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ABSTRACT

We consider the problem of discovering gene regulatory networks
from time-series microarray data. Recently, graphical Granger
modeling has gained considerable attention as a promising direction
for addressing this problem. These methods apply graphical
modeling methods on time-series data and invoke the notion
of ‘Granger causality’ to make assertions on causality through
inference on time-lagged effects. Existing algorithms, however,
have neglected an important aspect of the problem—the group
structure among the lagged temporal variables naturally imposed
by the time series they belong to. Specifically, existing methods in
computational biology share this shortcoming, as well as additional
computational limitations, prohibiting their effective applications to
the large datasets including a large number of genes and many
data points. In the present article, we propose a novel methodology
which we term ‘grouped graphical Granger modeling method’, which
overcomes the limitations mentioned above by applying a regression
method suited for high-dimensional and large data, and by leveraging
the group structure among the lagged temporal variables according
to the time series they belong to. We demonstrate the effectiveness
of the proposed methodology on both simulated and actual gene
expression data, specifically the human cancer cell (HeLa S3) cycle
data. The simulation results show that the proposed methodology
generally exhibits higher accuracy in recovering the underlying causal
structure. Those on the gene expression data demonstrate that it
leads to improved accuracy with respect to prediction of known
links, and also uncovers additional causal relationships uncaptured
by earlier works.
Contact: aclozano@us.ibm.com

1 INTRODUCTION
Recent advances in molecular biology make it possible to measure
the genome-wide program of gene expression of an organism over
time. The availability of such time course data raises the possibility
of addressing a key objective: the discovery of gene regulatory
networks. Since the directionality of information flow is a key
aspect of the regulatory mechanisms, the crux of the problem is
thus to identify causal relationships between genes rather than mere
correlations.

Granger (1980) causality (Granger, 1980) is an operational
definition of causality well known in econometrics, and essentially
defines one time series as ‘causing’another, if the first series contains
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additional information for predicting the future values of the second
series, beyond the information in the past values of this second series.
By combining this notion with regression algorithms, and applying
them to perform graphical modeling over the lagged temporal
variables, effective methods for modeling causality involving many
variables can be obtained. Recently, these methods, collectively
referred to as ‘the graphical Granger modeling methods’, have
received considerable attention in the areas of computational biology
and data mining, and specifically to address the problem of analyzing
causality among gene expressions (Dahlhaus and Eichler, 2003;
Mukhopadhyay and Chatterjee, 2007).

The existing algorithms for graphical Granger methods, however,
have neglected an important aspect of the problem, which is critical
for formulating the graphical modeling problem appropriately—
the group structure among the lagged temporal variables naturally
imposed by the time series they belong to. For example, lagged
variables xt−1, xt−2, xt−3, etc., of the same time series {xt} can
be naturally considered to form a group of related variables. This
observation suggests that it would prove useful to apply variants
of regression methods that make use of group information among
variables, such as group Lasso (Yuan and Lin, 2006; Zhao et al.,
2006), into the domain of graphical Granger modeling, resulting
in our proposed methodology which we refer to as the ‘grouped
graphical Granger modeling method’.

As it turns out, past works in the computational biology literature
considered one unit time lag only (Fujita et al., 2007; Li et al., 2006;
Mukhopadhyay and Chatterjee, 2007; Ong et al., 2002; Opgen-
Rhein and Strimmer, 2007), due to either algorithmic constraints,
or to computational limitations. This means that they ignore the
possibility that a given gene may influence another with a delay of
more than one time unit, which is an oversimplification, since time
delayed regulation mechanisms with lags greater than one time unit
do exist with significant frequency [e.g. as identified in Li et al.
(2006)]. Such limitations will become increasingly problematic as
microarray data with finer sampling period becomes available in
the future. While the restriction to a unit time lag may explain why
the group structure among temporal variables has been ignored to
date (since the issue does not arise for this restricted case), it is
clear that if the existing methods were to be extended to encompass
additional lags, making effective use of such group structure would
be critical.

The objective of the present article is to demonstrate that
leveraging group structure among the temporal variables can indeed
help improve their accuracy as methods of Granger graphical
modeling, and specifically provide a more effective method for
analyzing causality among gene expressions.
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Note that our method is computationally efficient and can
accommodate a very large number of time series, which is critical
in analyzing genome-wide microarray data. The efficiency of our
method is largely due to the use of regression methods with variable
selection in graphical Granger modeling (i.e. Lasso and its variant).
See, for example Arnold et al. (2007), for an empirical comparison
of computational complexity of a number of methods, which shows
in particular that Lasso-based methods are more efficient than the
pairwise Granger test approach, or other traditional approaches to
Bayesian network structure learning. We note that some of the
existing methods (Li et al., 2006; Mukhopadhyay and Chatterjee,
2007; Ong et al., 2002; Segal et al., 2003; Xu et al., 2004; Yamaguchi
et al., 2007) are unable to handle full-fledged Granger causality
tests, and therefore either (i) resort instead to suboptimal versions
involving pairwise causality tests only rather than simultaneously
encompassing all the times series (Mukhopadhyay and Chatterjee,
2007); or (ii) consider a small subset of genes only (Li et al.,
2006; Ong et al., 2002); or (iii) perform dimensionality reduction
via clustering and obtain module networks rather than gene
networks, which tend to generate results that are more difficult to
interpret (Segal et al., 2003; Xu et al., 2004; Yamaguchi et al., 2007).

The last two approaches often rely on extensive domain
knowledge to preselect the most relevant genes or modules [as
in Ong et al. (2002)] or to divide the genes into groups such as
‘Regulators’ versus ‘Regulated’ [as in Segal et al. (2003)]. While
using domain knowledge in such a manner can be helpful, and
critical for practicality of some of the methods, we prefer to cast
our method in a completely general framework, where no prior
knowledge about the roles of genes or likely candidates thereof is
available in advance.

We perform empirical evaluation to demonstrate the advantage
of the grouped graphical Granger method over the standard (non-
grouped) methods. In our first set of experiments, we conduct
systematic experiments using synthetic data, in which we randomly
generate a true causal graph, generate time series data from it, and
then apply the various alternative algorithms to estimate and infer
the true causal structure. The simulation results show that indeed
our grouped graphical Granger method attains significantly higher
accuracy over the corresponding standard (non-grouped) methods,
albeit subject to the underlying assumptions of the simulation models
employed, e.g. there being a strong group structure among the
variables.

In our experiments using the human cancer cell (HeLa S3)
cycle data (Whitfield et al., 2002), available at http://genome-
www.stanford.edu/Human-CellCycle/Hela/, we apply our method
to three different datasets, corresponding to three experiments under
basically the same conditions but having different sample sizes (each
with 12, 26 and 48 time points). Our results are consistent with the
observations made by past research (Mukhopadhyay and Chatterjee,
2007), using a related method that is inherently restricted to lag 1
(time delay of unit time 1), while they also uncover additional causal
relationships uncaptured by the earlier method. By measuring the
accuracy of prediction against a database of known causal links
(BioGRID), we show that our method significantly improves the
predictive accuracy over an existing method (Sambo et al., 2008).
Our experiments also confirm that the efficiency of our method,
by allowing us to analyze datasets with larger sampling sizes,
contributes to the robustness and stability of the discovered causal
relationships.

2 THE METHODOLOGY

2.1 Preliminaries: Granger causality and graphical
Granger modeling

2.1.1 Granger causality We begin by introducing the notion of
‘Granger Causality’ (Granger, 1980). This notion was introduced by
the Nobel prize winning economist, Clive Granger, and has proven
useful as an operational1 notion of causality in time-series analysis
in the area of econometrics. It is based on the intuition that a cause
should necessarily precede its effect, and in particular that if a time-
series variable causally affects another, then the past values of the
former should be helpful in predicting the future values of the latter,
beyond what can be predicted based only on their own past values.

More specifically, a time series x is said to ‘Granger cause’another
time series y, if the accuracy of regressing for y in terms of past
values of y and x is statistically significantly better than that of
regressing just with past values of y. Let {xt}T

t=1 denote the time-

series variables for x and {yt}T
t=1 the same for y. The so-called

Granger test first performs the following two regressions:

yt ≈
d∑

j=1

aj ·yt−j +
d∑

j=1

bj ·xt−j (1)

yt ≈
d∑

j=1

aj ·yt−j (2)

where d is the maximum ‘lag’ allowed in past observations, and then
applies an F-test, or some other statistical test, to determine whether
or not (1) is more accurate than (2) with a statistically significantly
advantage. In this article, we often use the term ‘feature’ to mean a
time series (e.g. x) and use temporal variables or lagged variables to
refer to the individual variables (e.g. xt). In the context of microarray
time series, a feature denotes the time series of expression levels for
a gene, while a temporal variable or a lagged variable refers to the
expression level for a gene at a given time point.

2.1.2 Graphical Granger modeling The notion of Granger
causality, as introduced above, was defined for a pair of time
series. We are interested in cases in which there are many time-
series variables present and we wish to determine the causal
relationships between them. For this purpose, we naturally turn to
graphical modeling over time-series data to determine conditional
dependencies between the temporal variables, and obtain insight and
constraints on the causal relationship between the time series.

A particularly relevant class of methodologies is those that
apply regression algorithms with variable selection to determine the
neighbors of each variable, such as the Lasso (Tibshirani, 1996),
which minimizes the usual sum of squared errors plus a penalty on
the sum of the absolute values of the regression coefficients. That
is, one can view the variable selection process in regression for yt
in terms of yt−1, x1

t−1, x2
t−1, etc., as an application of the Granger

test on y against x1, x2, etc. By extending the pairwise Granger test
to one involving an arbitrary number of time series, it makes sense
to say that x1 Granger causes y, if x1

t−d is selected for any time lag
d in the above variable selection. Where and to the extent that such

1The Granger Causality is not meant to be equivalent to true causality, but
is merely intended to provide useful information regarding causation.
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regression-based variable selection coincides with the conditional
dependence between the variables, the above operational definition
can be interpreted as the key building block of the graphical Granger
model. [See, for example, Meinshausen and Buhlmann (2006) for a
related theoretical result.]

2.2 Grouped graphical Granger modeling method
An important aspect that is overlooked in the existing methods
in the literature is the following: for graphical Granger modeling,
the question we are interested in is whether the entire series
xt−1,xt−2,... provides additional information for the prediction of
yt . Emphatically, the question is not whether for a given lag d
xt−d provides additional information for predicting yt . That is,
as a method of Granger graphical modeling, the relevant variable
selection question is not whether an individual lagged variable is
to be included in regression, but whether the lagged variables for a
given time series as a group (i.e. the feature), are to be included. We
thus argue that a more faithful implementation of graphical Granger
modeling methods should take into account the group structure
imposed by the time series into the modeling approach and fitting
criteria that are used in the variable selection process. This is the
motivation for us to turn to the recently developed methodology,
group Lasso, which performs variable selection with respect to
model fitting criteria that penalize intra- and inter-group variable
inclusion differently.

The foregoing argument leads to the generic procedure of grouped
graphical Granger modeling method, exhibited in Figure 1. We now
turn to the description of regression methods with both non-grouped
and grouped variable selection: Lasso, Adaptive Lasso and Group
Lasso. The latter is the preferred version of the sub-procedure REG
as it performs regression with group variable selection, while the
former two are not grouped methods and will be used for comparison
purposes in the simulations of Section 3.

Grouped graphical granger modeling

1. Input: Time series data {X t }t =1 ,..,T  where eachXtis a 
p-dimensional vector.
Input: A regression method with group variable selection,
REG.

2. Initialize the adjacency matrix for the p features, i.e. G=
〈V, E 〉 where V is the set of p features (e.g. by all 0’s).

3. For each feature y ∈V, run REG on regressing for yt in terms
of the past lagged variables, x t − d ,..., xt −1, for all the features
x∈V (including y) i.e., regress (yT , yT −1 , · · · , y1+ d )T in
terms of
⎛
⎜⎜⎜⎝

x 1
T − 1 · · · x 1

T − d · · · x p
T − 1 · · · x p

T − d
x 1

T − 2 · · · x 1
T − 1− d · · · x p

T − 2 · · · x p
T − 1− d

...
...

...
...

...
...

...
...

x 1
d · · · x 1

1 · · · x p
d · · · x p

1

⎞
⎟⎟⎟⎠

where V=
{

x j , j = 1 , . . . , p
}

. For each feature x j∈V
place an edge x j → y into E , if and only if x j was selected as
a group by the grouped variable selection method REG.

Fig. 1. Generic group graphical Granger modeling method.

2.2.1 Sub-procedures for regression with variable selection In
the following, we state the regression methods with variable
selection as generic methods for regression. Consider linear
regression models. Let Y = (y1,...,yn)T be an n×1 response
vector and X =[x1,x2,...,xp] be the predictor matrix, where xj =
(xj

1,...,xj
n)T , j=1,...p, are the covariates. Typically, the pairs

(Xi,Yi) are assumed to be independently identically distributed
(i.i.d.) but most results can be generalized to stationary processes
given reasonable decay rate of dependencies (e.g. certain conditions
on the mixing rates).

We are interested in selecting the most important predictors.
Hence, the ordinary least squares estimate (OLS) is not satisfactory,
while procedures performing coefficient shrinkage and variable
selection are desirable. A popular method for variable selection is
the Lasso (Tibshirani, 1996), which is defined as:

β̂lasso(λ)=argmin
β

(‖Y −Xβ‖2 +λ‖β‖1),

where λ is a penalty parameter. Here, the l1 norm penalty ‖β‖1
automatically introduces variable selection, that is, β̂j(λ)=0 for
some j′s, leading to improved accuracy and interpretability. The
Lasso procedure is employed in Fujita et al. (2007) (with lag of one
time unit only).

It is well known that the Lasso suffers from a tendency to over-
select the variables. To address this issue, Zou (2006) proposed the
Adaptive Lasso, a two-stage procedure solving

β̂adapt(λ)=argmin
β

(
‖Y −Xβ‖2 +λ

p∑
j=1

|βj|
|β̂init,j|

)
,

where β̂init is an initial root n consistent estimator, e.g. that obtained
by OLS or Ridge Regression. Notice that if β̂init,j =0 then ∀λ>0,

β̂adapt(λ)=0. In addition if the penalization parameter λ is chosen
appropriately, Adaptive Lasso is consistent for variable selection,
and enjoys the so called ‘Oracle Property’, which in broad terms
signifies that the procedure performs as well as if the true subset of
relevant variables were known.

In many situations, natural groupings exist between variables, and
variables belonging to the same group should be either selected or
eliminated as a whole. The group Lasso procedure (Yuan and Lin,
2006; Zhao et al., 2006) was invented to address this issue, which
we leverage in our present context by choosing the group Lasso
algorithm as our sub-procedure REG.

Given J groups of variables which partition the set of predictors,
the group Lasso estimate of Yuan and Lin (2006) solves

β̂group2
(λ)=argmin

β
‖Y −Xβ‖2 +λ

J∑
j=1

‖βGj
‖2,

where βGj
={βk;k ∈Gj} and Gj denotes the set of group indices. In

our case groups are of equal length (since they correspond to the
number of sampling points allowed in regression), so the objective
does not need to account for unequal group size.

Here notice that by electing to use the l2 norm as the intra-group
penalty, one encourages the coefficients for variables within a given
group to be similar in amplitude (as opposed to using the l1 norm,
for example).
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3 SIMULATION EXPERIMENTS
In our first set of experiments, we conducted systematic
experimentation using synthetic data in order to test the performance
of the proposed methods of group graphical Granger modeling,
primarily against that of the non-group variants.

As models for data generation, we employed the Vector Auto-
Regressive (VAR) models (c.f. Enders, 2003). Specifically, if we
let Xt denote the vector of all feature values at time t, a VAR
model is defined as Xt =At−1 ·Xt−1 +···+At−T ·Xt−T . Here, the A
matrices are coefficient matrices over the features. In each of these
experiments, we randomly generate an adjacency matrix over the
features that determines the structure of the true VAR model, and
then randomly assign the coefficients (A) to the edges in the graph.
We then apply the obtained model on a random initial vector x1 to
generate time-series data {Xt}t=1,...,T of a specified length T .

In this process of data generation, we made use of the following
parameters, basically following Arnold et al. (2007), which were
set as follows: the affinity, which is the probability that each edge
is included in the graph, was set at 0.2; the sample size per feature
per lag which is the total data size per feature per maximum lag
allowed, was set at 10. We sampled the coefficients of the VAR model
according to a normal distribution with mean 0 and SD 0.25. The
noise SD was set at 0.1, and so was the SD of the initial distribution.

In the various variable selection sub-procedures, the penalty
parameter λ is tuned so as to minimize the Bayesian Information
Criterion (BIC) criterion [as recommended in Zou et al. (2007)],
with degrees of freedom estimated as in Zou et al. (2007) for Lasso
and Adaptive Lasso, and as in Yuan and Lin (2006) for Group Lasso.

We evaluate the performance of all methods using the
so-called F1-measure, viewing the causal modeling problem
as that of predicting the inclusion of the edges in the true
graph, or the corresponding adjacency matrix, also following
Arnold et al. (2007). Recall that, given precision P and recall R,
the F1-measure is defined as F1 =2PR/(P+R), and hence strikes a
balance in the trade-off between the two measures.

Table 1. The accuracy (F1) and standard error in identifying the correct
model of the two non-grouped graphical Granger methods, compared with
that of the grouped graphical Granger method on synthetic data

Method Lasso AdaLasso GrpLasso

Accuracy (F1) 0.62±0.09 0.65±0.09 0.92±0.19

Table 1 summarizes the results of our experiments. In the table, the
average F1 values over 18 runs are shown, along with the standard
error. These results clearly indicate that there is a significant gap in
performance between the proposed method based on Group Lasso
and those of the non-group counterparts.

In Figure 2, we exhibit some typical output graphs along with the
true graph. In this particular instance, it is rather striking how the
non-group methods tend to over-select, whereas the grouped method
manages to obtain a perfect graph.

The simulation results thus confirm the advantage of the proposed
grouped graphical Granger method (using Group Lasso) over
the standard (non-grouped) methods (i.e. based on Lasso or
Adaptive Lasso), albeit subject to the underlying assumptions of the
simulation experiments, e.g. there is a clear group structure present
among the variables. Note that the non-grouped method based on
Lasso can be considered as an extension of the algorithm proposed
in Fujita et al. (2007) to lags greater than one time unit.

4 APPLICATION TO HELA CELL CYCLE DATA
We now apply our grouped graphical Granger modeling method
to the gene expression data of the human cancer cell (Hela)
cycle (Whitfield et al., 2002). We consider the first three experiments
where cell synchronization is achieved by double thymidine block.
The corresponding data contain 12, 27 and 48 time points,
respectively. Whitfield et al. (2002) identified 1134 genes as
periodically expressed during the cell cycle. We focus on those
genes only. For Experiments 1 and 3, the first two measurements
are at t =0 so we take their average. Some time points in the first
two experiments are not equally spaced, so we interpolate the data
using cubic smoothing splines (Green and Silverman, 1994) to get
hourly data for all experiments. Note that for Experiment 1, we
decided to exclude the last sample in the original data, for it was
taken 10 h after the previous one, which we considered to be too
large an interval to interpolate accurately. We ran experiments for
maximum lags of Lmax =2 and 4, respectively.

4.1 Global characteristics of inferred causal structure
We begin by examining some overall characteristics of the causal
graphs output by our method to confirm their consistency with the
results of earlier investigations, as well as pinpoint ways in which
they differ, particularly those that are attributable to the ability to
consider different time lags.

Fig. 2. Output causal structures on one synthetic dataset by the various methods (a) True graph, (b) Lasso, (c) Adaptive Lasso and (d) Group Lasso. In this
example, the group-based method exactly reconstructs the correct graph, while the non-group ones fail badly.
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We first discuss the distributions of sizes of the connected
components in the network. For that purpose, we vary the penalty
parameter λ in the REG sub-procedure (i.e. the Group Lasso)
so as to enforce more or less sparsity. More precisely, we
restrict λ to be in the range (cλmax,λmax) for multiple values of
c (0.5, 0.9).

The distributions of sizes are presented in Table 2. For
c = 0.5, we consistently uncovered a ‘giant’ component as
already observed in Mukhopadhyay and Chatterjee (2007), which
means that such a phenomenon seems to be persistent across
experiments and various maximum lags. The largest component
for experiment 3, Lmax =4 and c=0.9 is represented in
Figure 3a.

We now discuss the persistence of the genes with highest degrees
when the maximum lag changes from 2 to 4. The genes identified
as having high degrees are reported in Table 3. For Experiment 1,
out of the top 21 genes, only 5 of them were persistent between
lag 2 and 4. Hence, for this experiment larger lags significantly
impact the structure of the network. As we consider experiments
with larger original data sizes (Experiments 2 and 3), however, the

proportion of persistent genes among those with highest degrees
increases significantly. More specifically, 10 out of 20 genes with
highest degrees with lag 2 were persistent for lag 4 in Experiment 2,
and 13 out of 19 were persistent for Experiment 3. In particular,
the gene with the maximum degree for Experiment 3 is ‘Homo
sapiens, clone IMAGE:2823731, mRNA, partial cds Hs.70704
R96941’. The sub-network corresponding to this gene is depicted in
Figure 3b.

4.2 Causal structure on a restricted subset of genes
Next we inspect the discovered causal networks, when focusing on
the subset of 20 genes preselected by Li et al. (2006), particularly
with regard to the influence of different time lags as well as the three
time course experiments. Out of these 20 genes, 19 are present in
the datasets used in our experiments.

The result of applying our grouped graphical Granger modeling
method on this subset of genes is depicted in Figure 4 for the case
of Experiment 3 and Lmax =4. The genes with highest degrees
are: CDC2, PCNA, CDC25B, E2F1, CDC25A, DHFR, CCNF

Table 2. Distribution of the sizes of the connected components in Experiments 1, 2 and 3 with Lmax =2,4 and for c=0.5 and 0.9

size 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 25 27 29 32 34 72 76 114 257 394 639 786 792 820 927 1007

Exp1, Lmax=2,c=0.9 62 28 17 6 5 3 1 2 1 1 1

Exp1, Lmax=2,c=0.5 1 1 1

111121223696152969.0c=,4=maxL,1pxE

Exp1, Lmax=4,c=0.5 1

112124278161649.0c=,2=maxL,2pxE

Exp2, Lmax=2,c=0.5 2 1

Exp2, Lmax=4,c=0.9 49 18 17 4 7 2 2 2 1 1 1 1 1 1 1 1

Exp2, Lmax=4,c=0.5 9 2 1

Exp3, Lmax=2,c=0.9 58 18 5 5 2 1 1 1 1 1

Exp3, Lmax=2,c=0.5 2 1

1111121345682570.9c=,4=maxL,3pxE

Exp3, Lmax=4,c=0.5 7 1 1

Fig. 3. Subnetworks corresponding to (a) the largest component, (b) the gene with the largest degree using the Experiment 3 dataset and Lmax =4. [The
number at the beginning of each gene name indicates the row number in data from Whitfield et al. (2002), which contain the full gene names.]
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Table 3. Genes with highest degrees in Experiments 1, 2 and 3 with Lmax = 2 and 4

Lmax=2             Lmax=4            Lmax=2            Lmax=4            Lmax=2            Lmax=4

5.CDC2 5.CDC2 3.UBCH10 3.UBCH10 5.CDC2 9.KPNA2
89.H2AFX 16.TOP2A 5.CDC2 10.FLJ10468 9.KPNA2 10.FLJ10468
115.HBP 38.CDC6 10.FLJ10468 16.TOP2A 10.FLJ10468 12.DKFZp762E1312
130.EST 70.FLJ23311 12.DKFZp762E1312 22.CENPF 12.DKFZp762E1312 18.ARL6IP
133.DKFZP566C134 115.HBP 16.TOP2A 30.P37NB 18.ARL6IP 20.STK15
154.KIAA0013 181.TUBA2 33.ESTs 64.Homo 20.STK15 26.CDC2
161.SKP2 203.LRRFIP1 64.Homo 67.KNSL2 23.KNSL5 29.HSPC145
162.NS1-BP 207.ESTs 67.KNSL2 140.UK114 26.CDC2 42.Homo
203.LRRFIP1 230.H11 103.SRD5A1 210.DDX11 29.HSPC145 56.ESTs
240.Human 240.Human 172.HN1 283.AA477707 42.Homo 65.DKFZp762E1312
298.ESTs 269.**Homo 220.TASR2 299.ESTs 65.DKFZp762E1312 70.CKS1
350.NFE2L2 357.ESTs 283.AA477707 335.CDC45L 70.CKS1 79.HSPC145
379.ESTs 394.ESTs 297.COPEB 379.AA452872 87.USF1 87.USF1
405.TUBB 447.H2BFQ 299.ESTs 424.MSE55 98.CKS1 98.CKS1
439.DUSP4 462.EST 335.CDC45L 430.FLJ10980 119.FLJ10468 104.ESTs
454.AP3M2 554.ESTs 477.ESTs 565.ESTs 120.H2AFX 119.FLJ11029
539.P5-1 596.TLOC1 565.ESTs 598.GOT1 153.HLA-DRA 140.TROAP
553.DJ465N24.2.1 631.ESTs 600.NFIC 608.MUC1 257.TUBB 165.FLJ10858
554.ESTs 637.FLJ13287 608.MUC1 648.INADL 439.ESTs 233.ESTs

1ABUT.9528L2SMP.7674041AAIK.218A3BAR.097sTSE.206
723.UBL3 803.HCNGP

Experiment 1 Experiment 2 Experiment 3

The number at the beginning of each gene name indicates the row number in data from Whitfield et al. (2002), which contain the full gene name.

Fig. 4. Output causal structures for the genes identified by Li using the Experiment 3 dataset and Lmax =4.

for Experiment 1 and Lmax =2; CDC2, CDC25A, PCNA, E2F1,
CDC25B, DHFR, NPAT for Experiment 1 and Lmax =4; CCNF,
CDC2, CCNA2, PCNA, CCNE1, DHFR, PLK for Experiment 2
and Lmax =2; CCNF, CCNA2, DHFR, PLK, CDC2, BRCA1,

CDC25B for Experiment 2 and Lmax =4; DHFR, CCNF, STK15,
CKS2, CDC25B, CDC2 for Experiment 3 and Lmax =2; E2F1,
DHFR, CCNA2, STK15, CDC2 for Experiment 3 and Lmax =4,
respectively.
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Fig. 5. (a) Network from the BioGRID database and (b) network discovered by our method.

So the genes DHFR and CDC2 are consistently recognized as
a gene with the highest degree, while CDC25B and CCNF are
recognized as such most of the time.

4.2.1 Discovered pathways One can observe that allowing a
disjunction over multiple lags, as our method does, has a significant
effect on the discovered pathways, since some causal relationships
may exist for certain lags only. In Mukhopadhyay and Chatterjee
(2007), it was discovered that (i) CCNF and CCNE1 are strong
‘regulating’ genes; (ii) STK15 and E2F1 are intermediate ‘traffic
hubs’; and (iii) CDC20 and PLK are important ‘regulated’ genes.
Our results confirm these observations, but present others that were
overlooked by the method of Mukhopadhyay and Chatterjee (2007),
due to higher lags that are involved.

In the output causal graph in Figure 4, we see that CCNF has
four outgoing edges and two incoming edges, and CCNE1 has eight
outgoing and one incoming edges, which is consistent with their
observation that they are strong regulators. We also find that STK15
has six outgoing and three incoming edges, while E2F1 has four
outgoing and six incoming edges, consistent with their observation
that these are intermediate traffic hubs. We then find that CDC20 has
one outgoing and three incoming edges, and PLK has one outgoing
and four incoming edges, again confirming their claim that they are
strongly regulated.

Our results show, however, some significant genes that were
not captured by the method of Mukhopadhyay and Chatterjee
(2007). Specifically, CDC25A, CDC25B, CDC25C and CCNA2 are
identified as some of the largest ‘sinks’, i.e. those that are strongly
regulated, with CDC25A having one outgoing and eight incoming
edges, CDC25B with two outgoing and six incoming, CDC25C
having four outgoing and six incoming, and CCNA2 with four
outgoing and five incoming edges.

Inspecting the list of identified time-delayed gene regulations
[Table 2 in Li et al. (2006)] reveals why such discrepancy may
have resulted. That is, these four genes have many delayed causal
links with time delays >1. CDC25A has links with 2, 4 and 5 unit
time delay; CDC25B has links with 1, 2, 4 and 5 unit time delay;
CDC25C has links with 1, 2, 3 and 4 unit time delay; and CCNA2
CDC25C has links with 1, 2, 4 and 5 unit time delay. Consideration
of greater time lags allowed in our causal modeling thus has been
critical in the identification of these regulated genes.

In addition, we note that these findings are largely consistent with
what is known in the literature: CDC25A is known to be specifically
degraded in response to DNA damage, which prevents cells with
chromosomal abnormalities from progressing through cell division
Ray and Kiyokawa (2007); CDC25B is responsible for the initial
dephosphorylation and activation of the cyclin-dependent kinases,
thus initiating the train of events leading to entry into mitosis (Aressy
et al., 2008); abnormal expression of CDC25B in human tumors
may have a critical role in centrosome amplification and genomic
instability; CCNA2 binds and activates CDC2 or CDK2 kinases,
and thus promotes both cell cycle G1/S and G2/M transitions.

4.3 Evaluating output causal networks against
BioGRID

We cannot evaluate the performance of our methodology by
comparing the discovered network to the true network for the simple
reason that the latter is unknown. Here, we focus on the particular
subsets of genes as selected in Sambo et al. (2008), and compare the
discovered interactions to those previously reported in the BioGRID
database (www.thebiogrid.org). It is important to note that (i) the list
of interactions reported in the database is far from being exhaustive,
(ii) the interactions documented are either physical or genetic, which
implies that they may not be direct interactions. So caution should
be exercised when interpreting the results of such comparison: the
precision may be lower than the actual precision since links may
be missing in the BioGRID database; and the recall may be lower
than the actual recall in part because some of the links reported
in the BioGRID database may be indirect rather than the direct
interactions.

The BIOGRID network and the network discovered by our
method are presented in Figure 5. The precison, recall, and F1
scores obtained are P=0.5, R=0.72, F1 =0.59, respectively, which
are superior to those reported in Sambo et al. (2008) (i.e P=0.36,

R=0.44, F1 =0.40).
In addition, we also evaluate the performance of our method by

applying the Bootstrap procedure, which is a technique widely used
in statistics for evaluating statistical accuracy [see, Davison and
Hinkley (2006) for a review]. More precisely, given the original
lagged data matrix, we randomly draw B datasets by sampling with
replacement the rows of the original data matrix, so that each dataset
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Table 4. Appearance percentage of causal relationships in (left) 100 bootstrap networks and the subset of genes preselected by Li et al. (2006) (top 20
percentages), (right) 1000 bootstrap networks and the subset of genes preselected by Sambo et al. (2008), for experiment 3 and Lmax =4.

To From Percent
CCNF CDC2 100
CCNA2 E2F1 100
CCNA2 PCNA 99
CDC20 DHFR 98
CCNE1 CDC25A 97
CCNE1 CKS2 97
CCNF CDC25B 96
CCNA2 CDC25A 93
PLK CCNF 93
PLK STK15 93
CCNE1 STK15 92
BUB1B PCNA 92
PLK CDC25B 92
CCNF E2F1 91
CCNA2 BUB1B 87
CCNE1 BRCA1 85
CCNE1 PLK 84
CCNF STK15 83
NPAT CDC25A 82
CCNE1 E2F1 80

From To Percent
CCNA2 E2F1 100
CCNA2 PCNA 100
CCNA2 RFC4 99.4
CDKN3 CDC2 99.4
CCNE1 E2F1 94.7
CCNE1 CDC6 89.9
CCNE1 CCNA2 86.1
CCNE1 CDKN3 85.3
CDC6 CDKN3 81.6
CDKN3 CCNA2 68.2
CCNB1 RFC4 67.7
RFC4 CDC2 66.3
CDC6 CCNB1 65.9
CCNA2 CDC6 60.9
CCNE1 CCNB1 57.4
CCNE1 CDC2 57.2
CCNA2 CCNB1 56.8

Subset of genes selected
by Li et al. (2006)

Subset of genes selected
by Sambo et al. (2008)

has the same number of rows as the original lagged data matrix.
We then apply our method to each of the B bootstrap datasets.

Comparing the ‘original network’ (i.e. the network obtained by
using the original dataset) with the ‘bootstrap networks’ (i.e. those
obtained using the bootstrap datasets) allows us to get a measure
of confidence in the causal relationships identified in the ‘original
network’. In particular, for each causal relationship identified in the
‘original network’, we can get confidence in that relationship by
counting the number of times it appears in the ‘bootstrap networks’.

We now report the results of the above evaluation procedure for
Experiment 3, Lmax =4, for the subsets of genes considered by Li
et al. (2006) and Sambo et al. (2008). For the subset of genes
identified in Li et al. (2006) and B=100 bootstrap sample, the causal
relationships identified by our method in the ‘original network’
appear on the average 72.5% (±1.74%) of the time in the ‘bootstrap
networks’. The top 20 relationships identified by our methods for
this subset are listed in Table 4 (left panel). For the subset of genes
identified in Sambo et al. (2008) and B=1000 bootstrap sample,
the causal relationships identified by our method in the ‘original
network’ appear on the average 78.6% (±5.31%) of the time in the
‘bootstrap networks’. The relationships identified by our methods
for this subset are listed in Table 4 (right panel).

As we noted earlier, the ‘false positives’ in the output causal
network with respect to BioGRID may not necessarily be ‘false’,
and may contain actual links that are unknown to date, or known
but have not been incorporated into the database. For example,
inspecting the list in Table 4 (right panel) for those links identified
by our method with high confidence, and yet are not included in
BioGRID, may reveal some interesting facts. Indeed, we found that
such link with the highest rank, CCNA2 (Cyclin A2) → PCNA,
has been confirmed in the literature—Liu et al. (2007) states that
‘the cyclin A2-depleted MG-63 cells showed decreased levels of
PCNA’, evidencing the existence of a link between these two genes.
Similarly, a direct functional interconnection between CCNE1 and
E2F1 has been identified in Salon et al. (2007). We also found that a
physical interaction between CCNE1 and CDC6 has been confirmed

in the literature (Furstenthal et al., 2001). So for the top 6 links in
Table 4 (right panel) two links (CCNA2→E2F1, CDKN3→CDC2)
are present in the BioGRID database, and three links have been
confirmed in the literature.

Another insight provided by the bootstrap method is that we
can build confidence intervals for precision, recall and F1 score
in the ‘original network’ using the corresponding scores for the
‘bootstrap networks’. Specifically, if the 2.5–97.5% confidence
interval for a given score on the ‘bootstrap networks’ is estimated
to be [a,b] and the score on the ‘original network’ is c, then
the confidence interval for the population value of the score is
estimated to be [c−max((b−c),(c−a)),c+max((b−c),(c−a))]
(Carpenter and Bithell, 2000). For our earlier comparison results
with the BioGRID database on the subset of genes identified
in Sambo et al. (2008), the 2.5–97.5% confidence interval (CI)
obtained are: for precision P=0.5, CI(P)=[0.37,0.63]; for recall
R=0.72, CI(R)=[0.61,0.83]; for the F1 score F1 =0.59, CI(F1)=
[0.48,0.70]. Notice that these intervals are all above the results
in Sambo et al. (2008) confirming the improved accuracy of our
method.

5 CONCLUDING REMARKS
We proposed a novel method for graphical Granger modeling that
leverages group structure among the temporal variables according
to the time series they belong to, thus allowing to efficiently model
causality involving a large number of variables and time lags >1
time unit, which had not been effectively addressed previously. We
applied our method to uncover gene regulatory networks for the
human cancer cell (Hela) cycle data. We confirmed that by grouping
of multiple lags and representing more faithfully the disjunctive
nature of the relationships over different lags, we are able to detect
some causal links that would otherwise be overlooked. As future
work we plan to consider a variant of our method where in addition to
the grouping by time series, grouping by functions or by UNIGENE
clusters is considered.
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