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Abstract: Non-coding RNAs have long been associated with cancer development and progression,
and since their earliest discovery, their clinical potential in identifying and characterizing the disease
has been pursued. Long non-coding (IncRNAs), a diverse class of RNA transcripts >200 nucleotides
in length with limited protein coding potential, has been only modestly studied relative to other
categories of non-coding RNAs. However, recent data suggests they too may be important players in
cancer. In this article, we consider the value of IncRNAs in the clinical setting, and in particular their
potential roles as diagnostic and prognostic markers in cancer. Furthermore, we summarize the most
significant studies linking IncRNA expression in human biological samples to cancer outcomes.
The diagnostic sensitivity, specificity and validity of these non-coding RNA transcripts is compared
in the various biological compartments in which they have been detected including tumor tissue,
whole body fluids and exosomes.
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1. Introduction

Each cell function is controlled by highly regulated programs of gene expression, which depend
on the activity of a myriad of proteins and non-protein coding RNAs (ncRNAs). The role of ncRNAs
in modulating gene expression has long been recognized, and various classes of ncRNAs, with
different targets and functions, have been identified [1,2]. NcRNAs can be grouped into two major
classes: the small non-coding RNAs including microRNAs (miRNAs), being perhaps the most
well described, and the long non-coding RNAs (IncRNAs), which were only recently discovered
and comprise long intergenic RNAs, intronic RNAs, circular RNAs, competing endogenous RNA,
transcribed ultra-conserved regions, antisense RNAs, and others. Crucially, one IncRNA transcript
may be classified into different categories depending on the criteria which have been applied
(reviewed in [3]).

LncRNAs are classically defined as RNA transcripts greater than 200 nucleotides in length, with
absent or limited protein coding potential. Generally, they have fewer exons than messenger RNAs
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(mRNAs) and only short open reading frames can be identified, thus a minor subset of them are
likely to encode small peptides. They can be transcribed from multiple locations in the genome [3],
and according to the GENCODE analysis (available at www.gebcodegenes.org) of the last version
of Ensembl human genome annotation (GRch38, version 23 from March 2015; [4]), 15,931 genes
originating 27,817 transcripts are identified as IncRNAs [5]. In a manner similar to mRNA, many
are transcribed by RNA polymerase II, with a 5’-cap and a 3’-polyadenylation, and can be variously
spliced [6,7].

The analysis of IncRNAs expression in the human body revealed their presence in a variety
of tissues during homeostasis, although at much lower levels than protein-coding genes. Most
importantly, their expression seems to be much more tissue specific than protein coding genes [6].

The majority of IncRNAs are found in the cell nucleus [6]. They have been reported to exert their
function by influencing at the molecular level (Figure 1): (i) chromatin structure; (ii) transcriptional
activity; (iii) mRNA stability; (iv) mRNA post-transcriptional processing; and (v) mRNA translation.
At the DNA level, these transcripts are able to impair gene expression by recruiting chromatin
remodeling complexes, such as the polycomb repressive complex 2, responsible for the condensation
of chromatin [8]. They may either promote mRNA transcription, by co-activating transcription
factors [9] and mediating gene promoter demethylation [10], or repress it, by sequestering RNA
binding proteins and transcription factors [11], and by direct interaction with gene promoter
regions [11]. Moreover, IncRNA may influence mRNA splicing by modulating the activity of splicing
factors [12]. At the mRNA level, they may either increase the stability of the coding transcripts,
preventing their degradation by perfect base-pairing [13], or decrease their stability, triggering
STAU1l-mediated mRNA degradation [14]. Lastly, IncRNAs may prevent mRNA translation through
direct interaction with the transcripts, impairing ribosome binding [15], or conversely, promote it, in
a process driven by a subset of antisense IncRNAs that overlap with the target mRNA at the 5" end,
leading to a higher association of polysomes and mRNA [16].
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Figure 1. Mechanisms of action of long non-coding RNAs (IncRNAs) and implications for modulation
of cancer phenotype. LncRNAs regulate gene expression by controlling chromatin condensation,
promoting or inhibiting DNA transcription, influencing mRNA splicing, determining mRNA stability,
and promoting or inhibiting mRNA translation into proteins. This leads to deregulated cell
homeostasis, originating some of the aberrant phenotypes described as cancer hallmarks.
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The basal expression of IncRNAs in many tissues has been shown to be important in various
biological homeostatic processes, including gene imprinting and dosage-compensation [17], cell
differentiation and organogenesis [18-20] and immune response modulation [21], among others.
On the other hand, there is a strong link between the deregulated expression of IncRNAs and the
development of disease. Indeed, aberrant IncRNAs expression has been found in neurodegenerative
disorders [22], cardiovascular diseases [23], muscular dystrophies [19], diabetes and obesity [24], as
well as cancer biology.

In this article, we focus on the aberrant expression of IncRNA in cancer. We present the main
IncRNA candidates found to be deregulated in cancer through the analysis of patient biological
material. Consequently, the validity of using these deregulated IncRNAs as biomarkers for cancer
diagnosis and patients monitoring is discussed.

2. IncRNAs as Biomarkers for Cancer Diagnosis and Prognosis

2.1. Functional Role of IncRNAs in Cancer

Tumorigenesis is associated with an overall deregulation of different biomolecules, including
IncRNAs. This deregulation of IncRNAs may be observed not only at their intracellular/tissue levels
but also at their levels on extracellular body fluids. In order to understand the biological effects of an
aberrant expression pattern of IncRNAs at the cellular level, several in vitro and in vivo studies have
relied on artificial up-regulation and down-regulation of specific IncRNAs by different techniques.
With this approach, deregulated expression of different IncRNAs, as detected either in tumor tissues
and/or in biological fluids, have been highly correlated with cell functions and features defined as
the hallmark processes of cancer (Figure 1).

One of the most studied IncRNAs, MALAT1 (Metastasis Associated Lung Adenocarcinoma
Transcript 1) promotes tumor growth by regulating cell cycle. Down-regulation of MALAT1 in vitro
in cell lines of different cancer types (i.e., breast cancer, colorectal cancer, esophageal squamous cell
carcinoma, renal cell carcinoma, and others) leads to reduced cell proliferation by cell cycle arrest at
the G2/M phase, and to cell apoptosis [25-28]. This ultimately results in the reduced capacity of cells
to invade and migrate. Similarly, down-regulation of MALAT1 in cell lines of different tumor types
inhibits tumor growth in in vivo models using tumor xenografts in nude mice [27]. These findings
are supported by complementary MALAT1 overexpression studies [26]. MALAT1 has been shown to
promote epithelial-to-mesenchymal transition [28] and appears to regulate angiogenesis [29], further
supporting its potential role during cancer progression.

The IncRNA HOTAIR (HOX transcript antisense RNA) has also been associated with stimulation
of cellular proliferation, but appears to have more potent effects on cellular migration and invasion.
Furthermore, its expression is highly correlated with the presence of metastasis in clinical samples.
Overexpression of HOTAIR in breast [30], gastric [31] and lung [32] cancer cell lines, stimulates
an increased invasive capacity in vitro. More importantly however, overexpression of HOTAIR in
non-metastatic cell lines leads to a high degree of metastization in vivo [30]. As expected, HOTAIR is
a strong inducer of epithelial-to-mesenchymal transition [33].

Deregulated IncRNAs are also implicated in the evasion of growth suppression signals in cancer.
For example, GAS5 (Growth Arrest-Specific 5), commonly down-regulated in multiple cancer types,
is actually an inducer of apoptosis, thus limiting cell proliferation when expressed at homeostatic
levels [34].

Lastly, regulation of metabolism in cancer cells is also influenced by IncRNAs. The prostate
cancer-associated IncRNA PCGEM1 was recently shown to promote glucose uptake in prostate cancer
cell lines, conferring these cells an overall metabolic advantage by regulating at the transcriptional
level, not only glucose metabolism, but also glutamine metabolism, the pentose phosphate catabolic
pathway, the tricarboxylic acid cycle and fatty acids and nucleotides synthesis pathways [35].
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2.2. Expression of IncRNAs in Tumor Tissue

Several IncRNAs have been shown to be deregulated in tumor tissue of various cancer types
(Table 1). Whilst some appear to be deregulated in all cancers regardless of histopathological
type, others demonstrate high levels of tissue specificity, highlighting a potential role for them as
biomarkers for early cancer diagnosis, disease evolution or poor prognosis outcome.

MALAT1 and HOTAIR are both examples of IncRNAs which are deregulated in the majority
of cancers. MALAT1 overexpression in tumor tissue has been particularly linked to lung cancer,
colorectal cancer, gastric cancer, and hepatocellular carcinoma (HCC). Given this global pattern of
deregulation in cancer, the biomarker potential of MALAT1 lies perhaps more in its prognostic rather
than diagnostic application, correlating as it does with a poor outcome for patients with cancer [36].
For instance, Zheng et al., showed that MALAT1 expression in colorectal cancer tissue (stage II and III)
significantly correlates inversely with disease-free survival and overall survival, where patients with
the highest levels of MALAT1 have a probable five-year disease-free survival and overall survival of
48% and 67% respectively, compared with 67% and 85% in patients with low expression levels [37].

Similar observations have been extended to HOTAIR, the contribution of which appears
particularly relevant in breast cancer, lung cancer and cancers of the digestive tract [38]. As is
the case for MALAT1, HOTAIR is considered most valuable as a prognostic rather than diagnostic
biomarker, and in the identification of metastatic potential in particular [39]. Indeed, high levels of
this IncRNA have been linked to poor survival outcomes for patients with colorectal cancer, which
have a probable five-year overall survival of only approximately 55%, compared to 80% in patients
that express lower levels of the transcript in the tumor specimen [40]. Similarly, in a previous study
in breast cancer, higher levels of HOTAIR were associated with reduced patient survival and, more
interestingly, with a decrease in the probability of metastasis-free survival of nearly 50%, compared
to patients with lower expression of the transcript [30], which supports the role of this IncRNA as a
metastization biomarker.

At a more tissue-specific level, PCA3 (Prostate Cancer Antigen 3 IncRNA; also referred to as
DD3) has been shown to be up-regulated in prostate tumor tissue versus normal/non-malignant
tissue in multiple studies [41,42]. One of the first studies published on this subject suggested
that the performance of PCA3 as a diagnostic biomarker was associated with an area under the
curve (AUC) in a receiver operating characteristic curve (ROC) analysis of 0.98 [43]. Furthermore,
Bussemakers et al. [41] demonstrated that PCA3 expression is highly specific for prostate tumors,
being undetectable in other types of tumors.

Similarly, PCGEML1 is specifically expressed in the prostate, and up-regulated in tumor tissue
of prostatic origin compared with matched normal prostate tissue samples [44]. However, the
biomarker potential of this IncRNA for prostate cancer diagnosis and prognosis has subsequently
been questioned, as no association has been found between high levels of PCGEM1 and prostate
cancer-specific mortality [45].

The linc-RNA UCAT1 (urothelial carcinoma associated 1) is an IncRNA identified as a potential
biomarker for bladder cancer [46], with higher levels detected in tumor tissue and the potential to
discriminate between bladder/urothelial cancer and cancers of other anatomical origins. In addition,
it can be detected in the cellular sediment of urothelial cancer patients’ urine, allowing disease
diagnosis with a sensitivity of 80.9%. Importantly, it allows the distinction of bladder cancer from
other diseases related with the urinary tract, such as neurogenic bladder, renal cell carcinoma, upper
urinary tract restriction or reflux, among others, with an overall specificity of 91.8%. An ROC analysis
of UCA1 detection lead to an AUC equal to 0.882 suggesting reasonable efficacy of this IncRNA in
bladder/urothelial cancer diagnosis [46]. Work by Srivastava et al., showed a similar result with even
higher levels of the transcript being detected in urine with progressive tumor stage [47].
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Table 1. Validity of circulating long non-coding RN As as biomarkers for diagnosis of different types of cancer. Exemplificative data from most recently published

studies is presented.

Fold-Change to

Cancer Type IncRNA Biological Sample Normal Control Number of Patients  Specificity Sensitivity AUC  Ref.
Lung cancer MALAT1 Peripheral blood cells 1 0.30 45 96% 56% 079  [48]
Colorectal cancer HOTAIR Peripheral blood cells 15.22 84 92.5% 67% 0.87  [49]
n/a 3245 75% 62% 0.75  [50]
Prostate cancer PCA3 Urine 1258*% 407 60.1% 94.9% 0.87  [51]
Tn/a 3073 75% 53% 0.69 [52]
MALAT1 Plasma Tn/a 87 58.6% 84.8% 0.84  [53]
Hepatocellular RP11-160H22.5 125
carcinoma XLOC_014172 Plasma 167.7 467 73% 82% 0.896  [54]
LOC149086 146
) Tn/a 94 91.8% 80.9% 0.88  [46]
Bladder cancer UCAL Urine 1329 117 797%  795% 086 [47]
AA174084 Tissue Gastric juice 13.18 134 73% 57% 0.68 [55]
Gastric cancer AA174084 Tn/a 39 93% 46% 0.85
LINC00152 Plasma/plasma exosomes Tn/a 79 85.2% 48.1% 0.66  [56]

Arrows represent the up-regulation (1) or down-regulation (|) of the transcript. * Fold-change of PCA3 score, as determined by PROGENSA PCA3 assay. n/a, not
available, since data is presented only in graphical format in the original report.
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In hepatocellular carcinoma, the IncRNA HULC (Highly Up-regulated in Liver Cancer) was
proposed as a diagnosis biomarker, as it is up-regulated in liver tumor relatively to hepatic tissue
from healthy individuals. An ROC analysis of HULC expression in liver tissue to distinguish tumor
from healthy tissue resulted in an AUC of 0.86. Further, HULC is expressed at higher levels in
tumors with a higher Edmondson grade classification, correlating with disease aggressiveness, and
thus supporting a potential prognosis biomarker role [57].

In a pioneer study [55], Shao et al., investigated the biomarker potential of the IncRNA AA174084
for gastric cancer detection, and found the expression of the transcript was nearly 3.18 times lower in
primary gastric tumor tissues of 71% of the patients evaluated, compared with the expression levels
in the matched normal gastric tissue. Furthermore, an inverse relationship between expression of this
transcript and the aggressiveness of the gastric mucosal lesions was identified. Indeed, AA174084
expression in gastric tissue permitted the distinction of cancer from benign histology with a sensitivity
of 57% and a specificity of 73%. Notably, however, in ROC analysis, AA174084 expression as a
diagnostic marker was associated with an AUC of only 0.676, which is insufficiently discriminatory
for use in the clinical setting.

In a number of studies, cancer relevant IncRNAs have been detected not only in primary tumor
tissue but also in the peripheral fluids of patients with cancer.

For example, MALAT1 has been detected in the blood of patients with non-small cell lung
cancer [48], and HOTAIR in colorectal cancer patients [49]. This research theme holds great promise
both for diagnostician and patient and will be explored in more detail in the following section.

2.3. Detection of Cell-Free IncRNAs in Body Fluids

Patterns of IncRNA deregulation in primary tumor tissues are mirrored in various bodily fluids,
including plasma and urine, as summarized in Table 1. This presents an opportunity to develop
IncRNA based biomarker tools which are convenient, minimally invasive, and likely to be better
tolerated by patients than conventional tissue biopsies.

The potential of circulating PCA3 as a biomarker for prostate cancer has been explored in several
studies, which have quantified transcript expression in patients’ urine. A meta-analysis of several of
these studies determined the validity of PCA3 levels in urine for prostate cancer diagnosis, with
a summary sensitivity of 62% and specificity of 75%. In an ROC analysis, this translated to an
AUC of 0.75, further supporting PCA3 as a reasonable marker for prostate cancer diagnosis [50].
Similar results were obtained in a second independent meta-analysis [58], in which the sensitivity and
specificity for prostate cancer diagnosis was calculated as 57% and 71%, respectively, and the AUC as
0.7118 [58]. Circulating PCA3 has also prognostic value for the evaluation of prostate cancer disease
evolution, since its levels correlate with tumor aggressiveness as classified by Gleason score [51,52].
In addition, in prostate cancer patients, fragments from different regions of MALAT1 transcript were
detected in plasma at higher copy number than in non-prostate cancer patients. This IncRNA was
proposed as a biomarker for prostate cancer diagnosis with a sensitivity and specificity of 58.6% and
84.8%, respectively, corresponding to a promising AUC of 0.836 [53].

In the same way, evaluation of cell-free HULC levels has been assessed for the diagnosis of
HCC. In fact, in the study by Xie et al., HULC was detectable at high levels in the plasma of 63%
of the hepatocellular carcinoma patients enrolled in screening. Unfortunately, no data was offered
regarding specificity and sensitivity of HULC expression in plasma for the diagnosis of HCC patients
in this study [57]. On the other hand, other IncRNAs less commonly studied were recently proposed
for hepatocellular carcinoma diagnosis. Tang et al. identified an up-regulation of the transcripts
RP11-160H22.5, XLOC_014172 and LOC149086 in the plasma of HCC patients relative to cancer-free
controls. The combination of the three IncRNAs has better scores for HCC diagnosis comparing to
each individual IncRNA, corresponding to a merged AUC of 0.896, with a sensitivity of 82% and
specificity of 73% [54]. Interestingly, IncRNAs XLOC_014172 and LOC149086 also have a prognostic
value for metastasis prediction, distinguishing HCC patients with metastasis from patients without,
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with a sensitivity and specificity of 91% and 90%, respectively (AUC for the combined IncRNAs
of 0.934) [54]. Additionally, another study identified IncRNA-AF085935 in serum as a potential
biomarker for HCC diagnosis, allowing not only a distinction of HCC patients from healthy control
individuals but also of HCC patients from hepatitis B-infected patients, corresponding to an AUC of
0.96 and of 0.86, respectively [59].

So far, plasma/serum and urine are the bodily fluids that have been most commonly used
for IncRNA profiling in cancer patients; however, other fluids have also been tested. For instance,
expression of the IncRNA AA174084 was evaluated in gastric juice for the diagnosis of gastric cancer
patients [55]. In this fluid, the levels of the IncRNA were significantly higher than in healthy
individuals and patients with other gastric mucosa lesions, corresponding to an AUC of 0.848 for
gastric cancer diagnosis. AA174084 in digestive fluids presented in this way as a robust biomarker,
allowing the diagnosis of the disease with a sensitivity of only 0.46 but a specificity of 0.93. Most
interestingly, the levels of the same IncRNA in the plasma could not distinguish gastric cancer patients
from healthy individuals.

Focusing on less commonly analyzed body fluids, Tang et al., were able to detect by qPCR
HOTAIR and MALAT-1 in salivary samples of nine patients with oral squamous cell carcinoma,
although a threshold of Cq < 40 cycles was adopted for positive samples classification [60]. In this
way, more robust studies exploring the detection of IncRNAs in body fluids other than plasma and
urine, and the real relevance they might have for cancer diagnosis and prognosis, are still missing.

Most of the studies published to date have screened for IncRNA expression in whole
plasma/serum or whole urine. Nevertheless, evidence exists that at least part of the circulating
IncRNA transcriptome is present in “subcompartments” of those biological samples, such as
extracellular vesicles released by cells. In 2009, a proof-of-concept study showed the presence of
PCA3 transcripts within exosomes [61]. Later, an attempt to profile the genetic material enclosed
within exosomes isolated from plasma of healthy blood donors demonstrated that IncRNAs account
for 3.36% of total exosomal RNA content [62]. Interestingly, the ratio of different RNA transcripts
within exosomes appears to differ from their cells of origin, suggesting that IncRNA are actively
loaded in a controlled manner into these vesicles [63].

Exosomes are nanometric lipidic vesicles secreted by cells and which mediate cell-to-cell
communication. Enclosed within a lipid bilayer, exosomes carry proteins and genetic material,
including DNA, mRNA, miRNA and IncRNA, which are transferred to specific target cells.
Interestingly, the loading of exosomes is dependent on the activity of the parental cell, and they
can provide a snapshot of cellular and tissue physiology [64]. In the last few years, the content
of exosomes, namely their miRNAs, have been extensively studied, with these vesicles being
particularly explored as carriers of miRNAs biomarkers for various diseases [65]. In fact, different
exosomal miRNAs are already well accepted as biomarkers for diagnosis and prognosis of different
types of cancer [66]. Recently the same goals have been pursued for IncRNAs.

Like other transcripts contained within exosomes, IncRNAs may be transferred between cells
and have functional relevance within recipient cells [67]. This work by Takahashi et al. demonstrated
that the long intergenic non-coding RNA ROR (linc-ROR) is an effector of HepG2 liver hepatocellular
carcinoma cell line chemoresistance to sorafenib treatment, and is present in exosomes released by
these cells. Furthermore, chemoresistance may be transferred to other HepG2 cells upon stimulation
with exosomes derived from chemoresistant cells, supporting the functional and pathological transfer
of linc-ROR to recipient cells. In addition, a change in the content of IncRNAs in the exosomes
released by these cells is detected upon cell stimulation with TGF-f in vitro. This further supports
the recognition of exosomes as cells snapshots, reflecting their physiology and phenotype, and thus
as a great resource for potential cancer biomarkers identification.

In a new study [68], exosomal IncRNAs are further implicated in cancer development, namely
through the modulation of cancer microenvironment. Here, it has been demonstrated that CD90™"
hepatocellular cancer cells derived from the Huh? cell line secrete exosomes containing different types
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of IncRNAs, including HOTAIR, HULC, linc-ROR and H19. Upon co-culture in vitro, endothelial cells
rapidly internalized these exosomes which triggered cell re-organization into tubular-like structures
and an increase in VEGF/VEGF-R1 mRNA levels, concordant with a pro-angiogenic effect of the
exosomes. In addition, exosomes promoted an increase of adhesion molecules previously described
as players in extravasation processes on endothelial cells surface, thus further implicating exosomes
released by CD90" hepatocellular cancer cells in metastasis. The artificial over-expression of
linc-ROR on endothelial cells supported the effects of exosomes being mediated by exosomal H19.

In other work [69], elevated levels of exosomal IncRNA-p21 were shown to distinguish prostate
cancer patients from patients with benign prostatic hyperplasia, although it was not clear if
pure populations of exosomes were isolated for this analysis, or whether circulating RNA-protein
complexes and other cell-secreted vesicles had been simultaneous analyzed.

Li et al. [56] analyzed the levels of the IncRNA LINCO00152 in plasma and plasma-derived
exosomes of gastric cancer patients, and found no statistical significant difference in expression
between the two sample types. This suggests that at least the majority of LINC00152 in plasma is
derived from exosomes. Li further demonstrated that this exosomal IncRNA supports a diagnosis of
gastric cancer with a sensitivity of 48.1% and a specificity of 85.2%, with corresponding AUC from
ROC analysis of 0.66.

Lastly, exosomal IncRNAs have also been shown to have prognostic potential in cancer. Indeed,
HOTAIR, found in exosomes isolated from serum of laryngeal squamous cell carcinoma patients, is
elevated in samples from patients with lymph node metastasis relative to patients without lymph
node metastasis, increasing also with progressive disease stage [70].

Overall, circulating IncRNAs are considered suitable biomarkers for cancer diagnosis and
prognosis, not only because of the convenience of biological samples collection for the patient but
also because they are quite stable RNA molecules [71] that can be detected by common techniques,
such as quantitative real-time PCR, microarray hybridization and sequencing. Nevertheless, their
absolute concentration in body fluids is usually low, frequently requiring an RNA amplification step
prior to their analysis, and their integrity may be compromised by technical procedures related
to biological sample collection and preservation, impacting their accurate quantification [72]. In
addition, the mechanism of IncRNAs secretion is not yet fully unraveled, and thus the levels of
circulating IncRNNAs may be affected by other concomitant biological changes besides tumorigenesis.
For cancer diagnosis and prognosis, these drawbacks may be minimized by the combined analysis
of candidate IncRNAs together with other biomarkers previously established, such as proteins and
miRNAs [72]. One of the most elucidative examples of this approach is the analysis of circulating
PCA3 IncRNA and Prostate-Specific Antigen (PSA) protein for prostate cancer diagnosis [73]. Thus,
IncRNAs have great potential as cancer biomarkers, either alone or analyzed together with other
markers, ultimately contributing to more accurate diagnosis and prognosis of disease evolution.

2.4. Discovery of IncRNAs as Cancer Biomarkers: Implications in Therapeutics

The discovery of IncRNA deregulation in cancer, along with a high tissue specific expression
pattern, turned them into new potential targets for the development of anti-cancer therapies. Indeed,
several approaches have been proposed to reestablish the homeostatic levels of IncRNAs.

One of the most explored methods to inhibit up-regulated oncogenic IncRNAs is the delivery
of small interfering RNAs (siRNAs) to target cells. These siRNAs are complementary to their target
IncRNAs, inducing their degradation in RISC (RNA-induced silencing) complex, and consequently
controlling the activity of these transcripts by decreasing their levels [74]. Another similar approach
is based on the use of longer antisense oligonucleotides complementary to the target IncRNAs, which
promote their degradation by RNase H [75]. On the other hand, the expression of IncRNA may be
induced by common gene therapy strategies.

Taking into account the multiple mechanisms of action of IncRNAs, namely their interaction with
proteins involved in chromatin organization, transcription and translation, additional therapeutic
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strategies can be developed that reduce IncRNA aberrant function by targeting their interaction with
these proteins. Small molecules are an example of inhibitors capable of disrupting IncRNA-protein
interactions, re-establishing the normal activity of these proteins [76].

Conceptually, therapeutic strategies similar to the ones already attempted to regulate the
expression of protein-coding genes and miRNAs could be applied to the IncRNA field; nevertheless,
the knowledge regarding the IncRNA functional network is still very limited, preventing early
translational outcomes. Indeed, to date, only one phase 1/2a preliminary clinical trial is completed
related to IncRNAs application for cancer therapeutics. In this study, a DNA vector expressing the
diphtheria-toxin gene under the control of regulatory sequences of the IncRNA H19 was administered
intratumorally in unresectable pancreatic cancer patients, envisaging tumor reduction for further
complementary therapies [77].

3. Conclusions

In an attempt to find molecular signatures that allow more robust cancer diagnosis, many studies
have focused on the comparison of biological samples from cancer patients and healthy individuals.
Along the way, the ncRNA transcriptome has attracted increasing attention. These transcripts have
biological activity per se and, unlike mRNA, they are not dependent on translation into effector
proteins, making it more likely that ncRNA levels directly and more accurately correlate with defined
cancer phenotypes [78].

MiRNAs are increasingly recognized as cancer biomarkers, in particular cell-free miRNAs
circulating in body fluids [79]. In comparison, the development of IncRNA biomarkers is substantially
retarded. The first studies published on deregulated IncRNAs in cancer were based on the evaluation
of expression levels in tumor tissue. From a clinical point of view, this represented a new paradigm
for patient prognosis and the guidance of therapy. However, despite reasonable correlation between
IncRNA expression and patient diagnosis and/or tumor stage, this approach still required invasive
procedures in order to collect a tissue specimen. This limitation prompted analysis of cell-free
IncRNAs, present within various bodily fluids, or enclosed on lipidic vesicles secreted by cells.
Plasma/serum and urine are the body fluids which have most commonly been analyzed for IncRNA
expression. This approach has been particularly useful in the field of prostate cancer. Interestingly,
both tumor tissue and cell-free IncRNAs appear to permit prostate cancer diagnosis with a high
degree of specificity, as it seems IncRNA expression is more tissue-specific than other ncRNAs and
mRNAs. However, the sensitivity of detection using IncRNAs is rather low, and greatly dependent
on the technical methods available for IncRNAs analysis.

With recent improvements in technology associated with RNA analysis [80], higher sensitivity
may in the future be achieved and, in time, IncRNAs may be recognized as cancer biomarkers with
utility in the clinical setting. In order to reach this point, further studies to include larger patient
cohorts will also be required.

Given the strong correlations that have been established between deregulated IncRNAs
expression and cancer development and disease prognosis, therapy strategies targeting these
transcripts have also been postulated. In one particularly promising field of research, it has been
proposed that IncRNAs regulate miRNA expression. Thus, cancer therapies which target both
miRNA and IncRNA expression may in future become a reality [81].
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