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Abstract: Novel drugs are needed to treat a variety of persistent diseases caused by intracellular
bacterial pathogens. Virulence pathways enable many functions required for the survival of these
pathogens, including invasion, nutrient acquisition, and immune evasion. Inhibition of virulence
pathways is an established route for drug discovery; however, many challenges remain. Here, we
propose the biggest problems that must be solved to advance the field meaningfully. While it is
established that we do not yet understand the nature of chemicals capable of permeating into the
bacterial cell, this problem is compounded when targeting intracellular bacteria because we are
limited to only those chemicals that can permeate through both human and bacterial outer envelopes.
Unfortunately, many chemicals that permeate through the outer layers of mammalian cells fail to
penetrate the bacterial cytoplasm. Another challenge is the lack of publicly available information on
virulence factors. It is virtually impossible to know which virulence factors are clinically relevant
and have broad cross-species and cross-strain distribution. In other words, we have yet to identify
the best drug targets. Yes, standard genomics databases have much of the information necessary
for short-term studies, but the connections with patient outcomes are yet to be established. Without
comprehensive data on matters such as these, it is difficult to devise broad-spectrum, effective
anti-virulence agents. Furthermore, anti-virulence drug discovery is hindered by the current state
of technologies available for experimental investigation. Antimicrobial drug discovery was greatly
advanced by the establishment and standardization of broth microdilution assays to measure the
effectiveness of antimicrobials. However, the currently available models used for anti-virulence drug
discovery are too broad, as they must address varied phenotypes, and too expensive to be generally
adopted by many research groups. Therefore, we believe drug discovery against intracellular bacterial
pathogens can be advanced significantly by overcoming the above hurdles.
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1. Introduction

Communicable diseases continue to burden the globe [1]. The cost of infections in terms
of lives and financial burden is huge [1–3]. Six of the bacteria identified by the World Health
Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) as
threats to human health are intracellular bacteria [4,5]. Intracellular bacteria often cause
chronic or latent infections, with difficult diagnosis and treatment (Supplementary Materials,
Section SI) [6]. Clinically relevant intracellular bacteria can be seen in Supplementary Table S1.
Evasion of host immune response by intracellular bacteria [7] makes antibiotic therapy
especially important, even in immunocompetent hosts.

Bacterial resistance is a major problem [5,8,9], and resistance is inevitable with in-
creased use [10]. Infections caused by intracellular organisms often require longer treatment
durations than non-persistent infections [11–14] with multiple antibiotics [11,12,14,15], lead-
ing to resistance [4,5]. Only a limited selection of antimicrobials (e.g., aminoglycosides,
fluoroquinolones, macrolides, rifamycins, tetracyclines) are useful against intracellular
pathogens (Supplementary Table S1). This limited armamentarium means that each time an
antibiotic succumbs to resistance, our options for appropriate treatment reduce drastically.
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Novel, nontraditional agents (such as anti-virulence agents) are a promising alter-
native. It has been repeatedly demonstrated (e.g., [16–19]) that intracellular lifestyles
are facilitated by virulence factors, blocking which will prove to be avenues for therapy.
See Supplementary Materials, Section SII for some detailed examples. Clearly, if we can
identify virulence factors that enable intracellular infections, and target them successfully,
we could theoretically build an array of frontline treatments for infections. The powerful
advantage of these medications would be that they do not require bacterial cell division for an effect
to take place: traditional antimicrobials (i.e., antibiotics) are only useful against bacteria under-
going continuous cell division, such as intracellular bacterial colonies (IBCs). They would not
function against a subpopulation of non-dividing bacteria, such as persisters or quiescent
cells. Anti-virulence drugs would function by eliminating the pathogen’s ability to survive
intracellularly, regardless of whether they were rapidly dividing or not. Yet, is it so easy?

It is well recognized that antimicrobials are hard to find because this has been the
major focus of the drug discovery and development community, but the challenges we face
in drug discovery against intracellular bacteria have rarely been addressed.

2. Challenges in Drug Discovery against Intracellular Bacteria

Several hurdles stand in the way of advancements in antibacterial treatments: (1) we
do not yet fully understand the type of chemicals most suitable to become antimicrobials
(this also applies to anti-virulence agents), (2) standardized databases containing informa-
tion on virulence drug targets to guide drug discovery are virtually absent, and (3) we
currently lack standardized and inexpensive techniques to identify and assess virulence
in intracellular bacteria. These challenges will need to be met and overcome to make
anti-virulence drug discovery successful.

2.1. Chemical Space Is a Severe Limitation

Pathogenic outer layers are not the same as ours, and hence chemicals that perme-
ate into their cells are different. This is why chemical libraries optimized to penetrate
human cells do not serve the needs of antimicrobial drug discovery [20–22]. O’Shea
and Moser demonstrated that current antimicrobials are extremely different from typical
chemicals most likely to be found in pharmaceutical screening libraries [23], which are
compliant with Lipinski’s rules-of-5 (Ro5) [24]. Very importantly, they also demonstrated
that the chemicals that permeate Gram-positive bacteria were different from those that
permeate Gram-negative bacteria. However, further studies have shown that many Ro5-
compliant chemicals are permeators as well [25,26]. Even though recent work by multiple
groups [27–37], including us [26], have made tremendous advances in understanding
which chemicals are most likely to penetrate bacterial cells (or even which chemicals are
most likely to be extruded by efflux pumps), we are still far away from accurately predicting
the chemical space most likely to contain the next generation of antimicrobials [38]. This
situation is further complicated by the fact that differences between bacterial species (outer
membrane composition, efflux pump efficiencies, and so on) make it virtually certain that
our current knowledge of bacterial outer membrane permeability is insufficient. Moreover,
there is no guarantee that methods built on a particular bacterial strain will work on another
strain of the same species—bacteria are notorious for being “exceptions to the rules”.

Now, consider that drugs that act against virulence factors of intracellular bacte-
ria must permeate both, human and bacterial outer membranes. There is no escaping
this fact (Figure 1). This means there are only two types of chemicals we can consider
favorably—Ro5-compliant chemicals that easily penetrate the cytosol of mammalian cells
or are facilitated to enter the cytosol through transporters. This is, perhaps, the biggest
challenge we must face.
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Figure 1. The chemical space conundrum. It is already difficult to identify chemicals that permeate 
bacterial outer envelopes. While recent work [27–37] has identified plausible characteristics ena-
bling penetration of a few Gram-negative cells, Gram-positive permeability rules are virtually un-
discovered. Additionally, only a fraction of chemicals capable of permeating the human cell can 
penetrate the bacterial cell to reach the cytosol. Chemicals that target intracellular bacteria must 
penetrate both (Substance A). Substance A must be both, Ro5-compliant, as well as bacterial cell-
penetrating, which are difficult to find. Substance B, on the other hand, is useless against intracellu-
lar pathogens because it penetrates human cells but fails to reach bacterial targets. Substance C 
would be useless because it would not penetrate the human cell, even if it was able to reach the 
bacterial cytoplasm. 

2.2. Finding Good Drug Targets 
There are 3 different aspects of drug target selection: (1) identifying a pathway that 

is critical to the outcome of interest (in this case, virulence and intracellular survival), (2) 
identifying key enzymes of a tractable nature (i.e., enzymes whose disruption with or-
ganic chemicals is possible), and unique in the case of antimicrobials, (3) determining 
whether these targets are useful when attempting to design broad-spectrum agents. 

Identifying key virulence pathways. Amongst these, our knowledge of microbial viru-
lence factors is perhaps the most promising. We can identify genes that are directly re-
sponsible for pathogenicity or survival, as well as their mechanisms of regulation [39–41]. 
Techniques such as proteomics have helped evaluate such matters quite thoroughly (see 
Supplementary Materials, Section SIII for an example of application in understanding bac-
terial virulence). Other methods, including transcriptomics are also likely to help eluci-
date the basic biology dictating bacterial behavior during intracellular infections. There is 
no doubt that compilation of such data is ongoing, which will add tremendously to our 
knowledge of microbial virulence factors and their role(s) in intracellular survival. Some 
examples of genomics databases include the Virulence Factor Database (VFDB) [42,43] 
and MvirDB [44]. There are even databases to connect virulence factors to protein-protein 
interaction networks [45], which provide key information on the regulation of virulence 
as a process. While none of these databases are specifically focused on identifying drug 
targets in intracellular bacteria, they contain relevant data of tremendous use. Additional 
work will certainly provide data to aid in anti-virulence drug discovery. 

Figure 1. The chemical space conundrum. It is already difficult to identify chemicals that permeate
bacterial outer envelopes. While recent work [27–37] has identified plausible characteristics enabling
penetration of a few Gram-negative cells, Gram-positive permeability rules are virtually undiscovered.
Additionally, only a fraction of chemicals capable of permeating the human cell can penetrate the
bacterial cell to reach the cytosol. Chemicals that target intracellular bacteria must penetrate both
(Substance A). Substance A must be both, Ro5-compliant, as well as bacterial cell-penetrating, which
are difficult to find. Substance B, on the other hand, is useless against intracellular pathogens because
it penetrates human cells but fails to reach bacterial targets. Substance C would be useless because it
would not penetrate the human cell, even if it was able to reach the bacterial cytoplasm.

2.2. Finding Good Drug Targets

There are 3 different aspects of drug target selection: (1) identifying a pathway that
is critical to the outcome of interest (in this case, virulence and intracellular survival),
(2) identifying key enzymes of a tractable nature (i.e., enzymes whose disruption with
organic chemicals is possible), and unique in the case of antimicrobials, (3) determining
whether these targets are useful when attempting to design broad-spectrum agents.

Identifying key virulence pathways. Amongst these, our knowledge of microbial vir-
ulence factors is perhaps the most promising. We can identify genes that are directly
responsible for pathogenicity or survival, as well as their mechanisms of regulation [39–41].
Techniques such as proteomics have helped evaluate such matters quite thoroughly (see
Supplementary Materials, Section SIII for an example of application in understanding
bacterial virulence). Other methods, including transcriptomics are also likely to help eluci-
date the basic biology dictating bacterial behavior during intracellular infections. There is
no doubt that compilation of such data is ongoing, which will add tremendously to our
knowledge of microbial virulence factors and their role(s) in intracellular survival. Some
examples of genomics databases include the Virulence Factor Database (VFDB) [42,43]
and MvirDB [44]. There are even databases to connect virulence factors to protein-protein
interaction networks [45], which provide key information on the regulation of virulence
as a process. While none of these databases are specifically focused on identifying drug
targets in intracellular bacteria, they contain relevant data of tremendous use. Additional
work will certainly provide data to aid in anti-virulence drug discovery.
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At the same time, it is important to acknowledge that very little is truly understood
about genetic variability for different strains within the same species. Even in the best-
studied pathogens such as E. coli and S. aureus, only a handful of strains have been
genotyped and made available. This is not surprising. While humans evolve over several
thousand years, the time scale is literally minutes for bacteria—thus, a very large number
of strains exist for each species. Enough samples to represent the genetic variability among
even a single bacterial species could potentially constitute a mind-boggling amount of
data. It may, however, be useful to systematically catalog strains from clinical isolates, and
correlate them with patient outcomes such as clinical failure, recurrence, or even death.
This may limit the number of strains for which data must be obtained as priority could be
given to clinically virulent strains. Studying patients over time could also help understand
how pathogens evolve within hosts to facilitate intracellular survival.

Chemical tractability of targets. The next challenge is to segregate tractable drug targets
from non-tractable. For the purposes of this article, we will only refer to tractability by
synthetic, organic drugs because other medications such as biologics are unlikely to act
directly on intracellular bacteria. Tractability by drug-like chemicals has been the subject
of significant work across the past two decades [46–55]; it is also sometimes referred to
as “druggability”. It is well-known that certain drug targets are much more likely to bind
drug-like small molecules with high affinity [56]. The techniques are sophisticated enough
to successfully identify tractable binding pockets with approximately 80%–90% accuracy,
and hence can be easily used for target discovery in intracellular bacteria. Such information,
when curated into a database, can provide critical clues regarding drug targets for discovery
of drug targets in intracellular bacteria. However, to the best of our knowledge, only Sarkar
and Brenk have used a chemical tractability method [57] to a pathogen (P. aeruginosa [58]).

Broad-spectrum or narrow-spectrum? Virulence pathways are, by definition, not critical
for survival in broth—they are required only during the process of invasion and infection in
a living host. These are essentially abilities developed by pathogens later in the evolutionary
timeline after they encountered hosts. Thus, virulence-related pathways are not conserved
across species, or even strains. For example, S. aureus strains have significantly varied
genetic makeup, and the virulence pathways involved in infections are often different.
The community-acquired methicillin-resistant S. aureus USA300 clone, which currently
dominates skin and soft tissue infections in the U.S., does so in part because of newly
acquired virulence factors lacking in the hospital-acquired S. aureus clones that previously
dominated [59]. Therefore, it may be difficult to identify broad-spectrum anti-virulence
agents. This can be countered by our knowledge of disease etiology. For example, since
staphylococci are responsible for infective endocarditis in the U.S. and Europe, while
streptococci are responsible for the same in other parts of the world, different narrow-
spectrum agents could be used depending on local etiology [59].

Overall, it is clear that appropriately curated and analyzed data will help us identify
the best way(s) to fight intracellular infections by bringing forth good drug targets. A
platform that rationally helps identify good drug targets must include, at the very least,
these cogs (Figure 2).
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Figure 2. Pillars of target discovery: the essential infrastructure needed in the public domain to
help facilitate and advance rational, guided efforts in anti-virulence drug discovery. The selection
of targets will require an understanding of how the bacterial genome dictates virulence signaling
via the transcriptome and contributes to patient outcomes. Only after understanding the chemical
tractability of those targets will we be able to rationally select drug targets and focus our efforts. We
envision a comprehensive platform that provides data to connect all these factors, allowing a rational
approach towards target selection for the development of anti-virulence agents.

2.3. Current Models of Studying Virulence

A very important factor behind the successes in antimicrobial drug discovery is the
availability of broth microdilution as a phenotypic assay. Antimicrobial susceptibility mea-
surement using broth microdilution is such a successful model that it has been standardized
and used uniformly across the globe. It represents exactly what it needs to represent—the
growth of the bacterium in the presence of an antimicrobial. Furthermore, reagents are
inexpensive, and procedures are easy. In comparison, current models to study virulence
are much more difficult and expensive [60].

Part of the problem is that there is no widely accepted, standardized method to
measure virulence itself. This is mostly because virulence is an agglomerate of multiple
phenotypes, unlike growth. Furthermore, standardized molecular biology techniques
(e.g., RT-qPCR, Western blots, etc.) are not useful because of how virulence manifests
itself—different virulence factors are often involved, and each must be measured in unique
ways [40,61,62].

It is also difficult to study intracellular bacteria because the technique necessitates
more expensive and challenging mammalian cell culture methods. There has been some
advancement in this regard. A method has been proposed for rapid and reliable isolation
of intracellular bacteria during urinary tract infections, involving rapid and inexpensive
procedures [63]. However, multiple intracellular bacteria (Supplementary Table S1) mani-
fest distinct infections of multiple tissues, requiring several highly specific models to study
each infection. More generalizable methods will certainly be helpful, if they are able to
adequately simulate multiple infections.

Relatively inexpensive in vitro models do exist to simulate biofilm, and they are valu-
able for their tractability and reproducibility. For example, U.S. CDC approved biofilm
reactors are cost-effective, high-throughput methods for assessing biofilm formation; how-
ever, this method also shows attachment of the biofilm to host cell epithelia, an action
not always observed in in vivo infections [64,65]. Complicating matters, antimicrobial
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susceptibility and bacterial growth rates may be different within and outside biofilm, and
even between aggregated, surface-bound biofilm versus suspended biofilm, which can be
difficult to measure in a reproducible manner. This situation is even more complicated
with intracellular bacteria because it is hard to separate those surviving inside intracellular
biofilms, or exiting intracellular biofilm but remaining within the cell, or perhaps even
breaking out of the host cell completely. The effectiveness of an anti-virulence agent against
biofilm would require accurate and precise quantitation of all these outcomes because
these could lead to different clinical end points. While biofilms grown in the laboratory do
not necessarily represent biofilms grown in vivo, it is always possible to follow up on the
results from in vitro model with an ex vivo or in vivo model.

Animal models are ideal for studying intracellular bacteria, but they are expensive. It
has always been difficult to balance factors such as inoculum dosage; high doses may be
lethal while low doses result in a swift immune response [66]. Furthermore, while vertebrate
models are more similar to humans, there are ethical concerns over use, and therefore must
be used only when absolutely required. Invertebrate models have been introduced (e.g.,
Caenorhabditis elegans and Drosophila melanogaster [67–71]), but we are unsure if permeation
of chemicals resembles human cells. Theoretically, unless similarities in permeation are
well established, it is possible to find chemicals that eliminate intracellular bacteria in these
models that do not reach intracellular bacteria in human cells. The major advantage of using
vertebrate animals, of course, is the presence of a fully formed immune system. Just as
humans, rats and mice have both innate and adaptive branches of the immune system, while
invertebrates such as C. elegans and D. melanogaster do not. Invertebrates also typically do
not provide large amounts of tissue for analysis [65,66]. The silkworm provides a larger
invertebrate model with a simpler genome to identify genes contributing to virulence and
larger tissue samples for use in virulence assays [72]. However, a simpler genome also likely
means bigger differences when compared to humans.

Ex Vivo models are an alternative to animal models. Human tissues can be grown in a
test tube with fewer ethical concerns, and drugs can be tested. This method permits control
over experimental conditions in which the environmental aspects of bacterial cell survival
and virulence can be assessed. However, even these are not cheap or easy, and the lack
of an immune response coupled with a severe lack in standardization prevent large-scale
expansion of this method in modelling pathogenesis [66]. Furthermore, tissue culture is
not the same as humans. For example, the immune system is absent. Are these as effective
as an animal model? Not likely.

In our opinion, we need new, in vitro models capable of simulating the intracellular en-
vironment. In Vitro models may never capture the complexity of a host immune response,
but if we are able to simulate the stresses undergone by pathogens in an intracellular envi-
ronment, we may be able to identify anti-virulence agents at the same rate as antimicrobials
were discovered using broth microdilution methods. The key difference between current
in vitro models and these new models should be a clear and precise demonstration of
phenotypic and transcriptomic similarities. These could even be prepared separately for
different cell types, but they will need to be lucid enough to run in a standardized manner,
akin to antimicrobial susceptibility assays by broth microdilution.

3. Perspective

In the face of rising antibiotic resistance, anti-virulence therapies are a hopeful prospect
in combating persistent infections caused by intracellular bacteria. From a drug discovery
perspective, three changes from status quo are needed to truly advance the field:

1. Find better targets.
2. Develop cheaper, more effective models (maybe in vitro, for instance broth microdilution).
3. Understanding chemical space that is best to permeate both human and bacterial cells.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10091172/s1. Section SI: Intracellular Bacteria Are Particularly Challenging
to Treat [2–7,11–15,73–78]; Section SII: Virulence Factors Are Important Enablers of Intracellular
Pathogen Survival [7,16–19,79–88]; Section SIII: Examples of Proteomics Being Used to Understand
Bacterial Virulence [89–91]; Table S1: A list of clinically important intracellular bacteria, including
clinical conditions and therapy options [12–15,92–97].
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