Fig. 2a–c).
Furthermore, Treg signature genes including Il10, Cd25, Ctla4,
Gitr and Icos, but not unrelated genes including Ifng, Il2 and Il17,
were also decreased in YY1-transduced Treg cells (Fig. 2d). To get
an insight of changes in global gene expression patterns by YY1
expression in Treg cells, a microarray analysis was performed
with RNA isolated from cells transduced with control or
YY1-expression vector and differentiated into iTreg cells
(Supplementary Fig. 2 and Supplementary data; Gene Expression
Omnibus (GEO) accession number GSE75052). Overall, among
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Figure 1 | Expression of YY1 is low in Treg cells. (a) Naı̈ve CD4 T cells from WT mice were differentiated into Th0, Th1, Th2 and Treg cells for 5 days.

Relative amount of Yy1 transcript was measured by qRT–PCR. (b) Relative amounts of YY1 protein in in vitro-differentiated CD4 T cells or splenic Tconv

(CD4þCD25� ) and Treg (CD4þCD25þ ) cells were measured by immunoblot analysis. (c) Relative amounts of Yy1 transcript in Tconv and Treg cells in

axillary (aLN), cervical (cLN), inguinal (iLN) and mesenteric (mLN) lymph nodes and spleen (spl) were detected by qRT–PCR. (d) Amounts of YY1 protein

in Tconv or Treg cells were measured using flow cytometry. IgG: isotype control. (e) CD4 cells were enriched from splenocytes of Foxp3-eGFP mice, and then

YY1 underwent intracellular staining. The percentage of YY1þ cells from CD4þGFPþ (Treg) and CD4þGFP� (non-Treg) were shown (left), the percentage

of Treg (GFPþ) and non-Treg (GFP�) from YY1þ cells were shown (centre) and the FACS plot is shown (right). (f) CD4 T cells from Foxp3-eGFP mice were

stained with CD62L antibody. Naı̈ve, effector and Treg cells were sorted (left) and relative amounts of Yy1 transcript were measured by qRT–PCR (right).

(g) Control GFP vector or Foxp3 expression vector was transduced into Th0 cells. After 4 days, YY1 protein was detected by flow cytometry. IgG: isotype

control. (h) GFPþ cells from g were isolated, and relative amounts of Yy1 and Foxp3 transcripts were measured using qRT–PCR. (i) WT naı̈ve CD4 T cells

were transduced with GFP containing control or sh-Foxp3 vectors and differentiated into Treg cells for 4 days. Relative amounts of Yy1 and Foxp3 transcripts

were measured using qRT–PCR. (j) Binding of Foxp3 to two YY1 promoter regions was detected by EMSA using Tconv and Treg nuclear extracts with

forkhead consensus sequence (x80). Arrows indicate Foxp3-DNA complexes. (k–l) Binding of Foxp3 (k) and H3K4me1 (l) in Treg or Tconv cells was

measured by ChIP assay. Error bars shown in (a), (c), (f), (h), (k) and (l) represent s.d. Statistical differences in (a), (c), (f), (h), (k) and (l) were analysed

by Student’s t-test (n¼ 3). *Po0.05, **Po0.01. Experiments were performed at least three times with similar results.
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genes changed more than twofold by YY1 overexpression,
we found that more genes were upregulated than were
downregulated, except genes related to immune responses or
inflammatory responses (Supplementary Fig. 2A), suggesting
that YY1 enhances general cellular activities. In the category of
genes related to Treg-cell differentiation, more genes were
downregulated than were upregulated by YY1 overexpression
(Supplementary Fig. 2B), consistent with our quantitative reverse
transcription–PCR (qRT–PCR) data (Fig. 2c,d). Proliferation
and cell death of YY1-transduced Th0 and Treg cells were
examined using anti-Ki-67 antibody and Annexin V, respectively.

Overexpression of YY1 did not affect proliferation or apoptosis in
either Th0 or Treg cells (Fig. 2e,f). These data indicate that
decreased Foxp3 expression in YY1-transduced Treg cells is not
due to proliferation or apoptosis of these cells. To examine
whether deficiency influences Treg differentiation, naı̈ve CD4 T
cells from floxed YY1 (YY1 fl/fl) mice were transduced with
retroviral Cre-expression vector (RV-Cre). YY1 deficiency did not
influence either the expression of Foxp3 or proliferation and cell
death during Treg-cell differentiation (Fig. 3a–d). Treg populations
in the spleen or peripheral lymph nodes of YY1 KD mice23 were
not different from those of wild-type (WT) mice (Fig. 3e),
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Figure 2 | YY1 overexpression causes a loss of Foxp3 and Treg signature genes. (a) WT naı̈ve CD4 T cells were transduced with retroviral vector

containing GFP or Yy1 and differentiated into Treg cells for 4 days. Expression of Foxp3 was measured by flow cytometry (left), and the ratio of Foxp3þ cells

in GFPþ cells was shown (right). (b) Immunoblot analysis of YY1 and Foxp3 from GFPþ cells. (c,d) GFPþ cells from a were sorted, and total RNA was

isolated. Relative amounts of the Foxp3 and Yy1 (c) and Treg signature genes (d) were measured by qRT–PCR. (e) Proliferation of control or YY1-transduced

Th0 or Treg cells was measured using Ki-67 antibody. Cells were gated on GFPþ expression. (f) Apoptosis of control or YY1-transduced Th0 or Treg cells

was analysed by Annexin V staining. Experiments were performed three times with similar results. Statistical differences in a and d were analysed by

Student’s t-test (n¼ 3). *Po0.05; **Po0.01. Error bars shown in a and d represent s.d.
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suggesting that YY1 KD does not affect Foxp3 expression in Treg

cells in vivo. Taken together, these data suggest that YY1 inhibits
but does not enhance expression of Foxp3 and Treg signature
genes in Treg cells.

YY1 inhibits suppressive functions of Treg cells. To examine
whether YY1 affects the function of Treg cells, in vitro immuno-
suppression assays were performed. tTreg cells were isolated from
Foxp3-RFP knock-in mice27 based on red fluorescent protein
(RFP) expression and transduced with either control or YY1
expression vector. Murine CD45.1þ CD4þCD25� responder T
(Tresp) cells stained with carboxyfluorescein succinimidyl ester
(CFSE), a fluorescent dye, were mixed with various ratios of
control or YY1-overexpressing tTreg cells and incubated for 3 days
in the presence of anti-CD3/anti-CD28 beads. Proliferation was
measured on CD45.1þ (Tresp) cells. YY1-overexpressing tTreg

cells had weaker suppressive function in proliferation of Tresp cells
as the ratio increases than control tTreg cells did (Fig. 4a).
Next, the role of YY1 in Treg cell function in vivo was examined
using an animal model of inflammatory bowel disease.

CD4þCD62LþCD45RBþ naı̈ve CD4 T cells were adoptively
transferred, alone or in combination with control tTreg cells or
YY1-overexpressing tTreg cells prepared as described above, into
RAG1-deficient mice. As expected, transfer of naı̈ve CD4 T cells
alone caused severe colitis characterized by gradual weight loss
(Fig. 4b), inflammation in the colonic mucosa, splenomegaly and
shortened colon length (Fig. 4c,d). The mice also had an
increased total number of splenocytes and CD4 T cells
(Fig. 4e), a greater frequency of effector CD4 T cells (Fig. 4f
and Supplementary Fig. 3), and a low frequency of Foxp3þ cells
(Fig. 4g) in the spleen. Transfer of naı̈ve CD4 T cells with
control tTreg cells completely suppressed the inflammatory
phenotypes; however, the transfer of naı̈ve CD4 T cells
with YY1-overexpressing tTreg cells failed to suppress the
inflammatory phenotypes (Fig. 4b–g). Adoptively transferred
YY1-overexpressing tTreg cells could not inhibit differentiation of
the co-transferred naı̈ve CD4 T cells into pathogenic Th1 and
Th17 cells, and could not increase their cell number (Fig. 4f,g),
suggesting that these tTreg cells are functionally impaired in this
experimental setting. The numbers of YY1-transduced tTreg cells
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Figure 3 | YY1 deficiency does not influence Foxp3 expression. (a) Naı̈ve CD4 T cells from YY1 fl/fl mice were transduced with either control vector or
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A relative amount of Foxp3 was measured by qRT–PCR. (c) Proliferation of YY1-deficient Treg cells was detected with Ki-67 staining from GFPþ cells.

(d) Apoptosis of YY1-deficient Treg cells was measured with Annexin V staining. Experiments were performed five times with similar results.

(e) Treg populations in the spleen and peripheral lymph nodes of YY1 KD or WT mice were analysed by staining anti-CD4, anti-CD25 and anti-Foxp3.

Cells were gated on CD4.
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recovered in the spleen of the recipient mice were similar to those
of control tTreg cells (Fig. 4h), suggesting that the observed
phenotypes are not due to poor survival of the YY1-transduced
tTreg cells in the mice. Taken together, these data suggest that YY1
inhibits the suppressive function of Treg cells both in vitro and
in vivo.

YY1 expression is modulated under inflammatory conditions.
It has been shown that Treg cell’s functional properties can be
changed under inflammatory conditions28–30. To further
investigate physiological relevance of YY1 expression in Treg

cells, we examined whether YY1 expression is modulated in Treg

cells under an inflammatory condition using dextran sodium
sulfate (DSS)-induced colitis model. 5% DSS in drinking water
was administered into C57BL/6 mice for 4 days, and the mice
were killed at day 7. As was well known, DSS-treated mice had
decreased body weights, increased cell infiltration into the colon

and shortened colon length (Fig. 5a–c), showing an inflammatory
condition in the colon. Cellular RNA was extracted from the
colons of the mice and expressions of Ifng and Il17 were
measured by qRT–PCR. DSS-treated mice had highly increased
Ifng and Il17 (Fig. 5d), showing that inflammatory Th1 and
Th17 responses were developed in these mice. Under this
condition, the frequencies of YY1-expressing Treg cells were
increased in the spleen, mesenteric lymph node and peripheral
lymph node in DSS-treated mice compared with those in control
mice (Fig. 5e). Treg and Tconv cells were isolated from the mice
and expression of the Foxp3, Yy1, Ifng and Il17 transcript
was measured by qRT–PCR. Consistent with pathogenic
inflammatory condition, expression of Ifng and Il17 was
increased in DSS-treated Tconv cells (Fig. 5f,g). Expression of
Yy1 was increased in DSS-treated Treg cells concomitant with
decreased Foxp3 expression (Fig. 5h,i). This result suggests that
YY1 expression is modulated under inflammatory condition
under which Treg-cell functions are modulated.
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Figure 4 | YY1 impairs immunosuppressive function of tTreg cells in vitro and in vivo. (a) In vitro immunosuppressive activity of tTreg cells was

assessed by proliferation of CD4þCD25� Tresp cells (labelled with CFSE from CD45.1þ Tresp cells). Foxp3þ Treg cells were isolated from Foxp3-RFP

knock-in mice and transduced with control or YY1-expression vector. GFPþ control tTreg (tTreg(ctrl)) or GFPþ YY1-overexpressing tTreg (tTreg(YY1))

cells were sorted, mixed with CD4 Tresp cells in various ratios, and cultured in the presence of anti-CD3/CD28 beads for 3 days. Proliferation was

measured on CD45.1þ (Tresp) cells. (b–h) In vivo immunosuppressive activity of tTreg cells was assessed by inflammatory bowel disease model. tTreg (ctrl)

and tTreg (YY1) cells were prepared as in a from Foxp3-RFP knock-in mice. Naı̈ve CD4 T (CD4þCD25�CD62LþCD45RBhigh) cells alone or together with

tTreg (ctrl) or tTreg (YY1) cells were adoptively transferred into RAG1� /� mice. The mice were killed at 12 weeks after the cell transfer, and analysed for

disease phenotypes. (b) Body weight of the recipient mice was presented as a percentage of the initial weight. (c) Gross morphology of colons and spleens.

(d) Haematoxylin and eosin staining of colon sections. Scale bar indicates 200mm. (e) Absolute numbers of splenocytes and splenic CD4 T cells.

(f) Frequency of cytokine-producing effector CD4 T cells in the spleen. (g) Absolute numbers of CD4þFoxp3þ cells from the spleen. (h) Absolute

numbers of GFPþ tTreg cells from the spleen. Error bars shown in b–h represent s.d. Statistical differences in b–h were analysed by Student’s t-test (n¼ 5).

*Po0.05. **Po0.01. NS, not significant.
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Figure 5 | YY1 expression is enhanced in inflammatory condition in vivo. WT mice were introduced with water or 5% dextran sodium sulfate (DSS) for

4 days to induce IBD. The mice were killed at 7 days after DSS administration, and analysed for disease phenotypes. (a) Body weights of the mice were

presented as a percentage of the initial weight. (b) Haematoxylin and eosin staining of colon sections. Scale bar indicates 200mm. (c) Gross morphology of

colons (left) and colon length (right). (d) Colonic RNA was isolated, and relative amounts of Ifng and ll17 transcripts were measured by qRT–PCR.

(e–i) Tconv and Treg cells were isolated from the spleen (spl), mesenteric lymph node (mLN) and peripheral lymph node (pLN). Protein levels of YY1

and Foxp3 were measured by intracellular staining (e). Total RNA was extracted, and transcripts of Ifng (f), Il17 (g), Foxp3 (h) and Yy1 (i) were measured by

qRT–PCR. Statistical differences in a–i were analysed by Student’s t-test (n¼ 5). *Po0.05. **Po0.01. ***Po0.001. Error bars shown in a–i represent s.d.
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YY1 inhibits Foxp3 expression by blocking Smad3/Smad4.
Foxp3 is induced by the TGF-b signalling pathway, and Smad3
and Smad4 are essential transcription factors for the induction of
the Foxp3 gene in this pathway. Upon TGF-b stimulation, the
Smad3/4 heterodimer directly binds to the Foxp3 CNS1, which
contains a Smad-binding element (SBE) as a TGF-b sensor4.
To investigate molecular mechanisms for YY1-mediated Foxp3
regulation, we first examined whether YY1 interacts with Smad3
and Smad4 by co-immunoprecipitation (co-IP) experiments. YY1
was co-immunoprecipitated with Smad3 and Smad4 (Fig. 6a),
consistent with a previous study31, suggesting that YY1 physically
interacts with both Smad3 and Smad4.

To test whether YY1 interferes with the binding of Smad3
or Smad4 to the Foxp3 CNS1, ChIP assays were performed
using a Smad3 or Smad4 antibody in control Treg cells and
YY1-transduced Treg cells. Smad3 and Smad4 binding was greatly
reduced in YY1-overexpressing Treg cells compared with that in
control Treg cells (Fig. 6b). Similar results were obtained with
EMSA and DNA pull-down assays, further supporting the
possibility that YY1 impedes the binding of Smad3/4 to the
SBE in the Foxp3 CNS1 (Fig. 6c,d).

To examine whether YY1 inhibits transactivation of the
Foxp3 genes by Smad3, transient reporter assays were performed.
EL4 cells were transfected with a reporter construct containing
Foxp3 promoter linked with CNS1 along with expression vectors
of YY1 or Smad3D (constitutively active form of Smad3).
As shown previously4, Smad3D transactivated the Foxp3 gene
because of the TGF-b sensor located in CNS1. Interestingly,
YY1 completely reduced the transactivation of Foxp3 gene even
in the presence of Smad3D (Fig. 6e). However, YY1 did not
affect heterodimerization of Smad3/4 (Supplementary Fig. 4),
expression of Smad3, phospho-Smad3 and Smad4 (Fig. 2c), and
nuclear translocation of Smad3/4 complexes (Fig. 6f). Taken
together, these data strongly suggest that YY1 inhibits Foxp3
expression by blocking binding of Smad3/4 to the SBE in the
Foxp3 CNS1.

YY1 binds to and represses the Foxp3 locus. The possibility that
YY1 may directly bind to the Foxp3 locus to repress its expression
was tested. Several putative YY1-binding sites were identified
within the Foxp3 locus by transcription factor-binding site
analysis (Supplementary Fig. 1). EMSA and ChIP assay in
YY1-overexpressing Treg cells confirmed that YY1 directly bound
to several regulatory elements at the Foxp3 locus, including the
promoter, CNS1 and CNS2 (Fig. 7a,b). YY1 directly bound to the
promoter of the Foxp3 gene in Tconv cells but not in Treg cells
(Fig. 7c). Transient reporter assays showed that YY1 inhibited
transactivation of the Foxp3 gene through binding to the Foxp3
promoter (Fig. 7d).

Chromatin status was investigated in the Foxp3 locus in control
or YY1-overexpressing Treg cells using ChIP assays with anti-H3
acetylation and H3-K4-me3 antibodies. YY1 caused a repressed
chromatin status at the Foxp3 locus (Fig. 7e). Taken together,
these data suggest that, when overexpressed, YY1 binds physically
to the Foxp3 locus, inhibits Foxp3 expression and causes a
repressive chromatin status at the locus.

YY1 directly inhibits the expression of Foxp3-target genes.
Foxp3 directly binds to and regulates many Treg signature genes,
including Cd25, Icos, Ctla4, Gitr and Il10 (refs 25,26,32–34). To
test whether YY1 affects this process, the interaction between YY1
and Foxp3 was first examined. Co-IP experiments showed that
these proteins interacted with each other (Fig. 8a). Transient
reporter assays were then used to examine whether YY1 inhibits
transactivation of Foxp3-target genes. EL4 cells were transfected

with reporter constructs containing a promoter of Cd25, Icos, Gitr
or Ctla4 together with Foxp3- or YY1-expressing vectors. Foxp3
directly transactivated promoter activities of its target genes
(Fig. 8b). However, YY1 expression inhibited this transactivation
by Foxp3 (Fig. 8b). Foxp3binding to its target promoters was
investigated using ChIP assays in control or YY1-transduced Treg

cells. Foxp3 binding to the promoters was remarkably reduced in
YY1-transduced Treg cells compared with control cells (Fig. 8c),
suggesting that YY1 inhibits Foxp3 binding to its target sites.
YY1 directly bound to the promoters of Foxp3-target genes in
YY1-transduced Treg cells (Fig. 8d,e) as well as in Tconv cells
(Fig. 8f). Taken together, these data suggest that YY1 interacts
with Foxp3, blocks binding of Foxp3 to its target genes and binds
to the Foxp3-target genes, and that YY1 binding inhibits
expression of these genes.

Domains of YY1 critical for inhibition of Treg functions. To
identify which domains of YY1 are important for interaction with
other proteins, expression vectors containing YY1 deletion
mutants were constructed (Fig. 9a). Protein–protein interactions
between the YY1 deletion mutants and Smad3, Smad4 or Foxp3
were investigated using co-IP assays. YY1 was associated with
Smad3 (Fig. 9b), Smad4 (Fig. 9c), Foxp3 (Fig. 9d) and Smad2
(Supplementary Fig. 5A). Deletion of the spacer or zinc finger 1-2
domains of YY1 caused loss of interactions with Foxp3, Smad3
and Smad4 (Fig. 9a–d, Supplementary Figs 4A–C), suggesting
that these domains mediate interactions with other proteins.

To examine whether the spacer and zinc finger 1-2 domains of
YY1 play an essential role in the inhibition of Treg differentiation
and function, we constructed retroviral vectors containing YY1
deletion mutants that have a deletion in spacer (YY1 DS) or zinc
finger 1-2 domains (YY1 DZ), transduced them into naı̈ve CD4 T
cells, and differentiated them into Treg cells. Foxp3 levels were
greatly reduced in YY1-transduced Treg cells compared with those
in control Treg cells (Fig. 9e). However, all the YY1 deletion
mutants failed to reduce Foxp3 expression in Treg cells (Fig. 9e).
In addition, these mutants failed to decrease Treg cell signature
genes regulated by Foxp3 in Treg cells (Fig. 9f). To further
examine the role of YY1 deletion mutants in Foxp3-mediated
target gene expression, a transient reporter assay using
reporter constructs containing the promoter of Foxp3 (Foxp3P),
Foxp3P-CNS1, CD25P or Ctla4P was performed in the presence
of various YY1 deletion mutants. Full-length YY1 repressed the
expression of Foxp3, Cd25 and Ctla4 genes mediated by Smad3D
or by Foxp3 (Fig. 10). However, YY1 DZ failed to inhibit the
transactivation of the Foxp3 gene by Smad3D, suggesting that the
inhibition of Foxp3 expression is mediated by the zinc finger 1-2
domains of YY1 (Fig. 10a,b). In addition, YY1 DS or YY1 DZ
failed to inhibit transactivation of Cd25 and Ctla4 mediated by
Foxp3 (Fig. 10c,d). These results strongly suggest that the spacer
and zinc finger 1-2 domains of YY1 are critically important for its
inhibition of Smad3 and Foxp3 functions.

Discussion
The results of this study show that YY1 inhibits differentiation
and function of Treg cells. YY1 expression is lower in Treg cells
than in Tconv cells, and overexpression of YY1 reduces the
expression of Foxp3 and its target genes. Furthermore, YY1
abrogates the immunosuppressive function of Treg cells both
in vivo and in vitro. YY1 directly binds to the Foxp3 gene,
reducing its expression, and represses chromatin remodelling of
the locus. YY1 interacts with Smad3/4 and blocks their induction
of Foxp3 expression. Furthermore, YY1 inhibits the induction of
Foxp3-target genes by binding to the Foxp3 protein and by
blocking its binding to its target loci.
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As Foxp3 is the critical transcription factor for the differentia-
tion and maintenance of Treg cells, understanding the molecular
mechanisms for the regulation of Foxp3 is crucial for controlling
immune homeostasis3,11,12. Although many factors have been
shown to induce or stabilize Foxp3 (refs 3,11,12), only a few
factors were shown to inhibit the expression or function of Foxp3.
In some cases of diseases such as chronic infectious diseases and
cancer, heightened Treg function is an obstacle for complete cure

of the diseases7. In these cases, negative regulation of Foxp3
function could help to boost protective immunity against these
diseases. In this study, YY1 is characterized as a new negative
regulator of Foxp3 and of Treg cells.

In this study, we found that YY1 has pleiotropic functions
and multiple roles in the inhibition of Treg cell development
and function (summarized in Supplementary Fig. 6). First, YY1
binds directly to regulatory regions in the Foxp3 locus, which
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suppresses the expression of the Foxp3 gene. Similar inhibitory
mechanisms of regulation of the Foxp3 gene were suggested in
previous studies: GATA3 (ref. 14 and RORgt16 bind to the Foxp3
promoter, and STAT3 (ref. 15) binds to the Foxp3 CNS2, which
cause a repression of the Foxp3 gene. How YY1 inhibits the Foxp3
gene after binding to the Foxp3 locus is not yet clear. One
possibility is that YY1 may recruit chromatin remodelling factors
to induce repressed chromatin status at the locus. YY1 interacts
with many chromatin remodelling factors including the INO80
complex, histone acetyltransferases, histone deacetylases and
histone methyltransferase17,18,19,35. The finding that YY1 reduced
H3K4-me3 at the Foxp3 locus supports this possibility; however,
the detailed mechanisms of YY1-mediated repression of the
Foxp3 gene remain to be elucidated.

Second, YY1 inhibits the induction of Foxp3 expression by
blocking TGF-b signalling. A previous study showed that YY1
interacts with Smad proteins to inhibit TGF-b or BMP
signalling25. The present study shows that YY1 has a similar
role in inhibiting Treg cell development. YY1 associates with
Smad3 and Smad4 to block their binding to the Foxp3 CNS1,
which is a crucial Smad-binding site for Foxp3 expression during
Treg cell differentiation.

Third, YY1 inhibits Foxp3-induced expression of target genes
by physically binding to and blocking Foxp3. Foxp3 is a global
regulator of its target genes; Foxp3 binds to numerous target
genes and induces their expression, which is essential for Treg cell
differentiation and function. Previous studies have shown that
Foxp3 is capable of binding several proteins24. For example,
Foxp3 binds to AML1 and inhibits the production of the cytokine
IL-2 (ref. 36). Foxp3 also binds to NFAT and interferes with the
conformation of AP1–NFAT complexes that are essential for
effector cell programmes37. Foxp3 also interacts with GATA3
(refs 24,38) and RORgt39, and these interactions lead to
inactivation of Foxp3. Our data show that YY1 binds to Foxp3
and abrogates its function. YY1-mediated inhibition of the
Foxp3-target genes can be explained by two possible mechanisms.
The interaction of YY1 with Foxp3 may physically interfere with
Foxp3 binding to its target genes. Another possibility is that YY1
binding to the Foxp3 target gene loci may inhibit Foxp3 binding
to the loci. Here, YY1 directly bound to the promoter of the
Foxp3 target genes. Although the cognate YY1-binding sites are
separate from the Foxp3-binding site, YY1-binding sites appear to
be present in the promoters of the Foxp3 target genes, including
Cd25, Icos, Ctla4 and Gitr.
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Like other transcription factors interacting with Foxp3, such as
RORgt, STAT3 and GATA3, YY1 is implicated in effector CD4
T-cell differentiation. We previously have shown that YY1 plays
an important role in Th2-cell differentiation23. The set of
transcription factors including YY1 have dual roles in CD4
T-cell differentiation: one is to stimulate a specific effector subset
differentiation, and the other is to inhibit Treg-cell differentiation.
Thus, the outcome of the reciprocal inhibition would be the fate
decision of effector versus Treg-cell differentiation. Although most
of these proteins are normally expressed exclusively with Foxp3,
they may be co-expressed in certain situations such as during the
course of infection. The proinflammatory response predominates
at the initial phase of infection, whereas the anti-inflammatory
response predominates at the later resolving phase of infection40.
Reciprocal regulation of the effector-specific transcription
factors and Foxp3 may determine proinflammatory versus
anti-inflammatory reactions.

In conclusion, the present study illustrates that YY1 inhibits
the differentiation and function of Treg cells by blocking Foxp3
expression and function. This study elucidates fundamental

molecular mechanisms of Treg differentiation, and may contribute
to the development of therapeutic strategies for many immune-
related diseases and cancer.

Methods
Mice. Six- to eight-week-old C57BL/6 mice were purchased from Samtaco,
and CD4-CRE transgenic mice were purchased from Taconic. RAG1-deficient
(C57BL/6) mice, YY1 flox/flox (C57BL/6) mice, Foxp3-eGFP (C57/BL6) and
Foxp3-RFP (C57/BL6) mice were purchased from Jackson Laboratory. YY1 KD
mice were previously described23. All mice were maintained in the Sogang
University animal facility under specific pathogen-free conditions. Experiments
with live mice were approved by the Sogang University Institutional Animal
Care and Use Committee.

In vitro differentiation of CD4 T cells. CD4 T cells were enriched from spleen
cells from WT mice by mixing with anti-MHC class II (M5/115, cat. no. MABF33,
Millipore, diluted 1/200), anti-NK1.1 (PK136, cat. no. 108712, BioLegend, diluted
in 1/200) and anti-CD8 (53-6.7, cat. no. 100735, BioLegend, diluted in 1/200)
antibodies, followed by depletion with a mixture of magnetic beads conjugated
to anti-rat IgG (BioMag, cat. no. 84334, Polybioscience, diluted in 1/10) and
anti-mouse IgG antibodies (BioMag, cat. no. 84340, diluted in 1/10). Naı̈ve CD4 T
cells were sorted based on the surface markers, CD4high, CD62Lhigh and CD44low.

0
1
2
3
4
5
6
7

C
M

V

Y
Y

1

F
ox

p3

F
ox

p3
+

 Y
Y

1

C
M

V

Y
Y

1

F
ox

p3

F
ox

p3
+

 Y
Y

1

C
M

V

Y
Y

1

F
ox

p3

F
ox

p3
+

 Y
Y

1

C
M

V

Y
Y

1

F
ox

p3

F
ox

p3
+

 Y
Y

1

CD25 P

*

*

0
2
4
6
8

10
12
14
16

Icos P

*

**

0
20
40
60
80

100
120
140
160

Gitr P

*

**

0
2
4
6
8

10
12
14
16

Ctla4 P

NT
P + I

*

*

0

0.02

0.04

0.06

0.08

α-
F

ox
p3

α-
Ig

G

α-
F

la
g

α-
Ig

G

α-
F

la
g

α-
Ig

G

α-
F

la
g

α-
Ig

G

α-
F

la
g

α-
Ig

G

α-
Y

Y
1

α-
Ig

G

α-
Y

Y
1

α-
Ig

G

α-
Y

Y
1

α-
Ig

G

α-
F

ox
p3

α-
Ig

G

α-
F

ox
p3

α-
Ig

G

α-
F

ox
p3

α-
Ig

G
CD25 P

*

0

0.02

0.04

0.06

0.08

0.1

Gitr P

*

0

0.01

0.02

0.03

0.04

0.05

Icos P

*

0

0.02

0.04

0.06

0.08

Ctla4 P

**

F
ol

d 
to

 in
pu

t

0

0.002

0.004

0.006

0.008

CD25 P

*

0

0.001

0.002

0.003

0.004

0.005

Icos P

*

0

0.001

0.002

0.003

0.004

0.005

Ctla4 P

*

0

0.002

0.006

0.01

0.014

Gitr P

*

F
ol

d 
to

 in
pu

t

0

0.004

0.008

0.012

0.016

0.02

CD25 P

*

0

0.002

0.004

0.006

0.008

0.01

0.012

Ctla4 P

*

0

0.01

0.02

0.03

0.04

0.05

Gitr P

*

F
ol

d 
to

 in
pu

t

+ – + –

– + – +

– – + +

CD25 P

Gitr P

Ctla4 P

Probe

Treg
Tconv

Treg(Ctrl)
Treg(YY1)

Treg(Ctrl)
Treg(YY1)

YY1 – + – + – + – + – + – +
Foxp3 – – + + – – + + – – + +

– + – + – + – + – + – +
– – + + – – + + – – + +

YY1

Foxp3

Input YY1 IgG

IP

WB:
Foxp3

Input Foxp3 IgG

IP

WB:
YY1

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

Treg (Ctrl) N/E

Treg (YY1) N/E
YY1 consensus

(X80)

a b

c e

d f
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immunoprecipitated with an anti-Foxp3, anti-YY1 or control IgG antibody. Then, proteins were immunoblotted by an anti-Foxp3 or anti-YY1 antibody, as

indicated. IP, immunoprecipitation; WB, immunoblot. (b) Transactivation activity of YY1 and Foxp3 on the Foxp3-target genes was measured by transient

reporter assay. EL4 cells were transfected with CD25P-, IcosP-, GitrP- or Ctla4P-luciferase reporter construct in combination with Foxp3 or YY1 expression

vector. (c,d) Binding of Foxp3 (c) and YY1-Flag (d) to the promoters of the Foxp3-target genes in control or YY1-Flag-expressing Treg cells was measured by
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were determined by Student’s t-test (n¼ 3). *Po0.05. **Po0.01. Data are representative of three independent experiments with similar results.
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The cells were activated by plate-bound anti-CD3e (2C11, BioLegend, 5 mg ml� 1)
and soluble anti-CD28 (37.51, BioLegend, 2 mg ml� 1) antibodies. For neutral (Th0)
differentiation, 1� 106 naı̈ve CD4 T cells were cultured in 5 ml of RPMI-1640
culture medium (Life Technologies) supplemented with 5% fetal bovine serum,
2-mercaptoethanol, MEM amino acids solution (Life Technologies), non-essential
MEM amino acids solution (Life Technologies) and penicillin–streptomycin
solution (Life Technologies) in the presence of IL-2 (1 ng ml� 1). For Th1 skewing
conditions, IL-12 (3.5 ng ml� 1) and 11B11 (anti-IL-4, 10mg ml� 1) antibody were
added to same media. For Th2 cell differentiation, IL-4 (5 ng ml� 1) and XMG1.2
(anti-IFN-g, 10mg ml� 1) antibody were added. Treg conditions comprised treat-
ment with TGF-b (5 mg ml� 1), IL-2 (1 ng ml� 1), XMG1.2 antibody (10 mg ml� 1)
and 11B11 antibody (10mg ml� 1). After 4–5 days, the cells were used for further
experiments.

EMSA. Nuclear extracts (5mg) were incubated for 30 min on ice in binding
buffer (10 mM Tris-Cl, pH 8.0, 40 mM KCl, 0.05% NP-40, 6% glycerol, 1 mM
dithiothreitol (DTT), 1 mg ml� 1 of poly(dI:dC)) and then 0.5 ng of 32P-labelled
double-stranded oligonucleotides were added to the mixture and incubated
for 30 min on ice. The oligonucleotide sequences used are described in
Supplementary Table 1.

Chromatin immunoprecipitation. Cells (1� 107) were cross-linked with 1%
paraformaldehyde on ice for 30 min and quenched with 0.125 M glycine. Cells were
then lysed with a buffer containing 1% SDS and sonicated at the high-power setting
for 15 min using a Bioruptor sonicator (Diagenode). Cell extracts were pre-cleared
with protein A/G agarose/salmon sperm DNA (Upstate) and incubated with an
anti-H3K4-me3 (Millipore, 07-473), anti-H3Ac (Millipore, 06-599), anti-YY1
(Santa Cruz, sc-1703), anti-FLAG (Sigma, M2) or normal rabbit IgG or normal
mouse IgG (Santa Cruz) as a negative control. Antibody-bound protein–chromatin
complexes were precipitated by protein A/G agarose, washed and eluted. The
chromatin was reverse cross-linked by incubating at 65 �C for 4 h, followed by
protease K treatment. After clean-up, the amount of precipitated DNA was
quantified by quantitative PCR using the SYBR green (Kappa Bio) method with
the primers listed in Supplementary Table 2.

RNA isolation and qRT–PCR. Total RNA was isolated from naive CD4 T cells or
in vitro-differentiated Th0, Th1, Th2 or Treg cells using Trizol reagent (Invitrogen).
Reverse transcription (RT) was performed using Superscript II RT (Topscript).
Quantitative PCRs for cDNA were performed with real-time fluorogenic
50-nuclease PCR or SYGR green method using the 7500 Real-Time PCR System
(Applied Biosystems). Relative amounts of expression were normalized by the

amount of the Hprt transcript. The dual labelled probe and primer sequences used
for quantitative PCR are listed in Supplementary Table 3.

Microarray analysis. The synthesis of target cRNA probes and hybridization were
performed using Agilent’s Low RNA Input Linear Amplification kit (Agilent
Technologies) according to the manufacturer’s instructions. Briefly, each 1 mg total
RNA and T7 promoter primer mix and incubated at 65 �C for 10 min. cDNA
master mix (5� First strand buffer, 0.1 M DTT, 10 mM dNTP mix, RNase-Out
and MMLV-RT) was prepared and added to the reaction mixer. The samples were
incubated at 40 �C for 2 h and then the RT and double-stranded (dsDNA) synthesis
was terminated by incubating at 65 �C for 15 min. The transcription master mix
was prepared as the manufacturer’s protocol (4� Transcription buffer, 0.1M DTT,
NTP mix, 50% PEG, RNase-Out, Inorganic pyrophosphatase, T7-RNA polymerase
and Cyanine 3/5-CTP). Transcription of dsDNA was performed by adding the
transcription master mix to the dsDNA reaction samples and incubating at 40 �C
for 2 h. Amplified and labelled cRNA was purified on cRNA Cleanup Module
(Agilent Technologies) according to the manufacturer’s protocol. Labelled
cRNA target was quantified using ND-1000 spectrophotometer (NanoDrop
Technologies). After checking labelling efficiency, fragmentation of cRNA was
performed by adding 10� blocking agent and 25� fragmentation buffer and
incubating at 60 �C for 30 min. The fragmented cRNA was resuspended with
2� hybridization buffer and directly pipetted onto assembled Agilent’s Mouse
Oligo Microarray (60 K). The arrays hybridized at 65 �C for 17 h using Agilent
Hybridization oven (Agilent Technologies). The hybridized microarrays were
washed as the manufacturer’s washing protocol (Agilent Technologies). The
hybridized images were scanned using Agilent’s DNA microarray scanner and
quantified with Feature Extraction Software (Agilent Technologies). All data
normalization and selection of fold-changed genes were performed using
GeneSpringGX 7.3 (Agilent Technologies). Functional annotation of genes
was performed according to the Gene OntologyTM Consortium (http://www.
geneontology.org/index.shtml) by GeneSpringGX 7.3 (Agilent Technologies). Gene
classification was based on searches done by BioCarta (http://www.biocarta.com/),
GenMAPP (http://www.genmapp.org/), DAVID (http://david.abcc.ncifcrf.gov/)
and Medline databases (http://www.ncbi.nlm.nih.gov/). The microarray data
were deposited in GEO database (GEO accession number: GSE75052).

Immunoblot analysis. Protein or cell extracts were resolved on a 10% SDS–PAGE
gel and transferred to a polyvinylidene difluoride membrane (Bio-Rad). The
membrane was blocked with 5% skim milk in TBST for 1 h at room temperature.
The membrane was then probed with an antibody against FLAG, Foxp3
(eBioscience), Smad2 (Cell Signaling, 5339), pSmad3 (Cell Signaling, 9520),
Smad3 (Abcam, 29379), Smad4 (Cell Signaling, 9515), YY1 (Santa Cruz, sc-1703)
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Figure 10 | Spacer and Zinc finger domains of YY1 are essential for inhibiting transactivation activity of Smad3 or Foxp3. Transactivation activity of

Smad3, Foxp3 or YY1 domain mutants at the promoters of the Foxp3, CD25 or Ctla4 genes was measured by transient reporter assay. EL4 cells were

transfected with Foxp3 promoter-luc (a), Foxp3 promoter-CNS1-luc (b), CD25 promoter-luc (c) or Ctla4 promoter-luc (d) reporter construct in

combination with Smad3D-, Foxp3- or YY1 domain mutant expression vectors. Error bars shown in a–d represent s.d. Statistical differences were analysed by

Student’s t-test (n¼ 3). *Po0.05. **Po0.01. I, ionomycin; NT, no treatment; P, phorbol 12-myristate 13-acetate.
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or b-actin (Santa Cruz, sc-47778), diluted 1:100 or 1:1,000 in TBST overnight at
4 �C. An HRP-conjugated antibody against rabbit or mouse (BioLegend) diluted at
1:2,000 in 5% skim milk TBST was added for 1 h at room temperature. Target
proteins were detected by enhanced chemiluminescence reaction. Images have been
cropped for presentation. Full-size images are presented in Supplementary Fig. 7.

DNA pull-down assay. Nuclear extracts were isolated from HEK293T cells by
sonication. Chromatin DNA was pelleted at 14,000g for 15 min at 4 �C, and the
nuclear lysates in the supernatant were collected. Biotin-labelled DNA probes
(1mg) were incubated with nuclear lysate with proteinase inhibitors for 30 min at
room temperature in binding buffer (10 mM Tris-Cl, pH 8.0, 50 mM KCl, 1 mM
DTT, 5% glycerol, 1 mg ml� 1 poly(dI:dC), 1 mg ml� 1 salmon sperm DNA,
1 mg ml� 1 BSA). Protein–DNA complexes were collected with streptavidin
agarose (50 ml, Sigma-Aldrich). Precipitated proteins were washed five times with
binding buffer and resuspended in an SDS loading buffer. Immunoblot analysis
was performed as described above.

Retroviral transduction. For ectopic expression, mouse Yy1 (WT or deletion
mutants) coding sequences were cloned into MIEG3 retroviral vector. A total of
1� 106 Phoenix Eco cells were co-transfected with retroviral vector and pCL-Eco
helper vector. A culture supernatant containing high titres of retrovirus was
collected after 48 h of transfection. Purified naive CD4 T cells were activated under
Th0 condition with plate-bound anti-CD3 (5mg ml� 1) and anti-CD28 (2 mg ml� 1)
for 24 h. Activated cells were then spin-infected in 1 ml of retrovirus-containing
supernatant with polybrene (4 mg ml� 1) at 1,500g for 90 min at 32 �C. After the
spin infection, cells were incubated for 4–5 days under the Th0 or Treg condition.
GFPþ cells or total cells were used for further experiments.

FACS staining. For Foxp3, cells were stained with anti-Foxp3 (eBioscience)
using a Foxp3 staining kit (BioLegend). For YY1 staining, total splenocytes from
YY1-eGFP mice were enriched by CD4 microbeads (Miltenyi). Tconv (CD4þ

CD25� ) or Treg (CD4þ CD25þ ) cells from WT mice were prepared using
a CD4þCD25þ Treg isolation kit (Miltenyi). The cells were stained with an
anti-YY1 (Santa Cruz sc-1703) antibody using a Foxp3 staining kit (BioLegend).
For cytokine staining, cells were restimulated with 1 mM ionomycin
(Sigma-Aldrich) and 10 nM phorbol myristate acetate (Sigma-Aldrich) with
Golgi stop (BD Bioscience) for 4 h. Intracellular staining was performed using
Cytofix/cytoperm kit (BD Bioscience).

Co-immunoprecipitation. HEK293T cells were transfected with FLAG-tagged
pCMV-Yy1, pCMV-Smad3, pCMV-Smad4 and pCMV-Foxp3. Two days after
transfection, cell lysates were isolated and then pre-cleared with control IgG
followed by protein A/G (Santa Cruz) treatment. Pre-cleared lysates were
incubated overnight at 4 �C with anti-YY1, anti-Smad3, anti-Smad4, anti-Foxp3,
anti-FLAG or control IgG antibody. Then, protein A/G beads were added, followed
by incubation for an additional 4 h. Immunocomplexes were extensively washed
and resuspended in an SDS loading buffer. Immunoblot analysis was performed as
described above.

Dual luciferase assay. EL4, a mouse lymphoma cell line, was co-transfected with
a combination of CMV-Yy1, CMV-Smad3D or CMV-Foxp3 expression vectors,
and pGL-Foxp3P or pGL-Foxp3 P/CNS1, pGL-Il2raP, pGL-IcosP, pGL-Ctla4P or
pGL-GitrP reporter vectors. The following day, luciferase activity was measured.
Transfection efficiency was normalized by dividing Firefly luciferase activity by
Renilla luciferase activity.

In vitro suppression assays of YY1-transduced Treg cells. Treg cells were isolated
from Foxp3-RFP knock-in mice based on RFP expression. Isolated Treg cells were
transduced with control or YY-1-expressing retroviral vector as described above.
After sorting of GFPþ -transduced Treg cells, 1� 105 cells were plated in 96-well
plates. CD4þCD25� Tresp cells were freshly isolated from CD45.1 mice on
C57BL/6 background, and were labelled with CFSE (Sigma). Tresp cells (1� 105)
were added together with anti-CD3/CD28 beads (Invitrogen) in 96-well plates.
After 3 day cultures, Tresp cells were selected and analysed using FACS caliber
(BD Bioscience).

Induction of inflammatory bowel disease. Naı̈ve CD4 T (CD4þCD62hi

CD45RBhi) cells from C57BL/6 mice were sorted on a FACS Aria III
(BD Bioscience). Inflammatory bowel disease was induced by the adoptive transfer
of 5� 105 naı̈ve CD4 T cells into Rag1� /� mice by retro-orbital injection. Naı̈ve
CD4 T cells (5� 105) alone or together with control vector-transduced GFPþ Treg

cells (1� 105) or YY1-transduced GFPþ Treg cells (1� 105) were transferred into
Rag1� /� mice. Recipient mice were weighed two times per week. After 9 weeks,
mice were killed, and splenocytes and CD4 T cells were counted by flow cytometry.
For histological analysis, the colon was removed and fixed in 10% (vol/vol)
buffered formalin solution, and sections were stained with haematoxylin and eosin.

Statistical analysis. Values are shown as the mean±standard deviation (s.d.).
Statistical differences between mean values were determined by Student’s t-test.
Results were considered significant when the P-value was less than 0.05.
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