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Abstract——Post-traumatic epilepsy (PTE) is one of
themost devastating long-term, network consequences of
traumatic brain injury (TBI). There is currently no
approved treatment that can prevent onset of spontane-
ous seizures associatedwith brain injury, andmany cases
of PTE are refractory to antiseizure medications. Post-
traumatic epileptogenesis is an enduring process by
which a normal brain exhibits hypersynchronous excit-
ability after a head injury incident. Understanding the
neural networks and molecular pathologies involved in
epileptogenesis are key to preventing its development or
modifyingdiseaseprogression. In this article,wedescribe
a critical appraisal of the current state of PTE research
with an emphasis on experimental models, molecular
mechanisms of post-traumatic epileptogenesis, potential
biomarkers, and the burden of PTE-associated comorbid-
ities. The goal of epilepsy research is to identify new ther-
apeutic strategies that can prevent PTE development or
interrupt the epileptogenic process and relieve associ-
ated neuropsychiatric comorbidities. Therefore, we also
describe currentpreclinical andclinical data on the treat-
ment of PTE sequelae. Differences in injury patterns,
latency period, and biomarkers are outlined in the con-

text of animal model validation, pathophysiology, seizure
frequency, and behavior. Improving TBI recovery and
preventing seizure onset are complex and challenging
tasks; however, much progress has beenmadewithin this
decade demonstrating disease modifying, anti-inflamma-
tory, and neuroprotective strategies, suggesting this goal
is pragmatic. Our understanding of PTE is continuously
evolving, and improved preclinical models allow for
accelerated testing of critically needed novel therapeutic
interventions inmilitary and civilian persons at high risk
forPTEand its devastating comorbidities.

Significance Statement——Post-traumatic epilepsy is a
chronic seizure condition after brain injury. With few
models and limited understanding of the underlying
progression of epileptogenesis, progress is extremely
slow to find a preventative treatment for PTE. This
study reviews the current state of modeling, pathol-
ogy, biomarkers, and potential interventions for PTE
and comorbidities. There’s new optimism in finding a
drug therapy for preventing PTE in people at risk,
such as after traumatic brain injury, concussion, and
serious brain injuries, especially in military persons.

I. Introduction to Brain Injury and Post-
Traumatic Epilepsy

Traumatic brain injury (TBI) remains a significant
source of death and permanent disability, contribut-
ing to nearly one-third of all injury-related deaths in
the United States and exacting a profound personal
and economic toll. TBI is defined as a disruption in
the normal function of the brain that can be caused
by a bump, blow, or jolt to the head, or a penetrating
head injury. Common causes of TBI include sports-
related injuries, falls, car accidents, and military inci-
dents. About 2.87 million Americans experience a TBI
each year, with more than 56,000 deaths and 280,000
individuals requiring hospitalization (Taylor et al.,
2017). The number of emergency department visits

related to TBI increased over 50% between 2007 and
2013; this rise is attributed to an ever-aging popula-
tion and increased number of fall-related TBIs
(DeGrauw et al., 2018).

The extent of damage varies widely based on age,
sex, and severity of injury (Christian et al., 2020). An
individual’s physical burden stretches beyond the ini-
tial damage, as TBI is often accompanied by a collec-
tion of secondary health consequences that negatively
affect daily life. These complications include head-
ache, vision impairment, tinnitus, difficulty focusing,
imbalance, loss of hand-eye coordination, cognitive
impairment, and affective disorders (Malec et al.,
2019). The impact of TBI on close family members
and caregivers is also extraordinary, ranging from
physical strain and emotional stress of living with a

ABBREVIATIONS: ADHD, attention deficit hyperactivity disorder; AMPA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; ASM,
antiseizure medication; BBB, blood-brain barrier; BDNF, brain-derived neurotrophic factor; CA1, Cornu Ammonis area 1; CA3, Cornu
Ammonis area 3; CCI, controlled cortical impact; CD, cluster of differentiation; COX, cyclooxygenase; CSF, cerebrospinal fluid; CNS, cen-
tral nervous system; CT, computed tomography; DBS, deep brain stimulation; 2-DG, 2-deoxyglucose; EEG, electroencephalogram; FDA,
Food and Drug Administration; FDG, 18F-fluorodeoxyglucose; FPI, fluid percussion injury; GFAP, glial fibrillary acidic protein; HDAC, his-
tone deacetylase; HFO, high-frequency oscillation; IL, interleukin; NOS, nitric oxide synthase; NMDA, N-methyl D-aspartate; MMP,
matrix metallopeptidase; MRI, magnetic resonance imaging; miRNA, microRNA; mTOR, mammalian target of rapamycin; PBBI, penetrat-
ing ballistic-like brain injury; PET, positron emission tomography; PTE, post-traumatic epilepsy; PTZ, pentylenetetrazol; REM, rapid eye
movement; ROS, reactive oxygen species; rTBI, repetitive traumatic brain injury; SRS, spontaneous recurrent seizure; TBI, traumatic
brain injury; TLR, toll-like receptor; TrkB, tropomyosin receptor kinase B; VLPO, ventrolateral preoptic nucleus.
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person whose abilities, behavior, and personality have
been altered, to additional demands on the caregivers
for ongoing monitoring and assistance with daily
tasks (Malec et al., 2017). Furthermore, the burden of
TBI may unevenly fall on lower-income households
(Tropeano et al., 2019), shedding light on the inequity
of access to critical health care both in the United
States and abroad. Moreover, TBI puts patients at
higher risk of sleep disturbances and post-traumatic
seizures (Gilbert et al., 2015). By some estimates,
seizures occur in one out of every 10 hospitalized per-
sons with moderate or severe TBI. Identified risk fac-
tors for post-traumatic seizures include loss of
consciousness, intracranial hemorrhage, chronic alco-
holism, depressed skull fractures, and cerebral contu-
sions (Englander et al., 2003). Despite the increased
resources that have been generated to improve our
understanding of TBI and its comorbidities, the devel-
opment of new diagnostic approaches has been disap-
pointingly slow.
Post-traumatic epilepsy (PTE) is characterized by

spontaneous recurrent seizures (SRSs) occurring as a
result of TBI. Seizures have been temporally catego-
rized into immediate (within 24 hour), early (1–7 days
postinjury), and late seizures (>7 days postinjury)
(Christensen, 2015). Immediate and early seizures
are not considered to be “epileptic” and are thought to
be provoked from the injury itself, rather than arising
from a multitude of cellular and molecular changes.
Thus, PTE represents a complex and chronic network
disorder after head trauma, which induces epileptoge-
nicity in the brain.
The cumulative risk of developing PTE ranges from

2%–50% depending on the location and severity of
injury (Annegers et al., 1998; Chen et al., 2009;
DVBIC, 2019; Tubi et al., 2019). It is well-established
that the incidence of PTE increases with severity of
initial TBI; however, the mechanism by which these
seizures develop is still unclear. Many mechanisms
have been identified through studies of status epilep-
ticus and temporal lobe epilepsy (Pitkanen et al.,
2015; Clossen and Reddy, 2017; Reddy et al., 2021).
Once a patient with TBI experiences a single late sei-
zure, their chance of experiencing a subsequent event
increases by 80%, and seizure reoccurrence is most
likely within 2 years of the first spontaneous late sei-
zure (Haltiner et al., 1997; Englander et al., 2015).
Acute or immediate seizures after TBI are treated
with symptomatic antiseizure medications (ASMs),
but these drugs are ineffective at preventing long-
term or epileptic seizure occurrence (Marion, 1999).
Although there are more than 20 ASMs in clinical
use, approximately 30% of patients with epilepsy still
experience drug-refractory epileptic seizures (Kobau
et al., 2008; Reddy, 2020).

In addition to seizures, neuropsychiatric comorbid-
ities are a significant source of burden after TBI. The
mortality rate is nearly three times higher in patients
with TBI who have seizures compared with TBI alone
(Englander et al., 2003). When injury severity and
location was accounted for, the most significant differ-
ence between patients who have PTE and those who
don’t was the presence of focal cortical contusions.
Neuropathology associated with TBI and PTE has
recently been identified as a risk factor for developing
serious neurologic disorders later in life, including
Parkinson’s disease and dementia (Gardner et al.,
2015; Fann et al., 2018). Moderate to severe head
injury triggers amyloid plaque buildup in some
patients, suggesting a possible link to Alzheimer’s dis-
ease as well (Barnes et al., 2014). Furthermore, a
variety of comorbidities, including difficulty focusing,
anxiety, learning and memory impairment, motor dys-
function, and sleep disturbances reduce the quality of
life for many patients with PTE (Hammond et al.,
2019).
Prevention of epilepsy and its progression is one of

the major U.S. National Institutes of Health National
Institute of Neurologic Disorders and Stroke research
benchmarks. Experimental studies have demon-
strated great understanding of neuropathology and
PTE-associated comorbidities, including seizures, psy-
chologic changes, and motor dysfunction. However,
clinical translation of therapeutic strategies is lacking
or has been unsuccessful in preventing post-traumatic
seizures (Temkin, 2009). Therefore, our current ani-
mal models need to be further refined to discover
novel biomarkers for PTE and better capture the
mechanisms involved in epileptogenesis as related to
the human condition. This article describes the cur-
rent state of animal models used in experimental
PTE studies, briefly examines mechanisms and bio-
markers of post-traumatic epileptogenesis, then dis-
cusses the current progress in prophylactic and
preventative therapeutics for PTE. Critical differ-
ences in injury patterns, variable latency period, and
biomarkers are outlined in the context of model vali-
dation and correlation of pathophysiology, seizure fre-
quency, and behavior. It also covers preclinical and
clinical trials of new candidate treatments for PTE
sequalae and associated comorbidities.

II. Animal Models of Post-Traumatic Epilepsy

PTE is a condition characterized by at least two
SRSs after a head injury. Since spontaneous seizures
often do not emerge until months or years after the
initial TBI, it is extremely challenging to study the
epileptogenic process in the clinical setting. The
required studies that would provide insight from
immediate injury through to diagnosis of epilepsy are
invasive, time consuming, and perhaps not always
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ethically feasible. Furthermore, longitudinal studies
using less invasive procedures, such as magnetic reso-
nance imaging (MRI) and surface electroencephalogram
(EEG), could take decades of compliance to complete
and assume these patients do eventually develop
seizures.
Rodent models of PTE allow for a more extensive

investigation into the causal relationship between
brain injury and seizures. Here, we can begin to
understand the broad and cellular pathophysiology of
epileptogenesis, discover and validate new bio-
markers for PTE, and assess the efficacy of therapeu-
tics for PTE. Rodent disease models are cost-efficient,
more tightly controlled, and consume far less time to
complete long-term reports. However, it is important
to distinguish models of TBI from those of PTE. PTE
requires the occurrence of at least two seizures after
brain injury. Therefore, it is important as researchers,
we strive to include seizure detection methods within
the models. Without the presence of seizures or ability
to detect epileptiform abnormalities, the focus of the
model becomes brain injury and its comorbidities,
rather than post-traumatic epileptogenesis. Presently,
a handful of studies report seizure incidences from
0%–50% after mild to moderate TBI, which can slow
progress on therapeutic developments (Kochanek
et al., 2006; Hunt et al., 2009; Hunt et al., 2010; Rod-
gers et al., 2015; Szu et al., 2020). Researchers have
attempted to remedy this challenge by including addi-
tional electrical or chemical convulsion approaches
after injury, to ensure they observe seizures (Khara-
tishvili et al., 2006; Chrzaszcz et al., 2010; Bolkvadze
and Pitk€anen, 2012). Although a reduction in seizure
threshold to these electrical or chemical stimulations
has been observed, these models do not truly depict
PTE since the seizures are not naturally generated.
Table 1 summarizes the PTE models with in vivo
recordings of neuronal hyperexcitability. Similarly,
in vitro preparations of slices or cell cultures are an
inadequate replacement for the invaluable data that
spontaneously progressing in vivo models can provide.
Lastly, a crucial benefit of rodent models over the clin-
ical setting is the ability to explore novel targets and
investigate efficacy of therapeutics. Even when bio-
markers are discovered in humans, it is unethical to
test pharmacological agents in patients until the
safety and efficacy has been critically evaluated and
confirmed.
Four TBI models that have been adapted to induce

PTE include the fluid percussion injury, controlled
cortical impact, impact-acceleration, and the blast
injury models. A recent study confirmed neuronal
excitability and seizure activity after a repetitive
blast model of TBI (Bugay et al., 2020). Additional
models such as cortical undercut and penetration
injury have also been used to model PTE. However,

these models are less widely used, and therefore, less
data on the translational properties are available.
Table 2 compares the advantages and disadvantages
of various animal models of PTE.

A. Fluid Percussion Injury Model. Fluid percussion
injury (FPI) is perhaps the most extensively used and
studied model of PTE, largely due to its ability to eas-
ily modify the severity of injury, impact site, and spe-
cies used. FPI can be applied centrally over the
sagittal suture between bregma and lambda (midline
FPI) or laterally over the parietal cortex (lateral FPI)
and has been adapted for mouse, rat, rabbit, cat, and
pig models. FPI produces a fluid pulse injury directly
onto the surface of the dura after a craniectomy. The
fluid percussion device consists of an adjustable pen-
dulum that strikes the piston end of a fluid-filled cyl-
inder, generating a fluid pulse that is transmitted
along the horizontal axis of the cylinder onto the
brain.
The model was initially described by McIntosh

et al. (1989) in rats with a 4.8 mm craniectomy mid-
distance between bregma and lambda and centered
between the sagittal suture and lateral ridge. An
injury cap is positioned over the craniectomy and
secured with dental cement or glue to ensure the fluid
bolus remained within the cranial cavity. The injury
is produced by a pressure pulse lasting 20 millisec-
onds, and the severity of injury can be altered
depending on the location and magnitude of pressure
used (low 1.5 atm to high 3.5 atm in rats). Parasagit-
tal and lateral FPI are common models for studying
PTE. After FPI, electrodes can be implanted either
immediately or after a short recovery period.
The FPI model can reproduce neuropathology asso-

ciated with both diffuse or focal injuries as well as
other aspects of human TBI, such as acute hyperten-
sion, bradycardia, increased plasma glucose levels,
hemorrhages, inflammation, and cognitive deficits
(Eakin et al., 2015). The damage of FPI is most severe
in the ipsilateral cortex, hippocampus, and thalamus,
although mild lesions and cell loss has also been
detected contralaterally. Additionally, many laborato-
ries have demonstrated the development of epilepto-
genesis, including a reduction in seizure threshold,
presence of epileptiform discharges, and subgroups
with SRS (Kharatishvili et al., 2006; Mukherjee et al.,
2013; D’Ambrosio et al., 2004).
Seizure incidence after FPI has been inconsistent,

with ranges from 0% to a cumulative probability of
100% epilepsy. A major limitation in many of the ear-
lier reports is the lack of continuous long-term EEG
recording. Random or intermittent epochs of record-
ing do not allow researchers to determine latency to
seizure onset, and in many cases, seizure occurrence
will be underestimated or over-reported due to miss-
ing data. In one of the most cited reports of FPI-
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nduced seizures, Kharatishvili et al. (2006) found
approximately 50% of rats developed PTE over a
period of 12 months when monitored with 24/7 video-
EEG. Seizures were described as partial or secondar-
ily generalized with a duration between 67–59 sec-
onds; however, seizure frequency was quite low,
averaging 0.3 ±0.2 seizures/d/animal. Neuronal loss
was observed within the ipsilateral hippocampus, and
aberrant mossy fiber sprouting was evident within

the dentate gyrus. Similar data have now been col-
lected from several laboratories (Zhang et al., 2008;
Andrade et al., 2017; Mukherjee et al., 2013; Shultz
et al., 2013; Carver et al., 2021).

B. Controlled Cortical Impact Model. Controlled
cortical impact (CCI) has also been widely character-
ized since its first description by Lighthall in 1988
(Lighthall, 1988). Originating as a model of TBI, CCI
has been adapted for studying PTE with the addition

TABLE 2
Advantages and disadvantages of animal models of PTE

Model Advantages Disadvantages

CCI Produces similar histopathology to the human
condition, including concussion, acute
subdural hematoma, loss of cortical tissue,
axonal injury, inflammation, loss of gray
matter, and blood-brain barrier dysfunction

Varied incidence of epilepsy between research
groups and cohorts

Increased seizure susceptibility to chemical
convulsants

Prolonged time-course for the development of
SRS and some comorbidities

Decreased seizure threshold to electrical
stimulation

Mechanical variation

Demonstrates persistent sensori-functional
and cognitive deficits

Requires complex technical device to produce
injury

Produces epileptiform EEG activity, including
discharges, high-frequency oscillations,
and seizures in some animals

Highly studied and reproducible
Can produce varying degrees of severity
Has been used in rodent (mouse/rat), swine,

canine, and primate models
FPI Produces similar histopathology to the human

condition, including diffuse or focal injury,
contusion, edema, progressive loss of gray
matter, inflammation, and blood-brain
barrier dysfunction

Varied incidence of epilepsy between research
groups and cohorts

Increased seizure susceptibility to chemical
convulsants

Prolonged time-course for the development of
SRS and some comorbidities

Decreased seizure threshold to electrical
stimulation

Lacks some translation to therapeutic
validity

Demonstrates persistent sensori-functional
and cognitive deficits

Requires complex technical device to produce
injury

Produces epileptiform EEG activity, including
discharges, high-frequency oscillations,
and seizures in some animals

Variation in injury can occur because
pressure wave is highly sensitive to
operational factors

Highly studied and reproducible
Can produce varying degrees of severity

Cortical Undercut Simple surgical procedure that produces
hyperexcitability

Not widely studied

Inexpensive and relatively simple protocol Failure to consistently produce spontaneous
recurrent seizures

Impact-Acceleration/Weight Drop Model Inexpensive and relatively simple protocol Not widely studied
Can produce varying degrees of severity Difficulty with reliable reproducibility
Focal injury with axonal injury and

hemorrhage
Failure to consistently produce spontaneous

recurrent seizures
Blast Injury Model Produces similar histopathology to the human

condition, including diffuse or focal injury,
intracranial hemorrhage, inflammation,
and blood-brain barrier dysfunction

Not widely studied

Injury mechanism similar to military TBI Failure to consistently produce spontaneous
recurrent seizures

Penetrating Ballisticlike Brain Injury Model Injury mechanism close to human missile or
bullet wound injury

Not widely studied

Inexpensive and relatively simple protocol Needs standardization
Canine Model Conducted in a species that naturally

develops epilepsy disorders
Not widely studied

Needs standardization
Large Animal Models (Pig, Etc.) Species is an intermediate state between

rodent and primates
Not widely studied

Needs standardization
Requires additional resources and time for

surgeries and care
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of EEG-recording electrodes and measurements of
electrophysiological changes. To date, CCI techniques
have been replicated in mice, rats, swine, monkeys,
and ferrets (Xiong et al., 2013). This method requires
general anesthesia of the subject as well as a craniec-
tomy—similar to the FPI model. A computer-controlled
impactor is used to deliver a unilateral strike to the
intact dura directly at a velocity and depth specified by
the researcher. This model can be customized further
by choosing the diameter of the impact tip as well as
whether the tip is blunt or rounded. Due to the levels
of precision involved, CCI can mimic focal injury or
widespread degeneration and can remove a potential
source of error regarding the position and depth of the
impact site. CCI studies have mimicked acute subdural
hematoma, axonal injury, cell and tissue loss, blood-
brain barrier disruption, and inflammation (Osier and
Dixon, 2016). Additionally, many studies have described
psychologic, functional, and cognitive changes associ-
ated with TBI (Kochanek et al., 2002; Watanabe et a.,
2013; Yen et al., 2018).
Over time, long-term changes in the organization of

neural circuitry due to trauma can lead to significant
cell loss as well as an imbalance of excitatory and
inhibitory neurotransmission. Seizures after CCI and
FPI have been described in similar terms, both behav-
iorally and electrographically; however, CCI-induced
spontaneous seizures appear to have a swifter onset
compared with lateral FPI in rats (Kharatishvili
et al., 2006). Previous studies have suggested limbic
involvement may not appear for several months after
FPI, resulting in a longer latency between initial
injury and seizure occurrence (D’Ambrosio et al.,
2004; 2005). This shorter, yet clinically relevant time-
line, allows for greater flexibility in pharmacological
testing.
A full spectrum of interictal activity including early

(within the first week postinjury) or late seizures (after
first week postinjury), isolated spikes, epileptiform dis-
charges, absencelike spike wave discharges, and high-
frequency oscillations (HFOs) have been successfully
reproduced after moderate and severe CCI (Hunt
et al., 2009; 2010; Statler et al., 2009; Golub and
Reddy, 2022; Konduru et al., 2021). Sham mice do not
show evidence of seizure activity, but high-frequency
oscillations, interictal spike runs or “absencelike”
spike-wave discharges have been observed in both
injured and sham mice (Konduru et al., 2021). How-
ever, this study also pointed out that sham-injured
rodents are not always appropriate controls for EEG
studies since sham rodents have sometimes demon-
strated interictal spiking or discharge activity. Com-
puted tomography (CT) imaging revealed mild lesions
compared with noncraniectomy mice, which could have
contributed to abnormal activity.

Similar to FPI studies, seizure incidence after CCI
is largely dependent on the severity of impact, rang-
ing between 10% and 85% of mice exhibiting increased
epileptic discharge spiking and seizures in the weeks
after CCI (Hunt et al., 2010; Bolkvadze and Pitk€anen,
2012; Golub and Reddy, 2022). Additionally, CCI stud-
ies have demonstrated progressive hyperexcitability in
neocortical circuits within the first two weeks after
TBI (Yang et al., 2010). These changes in electroen-
cephalography are often accompanied with mossy fiber
sprouting, hippocampal lesions, and changes in neuro-
genesis—all of which are defined as hallmarks of tem-
poral lobe epilepsy (Hall et al., 2008; Hånell et al.,
2010). Like FPI studies, CCI injuries provide consis-
tency, reproducibility, and an overall accepted con-
struct validity. This model also has the added benefit
of easily altering injury severity, thereby changing the
course of epileptogenesis and hippocampal pathology.

C. Weight-Drop or Impact-Acceleration Model. The
impact-acceleration model, also known as the weight-
drop model, simulates a diffuse injury to the brain
and was first described by Mararmou and colleagues
(Mararmou et al., 1994). After general anesthesia,
rats or mice are placed below the weight-drop device
on a foam block or platform intended to provide a con-
sistent placement of the animal’s head and body rela-
tive to the apparatus. Skull fracture can be prevented
by securing a small impact surface onto the location
where the force will be applied, using cement or
another adhesive. The impact-acceleration model can
produce graded injuries, based on the heaviness and
height at which the weight is dropped. This model
can also be used as a form of repetitive TBI, produc-
ing a number of cumulative, but lesser injuries
(Bailes et al., 2014).
The clear advantage to this model is the simplicity

to induce trauma. The weight-drop apparatus itself
can be constructed using inexpensive supplies and
does not require a craniotomy within a stereotaxic
rig, allowing for low cost and high throughput effi-
ciency. Although this model leads to many known
sequelae of human TBI, a critical downside is that
weight-drop only produces PTE at extreme intensi-
ties, at which most animals do not survive. Further-
more, to identify and analyze abnormalities in EEG
activity, such as post-traumatic seizures, typically an
electrode is implanted at various focal sites, thereby
still requiring access of a stereotaxic apparatus.
Although this model is rarely used to identify seizure
activity, it has been recently adapted to identify sub-
tle changes in seizure threshold to chemical convul-
sant compounds, such as pilocarpine, without the
need of recording electrode placement (Ben Shimon
et al., 2020).

D. Blast Injury Model. Blast-related injuries are a
frequent outcome of military exposure to explosive
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detonation. A leading hypothesis for the mechanism
by which an explosive blast causes TBI is through
the transmission of shock waves across the target
tissue, causing rapid acceleration and deformation of
the brain (Magnuson et al., 2012). These oscillating
blast waves have sometimes been referred to as
the “bobblehead effect” (Rosenfeld et al., 2013). Indi-
rect transmission of kinetic energy from blast shock
can travel through vasculature, playing a large role
in TBI. Several models of blast TBI have been devel-
oped, although open-field blast, blast tubes, and shock
tubes are the most frequently used (Kovacs et al.,
2014).
Open-field blast occurs when an explosive detona-

tion occurs within an outdoor open area, either by
overhead suspension or placement on the ground.
This is one of the most accurate representations of
the human blast injury condition since subjects are
located a standoff distance away from the blast. How-
ever, since debris and clouds from the primary explo-
sion can contribute to the injury, blast tubes provide
another method of blast injury in which a combined
shock wave and blast wind is initiated by an explo-
sion. In this case, animals are placed at the end of a
pressurized blast tube, and the head-on explosion
occurs at the opposite end of the tube. The torso and
abdomen of the mouse are protected from exposure to
prevent confounding injuries of the lungs, heart, and
gastrointestinal tract. This method allows the rodent
to be subjected to a “clean” blast without the reflec-
tion of shock fronts from the ground or other surfaces.
Another advantage of blast tubes versus open-field
blasts is that an equivalent blast intensity can be
achieved with a much smaller explosive charge.
Lastly, shock tubes use compressed gasses, such as
helium, rather than explosives to achieve injury.
Shock tubes are generally safer for both the subject
and researcher to perform, more cost effective, and
can be performed indoors—thereby not affected by
weather conditions. However, the physics of shock
tubes differs from that of explosive shock waves,
which may not be as comparable to the human
condition.
Blast injuries re-create several pathophysiological

processes that likely play a role in the development of
PTE, including intracranial hemorrhages, vasospasm,
neuronal damage and degeneration, focal or diffuse
axonal injury, and inflammatory reactions (Nakagawa
et al., 2011). Although blast models have revealed
neurofunctional changes, only one study has reported
post-traumatic seizures and reduction in seizure
threshold. Bugay et al. (2020) observed 46% incidence
of spontaneous seizures in mice within a long-term
study after up to three consecutive days of repetitive
blast injury. Most seizures were electrographic, with
little to no behavioral component observed. They also

reported a shortened latency to spiking and hyperpo-
larization of action potential threshold in patch
clamp recording of the hippocampus. These results
produced a graded response to the number of
blasts each mouse received (i.e., one, two, or three
consecutive blasts). Although this is the first study to
investigate TBI effects on neuronal excitability, the
data clearly demonstrate increased risk of post-trau-
matic seizures as a measure of severity and repetitive
injury.

E. Penetrating Ballistic-Like Brain Injury Model. The
penetrating ballistic-like brain injury (PBBI) was
designed to model two aspects of high-energy bullet
wounds to the head: a large temporary cavity pro-
duced from energy dissipation and a permanent
injury tract created by the path of the bullet (Wil-
liams et al., 2005). The PBBI itself is generated by
inserting a custom probe into the brain at the desired
location, creating the permanent injury tract, followed
by the sudden inflation of an attached balloon to
mimic the temporary cavity. The rodent is first placed
into a stereotaxic device under anesthesia, scalp
incised along the midline, and a small cranial window
is created to allow the insertion of the PBBI probe.
The probe can be constructed from a thin, 20-gauge
stainless steel tube with spatially fixed perforations
at one end. The perforations are sealed with airtight
elastic tubing, which forms an inflatable balloon
when an air pulse is delivered through the steel tube.
The probe is then retracted, and the craniectomy is
sealed with sterile bone wax or dental cement. Screw
or depth electrodes can also be placed either before or
after PBBI to obtain EEG recording. Since the rela-
tionship between the bullet’s impact velocity and the
diameter of the cavity is linear, the parameters of this
model can be altered to generate varied injury types
or severities. However, this model of TBI mimics a
specific and severe form of injury generally seen only
in military populations.
One of the most notable consequences of PBBI is

intracerebral hemorrhage, which is most common along
the route of the probe entry. Additionally, PBBI re-cre-
ates pathologies found in the human condition of missile
injury, such as extensive zones of radiating neurodegen-
eration, inflammation, neurologic impairments, edema,
and post-traumatic seizures (Wei et al., 2010).

F. Cortical Undercut Model. The cortical undercut
model of PTE was developed to mimic penetrating
cortical injuries and has been used in both in vivo
and ex vivo studies. Cortical undercut has been per-
formed on rats, mice, and cats of varying age (Graber
and Prince, 1999; 2006; Chauvette et al., 2016). Typi-
cally, rats are anesthetized and placed into a stereo-
taxic frame before unilateral exposure of the area of
interest, typically the sensorimotor cortex. The dura
mater and blood supply should be left intact after the
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craniotomy. A custom-made surgical knife or thin
gauge needle, bent at a 90� angle 2mm from the tip is
lowered to the white matter below cortical layer VI
and rotated 180�, raised, then rotated back to its orig-
inal position before being withdrawn to transect the
underlying white matter. Attention should be paid to
avoid any damage to major blood supplies. When a
more complete undercut is needed, a second trans-
cortical cut can be made with the needle without rota-
tion (Graber and Prince, 1999; 2006). After a
maturation period, animals are sacrificed, and coronal
slices are obtained for electrophysiologic recordings
and histology.
When preparing for an in vivo EEG study, depth

electrodes can be placed in the surrounding or contra-
lateral cortex, hippocampus, or other regions of inter-
est. Array placement of electrodes is common in
larger species, such as cats (Nita et al., 2006; Timo-
feev et al., 2013). Previous experiments demonstrate
an immediate reaction to partial cortical deafferenta-
tion, resulting in significant reduction of local field
potential amplitudes in regions above the transected
white matter. Furthermore, 70% of animals experi-
enced a shift in slow oscillatory activity to paroxysmal
discharges (Topolnik et al., 2003a; 2003b). Seizure
onset in this model evolves from slow oscillation and
is characterized by the shortening of silence periods
and increased amplitude of depolarization during
active periods. Within a month after cortical under-
cut, electrographic paroxysmal activity spreads to
regions distal to the initial transection and can be
detected from corresponding electrodes. In mice, gen-
eralized seizures can be detected from the leading
electrode, located just proximal to the undercut,
within hours or days postinjury (Chauvette et al.,
2016).
Cortical undercut is a valuable model for investigat-

ing the details of functional and structural alteration
of neocortical GABAergic interneurons and pyramidal
neurons occurring at the site of a focal injury without
the spread of widespread damage and inflammation.
However, this model is rarely used for pharmacologi-
cal research due to its lack of translatability to the
human condition. Clean transection of the white mat-
ter is rarely seen in human TBI without more exten-
sive injury. Furthermore, there are few behavioral
studies with this model, although available data indi-
cate no significant motor deficits or cognitive impair-
ment (Graber and Prince, 1999).

G. Repetitive Traumatic Brain Injury and Concussion
Model. The majority of TBIs are mild in severity
and are often underreported and, therefore, under-
treated. Close-head impact injuries are a common
cause of concussion and TBI. The consequences of
repetitive traumatic brain injury (rTBI) and concus-
sions have gained increasing attention with emerging

reports of altered mood, behavior, and neurologic
function. Concussions are extremely common in
sports-related injuries, especially in contact-collision
sports, such as boxing or American football, putting
athletes at a higher risk for neurologic injuries, such
as chronic traumatic encephalopathy and PTE (Mez
et al., 2017).
The rTBI model mimics cellular and molecular

changes induced by diffuse TBI, representing mild,
concussive TBIs. Shandra and Robel (2020) recently
published a detailed protocol for reproducing rTBI
using a modified weight-drop model in mice. Briefly,
an anesthetized mouse is placed in an induction
chamber with its head positioned under the weight-
drop tube on a foam pad. The pin on the weight-drop
tube is released so that a 100 g weight is dropped
from a height of 50 cm directly onto the scalp. A total
of 2–4 weight drops are induced, with a 45-minute
recovery period in between. EEG electrode implants
can be placed via stereotaxic surgery either on the
same day or the next day.
The rTBI model is characterized by a lack of focal

lesion to the brain, loss of consciousness, high surviv-
ability, and late seizure onset (Shandra and Robel,
2020). Progressive tauopathy has also been observed
in both experimental rTBI models and after repeated
sports-related injuries (McKee et al., 2009; Tagge
et al., 2018). Contrary to FPI or CCI models, the rTBI
model does not require a scalp or cranial opening,
reducing the risk of increased inflammation or
infection.

H. Large Animal Models of Post-Traumatic Epi-
lespy. Large animal species, such as pigs, are used
in translational research because of their gyrence-
phalic neuroanatomy and significant white matter
composition. However, one limitation of using these
animals is that the laminar structure of the pig hippo-
campus has not been well characterized compared
with that of a rat or mouse. Nevertheless, the Wolf
group has described a porcine model of brain injury-
related hyperexcitability and PTE and has been work-
ing toward elucidating the structure and characteri-
zation of the pig hippocampus (Ulyanova et al., 2018).
In the pig model of TBI, the primary neuropatho-

logical finding is diffuse axonal injury; however, hip-
pocampal axonal and synaptic dysfunction as well as
regional hyperexcitability have been observed, sug-
gesting this model can be adapted for PTE (Meaney
et al., 1995; Johnson et al., 2016; Wolf et al., 2017).
Closed-head rotation induces a diffuse brain injury
using a HYGE pneumatic actuator at controlled rota-
tional acceleration levels to obtain the intended injury
severity (Cullen et al., 2016). Briefly, the animal’s
head is secured to a custom large-animal stereotaxic
rig equipped with a padded snout clamp. The HYGE
pneumatic actuator is mounted to the surgical rig
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using a custom linkage assembly that converts the
linear motion to an angular motion. Rapid head rota-
tion is performed within the coronal plane at veloci-
ties between 131 and 195 radians/s. Pathologies
observed in the pig model of TBI include axonal shear-
ing, tau accumulation, inflammation, and increased net-
work excitability in the hippocampus (Smith et al.,
1999; Johnson et al., 2016; Wolf et al., 2017; Grovola
et al., 2020). Furthermore, motor and cognitive dysfunc-
tion has been documented in pigs after TBI (Friess
et al., 2007).
A major downfall of larger animal models is the

additional resources and time required to perform the
appropriate surgical procedures and care. Therefore,
pig studies have been inconsistently used due to their
difficulty to implement and increased cost. Further-
more, induction of TBI in cats and dogs have been
established but have not been widely used for study-
ing PTE (Morganti-Kossmann et al., 2010). More
recently, however, naturally occurring canine epilepsy
has been proposed as a translational platform for
novel therapeutics for epilepsy disorders (Davis et al.,
2011). The prevalence and pathology of naturally
occurring canine epilepsy are similar to the human
condition (L€oscher et al., 1985). In a study evaluating
risk of seizures in dogs after head injury, patient
records from 1343 diverse breeds were reviewed for
previous head injury and recurrent seizures (Stein-
metz et al., 2013). Of the 236 dogs with previous
head injury, 18.6% exhibited early and/or late post-
traumatic seizures. Observed seizure types included
convulsive status epilepticus, partial and general-
ized tonic-clonic seizures, and cluster seizures.
Although these data seem promising, the study has
a few shortcomings, including difficulty obtaining
enough questionnaires or telephone interviews to
obtain statistical power. Retrospective studies such
as these are not as feasible for the testing of thera-
peutic interventions.
The broad etiology after TBI presents a challenge

for a singular paradigm to re-create all pathologies
associated with PTE. The most common causes of
human brain injury are car accidents, falls, recrea-
tional or sports injuries, and military incidents—all of
which present differently within the clinic. Further-
more, acceleration-deceleration injuries differ from
blunt force closed-head injuries or penetrating trauma
in tearing, scar formation, and contusion (Dixon,
2017). Desirable features in animal models include a
high frequency of epilepsy with an absence of extreme
seizure clustering, low intersubject variability in sei-
zure presentation, and a rapid and defined evolution of
epileptogenesis. Ideally, this model would also be high
throughput and low cost. Although the current animal
models of PTE have provided much needed insight, no
current model can fully recapitulate the full experience

of human TBI. Therefore, it is important to understand
the strengths and shortcomings of each model to deter-
mine which has the optimum conditions to evaluate
specific research questions.

I. Translational Relevancy of Animal Models for Post-
Traumatic Epilepsy. There has been much debate
about the translational relevancy of animal models to
the human condition for brain trauma research. As
outlined above, numerous animal models have been
developed to replicate various aspects of TBI and
used for testing potential treatments. Although larger
animals are closer in size and physiology to humans,
rodents, such as rats and mice, are most commonly
used in PTE research due to convenience research
operations. The most widely used models include the
CCI model, the FPI model, the weight drop-impact
model, and the blast injury model. However, these
models show intense negative effects, such as skull
fracture, intracerebral hemorrhage, axonal injury,
neuronal cell, and tissue death. Figure 1 outlines
important considerations of translational relevancy
between using small rodents to model the human con-
dition. Like poststatus epilepticus models (Reddy and
Kuruba, 2013), small animal models are most fre-
quently used in preclinical post-TBI studies, with the
aim to improve and develop better understanding of
the recovery mechanisms and discover new bio-
markers or clinical therapeutics. However, there are
differences between small animals and humans as
well as limitations to consider. Humans have 23 pairs
of chromosomes, whereas rats and mice have 21 and
20, respectively. Although the known human genes
associated with disease pathologies have correspond-
ing orthologs in the rat and mice genome, their rates
of synonymous substitution are different in the
remaining genes. Furthermore, there are many differ-
ences in brain anatomy and complexity between small
animals and humans. There are also some analogies,
i.e., cerebrovascular parameters (Cernak, 2006), but
the ratio of white:gray matter differs tremendously,
making interpretation of behavioral alterations more
challenging (Cordeiro and Horn, 2015). Furthermore,
human TBI tends to be much more heterogenous in
both injury location and cause (e.g., fall, car accident,
sports injury, military events, etc.) than controlled
laboratory experiments. However, there are many
well-established neurologic and functional tests that
can identify sensitive changes in recovery, cognition,
or psychiatric function. These functional assessments
are critical in comparing injury severity and outcomes
not only between cohorts, but also other laboratory
groups, similar to how the Glasgow coma scale is the
gold standard for identifying injury severity upon
clinic arrival. We discuss some of these neurologic
and functional assessments in detail in section V of
this manuscript, “Comorbidities of PTE.”
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TBI is also associated with greater risk and fre-
quency of neurodegenerative diseases, such as Alz-
heimer’s disease, but also enhanced risk of epileptic
seizures. Temporally, seizures after brain injury have
been categorized into immediate, early, and late seiz-
ures. Due to anesthesia protocols and difficulty in
recording EEG directly after impact, immediate seiz-
ures in rodents are rarely identified; however, studies
have reported early and late seizures after FPI or CCI-
induced trauma (see sections II and VI). Animal models
allow for experimental strategies in determining cellu-
lar and molecular interactions within the latency period
and epileptic onset, thus provide a reasonable platform
to develop new therapeutic interventions for PTE.
As trauma is frequently associated with damage of

skin and soft tissues, differences of wound healing
between rodents and humans should also be consid-
ered. The epidermis and dermis of small animals is
thinner than in humans, which creates a challenge
for wound suturing. However, wound clips provide a

suitable alternative to classic suturing techniques,
which is both time and cost effective. Moreover, rats
and mice are at a lower risk for infection compared
with humans due to faster wound healing processes
and their ability to convert L-gluconogammalactone
to vitamin C (Abdullahi et al., 2014).
TBI-induced coagulopathy manifests as dissemi-

nated intracranial hemorrhage, systemic bleeding, or
intracerebral hematoma and is closely correlated to
poor clinical outcomes and early onset seizures
(Abdelmalik et al., 2016). An animal model using
Sprague Dawley rats mimics this specific clinical sce-
nario, and the study completed by Gangloff et al.
(2018) suggests great similarity to human acute trau-
matic coagulopathy in terms of temporality, type of
injury, compensatory mechanisms, and impairments
in the coagulation systems. However, quantitative
results in blood coagulation are not entirely transfer-
able due to species-specific differences in clotting fac-
tors in the serum, such as coagulation factors (F)V,

Fig. 1. Translational relevance of rodent to human TBI. Despite significant investment in advancing technology and basic science to increase knowl-
edge of human TBI pathology, translation from bench-to-bedside into therapeutic advances has been slower than expected. One of the factors limiting
the translation of scientific knowledge from preclinical studies into the clinic is the limitation of small rodent in vivo disease models. Although these
models have been developed to simulate and mimic the human condition, there are innate differences between rodents and humans, which can limit
the impact of these studies. Likewise, there are many important similarities as well as practical hints that can be used to overcome these limitations.
This figure discusses important considerations of rodent to human translational relevance.
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FII, FXII, and FXIII, which were all elevated in rats
compared with healthy human donors (Karges et al.,
1994). Additionally, coagulation factors FVIII, XI, X,
and XI were all reduced in rats when compared with
pooled human plasma. Other studies have identified
decreased platelet count and reduced responsiveness
to thrombin in small animals compared with humans
(Derian et al., 1995). These factors may affect identi-
fication of biomarkers for TBI-induced pathologies.
Another caveat of rodent models is that animals

are anesthetized at the time of injury, in comparison
with humans, who are typically awake upon injury
impact. Ethical reasons prevent a study in which the
injury is given without anesthesia, and therefore the
impact of anesthesia at time of injury on subsequent
neuropathology and behavioral manifestations is
unknown. Perhaps future studies can be designed to
administer the trauma event in an unanesthetized
animal to truly understand the impact of TBI, but
this requires working with Animal Care and Use
Committees locally or nationally. When planning and
performing trauma-related experiments, the “3 R’s”
of Reduction, Replacement, and Refinement, pub-
lished by Russell and Burch in 1959, should always
be considered and reflect both the complex patho-
physiology and the immunologic alterations induced
by the trauma event. Although there appear to be
several differences between humans and small ani-
mals, there are also many processes in basic trauma
and regeneration that have been conserved, making
these models suitable for translational research.

III. Neuropathological Mechanisms of Post-
Traumatic Epilepsy

TBI sets into motion a multifaceted cascade of tem-
porally overlapping cellular and molecular events,
ultimately leading to PTE. Primary injury refers
to the immediate trauma and tissue deformation
that occurs within seconds to minutes after insult.
Within this timeline, a flood of neurotransmitters is
released, followed by ion channel activation and
calcium influx. Immediate and early seizures are
thought to occur as a direct result of the excitotoxic
environment, mitochondrial damage, inflammation,
and tissue injury. Although these seizures are not
considered to be “epileptic,” they can exacerbate
initial damage (Temkin, 2009). Secondary injury
involves several physiologic mechanisms associated
with progressive damage (Pitkanen et al., 2002).
Chronic activation of inflammatory cascades, oxida-
tive stress, and edema causes buildup of free radicals
and reactive oxygen species. These factors become
compounded by neurodegeneration, mitochondrial
dysfunction, and the extended disruption of homeo-
stasis. Furthermore, self-repair mechanisms occur
concurrently and include plastic processes, such as

structural axonal remodeling, neurogenesis, gliosis,
and angiogenesis (Lucke-Wold et al., 2015).
Classically, epileptogenesis is defined as the period

of time in which a normal brain is functionally
altered, resulting in increased seizure susceptibility
and risk of SRS. Within the framework of acquired
epilepsy, researchers relied on the context of a “latent
period” in which an epileptogenic insult (mechanical,
chemical, or otherwise) triggered a series of changes
and ultimately ended with occurrence of seizure out-
put. However, certain processes, such as molecular
and cellular plasticity, inflammatory cascades, and
neurodegeneration, can continue indefinitely beyond
the occurrence of the first seizure (Pitkanen et al.,
2002; Dudek and Staley, 2012). Recently, the Interna-
tional League Against Epilepsy revised the definition
of epileptogenesis to include disease modification and
the concept of continuous epilepsy progression. Thus,
the term “disease modification” has two main compo-
nents: (i) alleviation or prevention of seizure develop-
ment, termed “antiepileptogenesis,” and (ii) modification
of PTE-associated comorbidities. In this next section, we
discuss some of the major mechanisms associated with
the progression of epileptogenesis, including changes in
neuroinflammation, blood-brain barrier (BBB) break-
down, alteration of the epigenetic landscape, and reorga-
nization of neural circuitry (Fig. 2).

A. Neuroinflammation. Local inflammation is
intended as a beneficial protective measure after tis-
sue insult; however, aberrant inflammatory responses
can alter neuronal function and lead to serious conse-
quences, such as BBB disruption and seizure develop-
ment (Vezzani et al., 2013). Activated microglia and
astrocytes play a large role in inflammation by releas-
ing proinflammatory cytokines into the neuronal envi-
ronment and promoting scar formation around tissue
injury. Cytokine cascades in the brain regulate impor-
tant pathways, such as neuroendocrine function, syn-
aptic plasticity, metabolism of neurotransmitters,
neurogenesis, and the kynurenine pathway (Paudel
et al., 2018). These innate processes play significant
roles in cell excitability and survival, thereby promot-
ing network hyperexcitability. In particular, the inter-
leukin (IL)-1/toll-like receptor (TLR) signaling
pathway is disrupted and the associated receptors IL-
1R1, TLR2, TLR3, and TLR4 are rapidly upregulated
after both cell injury and seizures (Ravizza and Vez-
zani, 2006). The excitatory effects of IL-1b have been
reported in several brain regions (Vezzani et al., 2011).
IL-1b reduces GABA inhibition within the Cornu
Ammonis area 3 (CA3) of the hippocampus and
increases neuronal excitability in the CA1 by reducing
N-methyl D-aspartate (NMDA) and voltage-gated cal-
cium channel efflux (Zhang et al., 2010). Furthermore,
lipopolysaccharide-induced inflammation is associated
with reduction in seizure threshold in both postnatal
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and adult rodent models (Galic et al., 2009). This effect
on seizure threshold can be reversed by blocking cyto-
kine induction in activated microglia (Galic et al.,
2009).
Induction of cyclooxygenase-2 (COX-2) has also been

shown to promote epileptogenesis and contribute to
neuronal damage in several animal models of epilepsy
(Kulkarni and Dhir, 2009). Overexpression of COX-2
intensifies kainic-acid–induced seizures and mortality
in mice (Kelley et al., 1999). Wei et al. (2018) confirmed
COX-2 mRNA expression was significantly elevated
after maximal electroshock. Although the modulation of
the COX-2/prostaglandin E2 (PGE2) pathway has been

pursued as an alternative therapeutic strategy for con-
trolling seizures, careful study of COX-2 inhibitors
could not fully prevent the appearance and develop-
ment of spontaneous seizures in a rat model of status
epilepticus (Holtman et al., 2010). Furthermore, inhibi-
tion of COX-2 has been found to either exacerbate or
attenuate epilepsy-induced neurodegeneration, depend-
ing on the strategies used to interfere with the COX-2
pathway (Baik et al., 1999; Polascheck et al., 2010).
These data highlight the ways in which the COX-2
pathway affects epileptogenesis, but mediation of this
pathway alone is not sufficient for preventing seizure
development.

Fig. 2. Acute pathologies of post-traumatic epileptogenesis. Brain injury triggers several acute pathologies. Direct insult compromises the blood-brain
barrier, allowing infiltration of peripherally circulating immune cells, such as leukocytes, macrophages, and neutrophils. NF-jB translocates to the
nuclei of microglia, transforming them to an activated phenotype. This induces cellular proliferation and the release of inflammatory amplifiers, such
as chemokines, cytokines, reactive oxygen species (ROS), and nitric oxide synthase (NOS). Macrophages participate in the cleanup of damaged cells
and debris, but based on their functional activation state, may either exacerbate damage or initiate repair mechanisms. Lactate release from astro-
cytes contributes to water retention and edema. Excess iron from a leaky BBB can contribute to hyperexcitability. Excessive accumulation of glutamate
and aspartate neurotransmitters due to spillage from damaged neurons or impaired reuptake by astrocytes activates NMDA and AMPA receptors
located on postsynaptic membranes, allowing for influx of calcium ions. Together with the release of Ca21 stores from the endoplasmic reticulum,
increases in Ca21 leads to production of ROS and activation of calpains. Damaged or dysfunctional mitochondria create a deficit of available ATP, lead-
ing to Na1/K1 pump failure, activation of Ca21 channels, and further production of ROS/NOS. Cytochrome C released into the cytosol activates cell
death pathways via caspase proteins. Epigenetic modifications, in the form of increased HDAC activity and altered DNA/histone methylation, changes
transcriptionally active sites, including many genes associated with hyperexcitability and serotonin-to-melatonin conversion. Furthermore, DNA dam-
age leads to apoptosis and cell loss. Progressive axonal damage and tau tangles lead to impaired axonal transport and results in both neurodegenera-
tion and hyperexcitability. Together, these acute pathologies are both adaptive and maladaptive. The former contributes to functional and beneficial
recovery, whereas the latter exacerbates epileptogenesis and the progression of abnormal electrographic activity.
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An important consideration of inflammation in PTE
is its contribution to progressive cell loss after injury.
Free radicals and proteases accumulate during peri-
ods of inflammation, supporting lipid and protein per-
oxidation, DNA damage, mitochondrial dysfunction,
and induction of apoptosis (Vezzani et al., 2013). Tis-
sue damage, stress, and their subsequent cytokine
release also adversely interfere with neurogenesis
and neuroplasticity through their interactions with
brain-derived neurotrophic factor (BDNF) and tropo-
myosin receptor kinase B (TrkB) receptor signaling
(Goshen and Yirmiya, 2007; Ibrahim et al., 2016;
Reddy et al., 2020). In a healthy brain, BDNF plays a
crucial role in neuron maturation by regulating chlo-
ride levels and modifying inhibitory GABAergic sig-
naling from depolarizing to hyperpolarizing (Rivera
et al., 2002). However, within the context of injury,
the upregulation of BDNF and its receptor TrkB are
believed to promote aberrant mossy fiber sprouting
(Dinocourt et al., 2006). Furthermore, brain injury
causes a selective cluster of differentiation-74 (CD74)-
dependent peripheral lymphocyte activation that may
exacerbate neurodegeneration (Tobin et al., 2014).
Prolonged neuroinflammation also greatly affects

quality of life and complicates comorbidities, giving
cause for identifying therapeutics that explore the
mechanistic association between PTE and neurobe-
havior dysfunction (Paudel et al., 2018). interferon-a
can decrease BDNF levels, thereby slowing the rate of
cell proliferation in the hippocampus and negatively
affecting learning and memory consolidation (Lotrich
et al., 2013). Additionally, increased cytokine produc-
tion causes an imbalance of neurotransmitters, such
as serotonin and dopamine, by deregulating the
kynurenine pathway and disrupting neurotransmitter
transport function (De la Garza and Asnis, 2003).
Meta-analyses of existing research have concluded
the most reliable biomarkers of inflammation in
patients with depression are heightened levels of IL-
6, tumor necrosis factor (TNF)-a, IL-1b, and C-reac-
tive protein—all of which are significantly increased
with TBI (Miller et al., 2009). Together, these inflam-
matory processes work in concert to promote depres-
sion, anxiety, cognitive impairment, and disturb sleep
(Dantzer et al., 2008; Mukherjee et al., 2020).

B. Breakdown of the Blood-Brain Barrier. The
blood-brain barrier (BBB) is a particularly important
structure for central nervous system (CNS) homeostasis.
There is increasing evidence demonstrating the BBB as
a multifactorial pathophysiologic process involving
faulty angiogenesis, neuroinflammation, altered glial
physiology, leukocyte-endothelial interactions, and
hemodynamic changes resulting in hyperexcitability
(Marchi et al., 2012). Epilepsy disorders and TBI
manifest with variable extent of BBB dysfunction;
however, the link between BBB permeability and

seizures has been posed as “the puzzle of the chicken
and the egg” (Friedman, 2011). Acute vascular fail-
ure with BBB damage is sufficient to cause seizures
in the absence of CNS pathologies or concomitant
chemical convulsants (Marchi et al., 2007). Addition-
ally, focal chronic seizures are frequent in patients
with vascular malformations, such as cavernous
angiomas (Kraemer and Awad, 1994). Magnetic reso-
nance images of cavernous angiomas often present
with BBB dysfunction, intracerebral deposits of iron,
and albumin accumulation—all three of these factors
have been identified as common features of TBI and
temporal lobe epilepsy (van Vliet et al., 2007; Raabe
et al., 2012).
BBB damage has been demonstrated to both trigger

and sustain seizures in animal models and the human
experience (Marchi et al., 2007; van Vliet et al., 2007;
Raabe et al., 2012). Tomkins et al. (2008) observed
greater association of BBB pathology in patients with
PTE compared to patients with seizure-free TBI, sug-
gesting a correlation between BBB breakdown and
hyperexcitability. Areas of BBB disruption were linked
to decreased brain glucose uptake, hypometabolism,
and abnormal neuronal activity. After exposure of the
cerebral cortex in rats, hypersynchronous epileptiform
activity involving glutamatergic and GABAergic neuro-
transmission as well as significant endothelial tight
junction impairment was observed (Seiffert et al.,
2004). Accumulated albumin within the parenchyma is
associated with downregulation of inward-rectifying
potassium channels in astrocytes, affecting buffering
capacity and contributing to hyperexcitability (Ivens
et al., 2007). Moreover, loss of aquaporins expressed in
the end feet of astrocytes affects water flux and potas-
sium regulation, further disrupting the homeostatic
environment of the brain (Binder and Steinhauser,
2006). Additionally, BBB damage could allow circulat-
ing levels of zinc to gain entry into the brain with
devastating consequences, including excessive hyper-
excitability and seizures (Carver et al., 2016; Chuang
and Reddy, 2019). Zinc is an important neuromodula-
tor, and its ability to persistently block extrasynaptic
GABA-A receptors in the brain have dramatic conse-
quences on epileptogenesis.
Neuroinflammation also plays a critical role in BBB

permeability. Elevated levels of IL-1b, IL-6, and TNF-a
can increase the permeability of the BBB and facilitate
the movement of peripherally located cytokines into
the CNS. These cytokines bind to receptors in the
brain vasculature, producing secondary messengers
and toxic by-products that further compromise its
integrity (Fabene et al., 2010; Yarlagadda et al., 2009).
Furthermore, these factors can trigger the activation
of astrocytes and resident microglia, contributing to
their dysfunction of neurotransmitter clearance and
subsequent secretion of immunoregulatory markers.
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Systemic injection of lipopolysaccharide has been
shown to lower seizure threshold to pentylenetetrazol,
suggesting peripheral inflammation leads to a leaky
BBB and possible infiltration of peripherally circulat-
ing leukocytes (Marchi et al., 2012). BBB dysfunction
represents a convergence of pathogenic aspects that
often create positive-feedback loops for further exacer-
bation of inflammation, functional impairment, and
BBB permeability. For full review on how the break-
down of BBB affects PTE development, see Dadas and
Janigro, 2019.

C. Epigenetic Modifications. Epigenetics refers to
the plastic changes in gene expression that occur
without alteration of the DNA sequence itself. Under
normal conditions, epigenetic modifications are essen-
tial for growth, development, learning and memory,
and the immune response (Hwang et al., 2017). Epi-
genetic modifications, such as DNA/Histone methyla-
tion, acetylation, and phosphorylation etc., have been
implicated in a vast number of diseases, most notably
cancer (Weber, 2010). Evidence suggests that epigenetic
regulation of gene expression may play a critical role in
the physiology of both epilepsy and TBI (Younus and
Reddy, 2017; Nagalakshmi et al., 2018). Reddy et al.
(2018a) demonstrated the histone deacetylase (HDAC)
inhibitor, sodium butyrate, significantly slowed the kin-
dling process in a mouse model of temporal lobe epi-
lepsy when administered prior to electrical stimulation.
This study suggests HDAC inhibitor compounds may
possess antiseizure effects with an ability to curtail the
process of epileptogenesis. Moreover, valproate has
been administered as an antiseizure medication for dec-
ades, although its inhibitory effect on HDACs was
unknown until 2001 (G€ottlicher et al., 2001).
Histone modification is perhaps the most widely

studied epigenetic modification in both epilepsy and
TBI. Reduced H4 acetylation has been observed after
pilocarpine administration at GluR/Gria2 promoter
loci, a region that encodes for AMPA receptor subunits
and limits calcium permeability (Huang et al., 2002).
Downregulation of GluR/Gria2 is associated with
hyperexcitability and initiating epileptogenesis. The
same study also noted H4 acetylation at the BDNF
promoter, increasing after seizure activity. H3 phos-
phorylation is thought to promote acetylation of his-
tone proteins, and multiple studies have found striking
evidence of H3 phosphorylation after pilocarpine and
kainic-acid induced seizures (Crosio et al., 2003; Sng
et al., 2006). Furthermore, hyperactivity of HDAC pro-
teins occurs at early timepoints after lateral FPI
(Zhang et al., 2008). This increased H3/H4 acetylation
can be found throughout the hippocampus but is par-
ticularly visible in the CA3 (Gao et al., 2006).
Increased HDAC activity leads to seizure susceptibility
and post-traumatic epilepsy in both experimental

models and in the clinical setting (Huang et al., 2012;
Dash et al., 2009).
Changes in cell-specific global DNA/histone methyl-

ation have been shown to persist for up to 8 months
post-TBI (Haghighi et al., 2015). Many of the affected
genes have been associated with hyperexcitability,
disruption of the sleep cycle, and neuropsychiatric
disorders, such as Nos1, Il1r1, Homer1, Per3, and the
Aanat gene, which encodes the enzyme responsible
for catalyzing the serotonin to melatonin conversion
(Haghighi et al., 2015). DNA methylation also plays a
role in the inflammatory response to injury. Within 24
hours post-TBI, hypomethylation of microglia pro-
motes active gene transcription in areas of wide-
spread necrosis (Zhang et al., 2007). Furthermore, a
study of patients with intractable temporal lobe epi-
lepsy found expression of Dnmt1 and Dnmt3a were
significantly higher in epileptic versus healthy con-
trols, suggesting aberrant DNA methyltransferases
may contribute to the pathogenesis of seizures (Zhu
et al., 2012). DNA methyltransferase inhibitors have
shown some promise for suppressing neuronal excit-
ability in hippocampal neurons (Nelson et al., 2008;
Levenson et al., 2006).

D. Reorganization of Neural Circuitry. The culmi-
nation of neuroinflammatory cascades, weakened
BBB integrity, and epigenetic modification leads to
consequent reorganization of neural circuitry through
progressive cell loss, aberrant axonal sprouting, and
neurogenesis. Several experimental models have
highlighted the loss of inhibitory interneurons cou-
pled with recurrent excitatory circuits as a basis for
hypersynchronous epileptiform activity (Dudek and
Spitz, 1997; McCormick and Contreras, 2001; Golub
and Reddy, 2022). The hippocampus is a model sys-
tem to study circuitry changes since it is particularly
susceptible to injury and undergoes structural reorga-
nization after TBI and in epilepsy disorders (Khara-
tishvili et al., 2006; Hunt et al., 2009;).
GABAA receptors are responsible for the majority of

inhibitory signaling in the brain. GABAergic inter-
neurons form robust local synaptic connections with
excitatory principal cells to control activity in two pri-
mary ways: phasic (synaptic) and tonic (extrasynap-
tic) inhibition (Farrant and Nusser, 2005; Chuang
and Reddy, 2018). Phasic inhibition refers to the rapid
transmission of information and activation of recep-
tors at the synaptic junction after exposure to high
concentrations of GABA released from presynaptic
vesicles. Tonic inhibition, on the other hand, is medi-
ated by extrasynaptic GABAA receptors, persistently
activated by low concentrations of ambient GABA. A
common histopathologic feature of PTE is the drastic
loss of inhibitory interneurons in the dentate gyrus
and hilar regions (Lowenstein et al., 1992). Loss of
these cells is correlated to an increase in tonic current
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amplitude in the dentate gyrus contralateral to TBI
(Mtchedlishvili et al., 2010). Additional studies have
reported changes in the subunit configuration of
GABAA receptors after CCI injury, which may also
affect inhibitory control (Gupta et al., 2012; Raible
et al., 2012).
Neurodegeneration after TBI affects both principal

neurons and interneurons, although it was unclear
whether one population is preferentially lost. Carron
et al. (2020) examined how TBI affects different
populations of interneurons, observing heterogenous
changes of calbindin, parvalbumin, calretinin, neuro-
peptide Y, and somatostatin expressing interneurons in
the hippocampus. Their findings suggest a differential
vulnerability of interneurons across various brain
regions and function after TBI. In a recent study, we
performed a time-course of unbiased stereological quan-
tification in the hippocampus contralateral to CCI at
days 1, 3, 7, 30, 60, and 120. Populations of principal
neurons and inhibitory PV1 GABAergic interneurons
had decreased by roughly 30% and 45%, respectively,
at 4 months postinjury; however, the degeneration in
interneurons was accelerated to that of excitatory cells.
Furthermore, the steep decline in interneurons coin-
cided with the onset of spontaneous seizures (Golub
and Reddy, 2022). Figure 3 highlights the linear regres-
sions of cell loss during epileptogenesis and their tem-
poral association to seizure onset. Our data agree with
a previous study by the Hunt group that found a dra-
matic shift of interneuron diversity and loss after contu-
sion injury (Frankowski et al., 2019). As previous
studies have pointed to, the dentate gyrus and hilar

regions showed the greatest loss of inhibitory interneur-
ons (Hunt et al., 2011; Gupta et al., 2012). Loss of cells,
whether excitatory or inhibitory, forces reorganization
of these neural circuits, contributing the ongoing
pathology of epileptogenesis. Restoration of the excit-
atory and inhibitory balance may be possible with
transplantation of neuronal stem cells (Ngwenya et al.,
2018). These animals also exhibited improved recovery
and novel object recognition compared with nontrans-
plant FPI animals.
Excitatory dentate granule cells are not typically

connected to each other. However, several laboratories
have demonstrated the reactive plasticity of these cir-
cuits in TBI and epilepsy models (Kharatishvili et al.,
2006; Hunt et al., 2009; 2010; Bolkvadze and
Pitk€anen, 2012). Aberrant mossy fiber sprouting
refers to the germination of axon collaterals from den-
tate granule cells into the inner molecular layer,
forming functionally recurrent excitatory circuits.
These local circuit changes are easy to detect with
Timm’s immunohistochemistry and have been consistently
reproduced in human and rodent tissues (Sutula et al.,
1989; Hunt et al., 2010). Mossy fiber sprouting is generally
more robust after severe versus mild TBI, suggesting
degree of sprouting is correlated to both severity of injury
and seizure risk (Hunt et al., 2012). Sprouting is most
often noted in the hippocampus ipsilateral to TBI; how-
ever, damage is not constrained to the injured hemisphere
and may influence circuitry reorganization with increased
mossy fiber density (Pischiutta et al., 2018). Aberrant
sprouting may provide a means for regional network

Fig. 3. Relationship of long-term neurodegeneration and spontaneous seizures. TBI induces a state of immediate inflammation and hyperexcitation in the
brain, which exacerbate cell loss both ipsilateral and contralateral to the lesion. PTE was induced via a severe 2.0 mm depth CCI model of TBI. After injury,
mice were tethered to 24/7-videoEEG for up to 4 months and seizures were identified by a customized MATLAB script and validated by unbiased research-
ers. Stereological quantification of two cell populations in the contralateral hippocampus was performed at days 1, 3, 7, 30, 60, and 120 post-TBI in subsets of
these recordedmice. (A) Linear fit of remaining NeuN1 principal neurons overlayed the linear regression of average seizure output from responding mice to
highlight the temporal relationship between cell loss and seizure occurrence. (B) Linear fit of remaining PV1 GABAergic interneurons overlayed the linear
regression of average seizure output from respondingmice to highlight the temporal relationship between cell loss and seizure occurrence.
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synchronization, which is particularly vulnerable if basal
inhibition is lost or impaired by cell loss or dysfunction.
Neural precursors proliferate in areas both proxi-

mal and distal to TBI impact. Much of this prolifera-
tion makes up the astrogliotic scar that forms around
the injury site (Kernie et al., 2001). Changes in the
rate of neurogenesis have also been found after TBI,
and ectopic migration of these newborn cells may
affect the excitability of the neural circuitry. TBI-
induced newborn cells have increased dendritic
branching proximal to the soma and wider dendritic
reach that persists through cell maturity (Villasana
et al., 2015). Neurogenesis has been a point of contro-
versy in epileptogenesis, with some reports suggest-
ing increased cell proliferation after TBI (Dash et al.,
2001; Gao et al., 2009), whereas others observe
reduced neurogenesis (Rola et al., 2006). However,
differences in the rate of neurogenesis may be in part
due to proximity to injury, timepoint of tissue sam-
pling after TBI, or even the possibility of selective
death of vulnerable newborn cells (Gao et al., 2008).
Yu et al. (2008) observed both upregulation of type-1
quiescent progenitor cell activation in the injured hip-
pocampus as well as progressive elimination of type-2
doublecortin-expressing progenitors. At the same
time, the contralateral hippocampus also saw upregu-
lation of type-1 progenitors, suggesting TBI may dif-
ferentially impact damage versus compensatory
signaling. Furthermore, severity of injury affects neu-
rogenesis at different stages (Wang et al., 2016a).
Regardless of location, severity, or timing after injury,
fluctuation of cells born into the hilar and molecular
layers of the dentate gyrus have been suggested to
play a role in epileptogenesis (Danzer, 2019). Villasana
et al. (2015) found TBI-induced newborn granule cells
receive a normal balance of excitatory and inhibitory
inputs and are involved in information processing, but
suggested TBI-induced anatomic changes and den-
dritic projection patterns may be the root cause of mal-
adaptive neurogenesis network properties. Insulinlike
growth factor-1 overexpression has been found to
increase the survival of newly born granule cells while
inhibiting ectopic migration, the main implication of
neurogenesis-associated circuitry changes (Carlson
et al., 2014; Littlejohn et al., 2020). Therefore, condi-
tional expression of astrocytic IGF-1 may be beneficial
in reducing reactivity of astrocytes and preserving cog-
nition after TBI.

E. Mammalian Target of Rapamycin Pathway Hyper-
activity. The mammalian target of rapamycin (mTOR)
pathway regulates several physiologic functions, and, in
the brain, it is involved in cell proliferation and survival,
neuronal morphology, and protein synthesis (Bockaert
and Marin, 2015). Dysregulation of this pathway has
been implicated in several brain disorders, including
tuberous sclerosis complex, ganglioglioma, and focal

cortical dysplasia—all of which may potentially or cer-
tainly lead to epilepsy (Liu et al., 2014a). Moreover, a
role of mTOR signaling has been identified in brain
trauma, although it is shrouded in controversy (Chen
et al., 2007a). Some studies suggest the inhibition of
mTOR, via administration of the mTOR inhibitor rapa-
mycin, prevents neuronal injury and cell death after TBI
(Erlich et al., 2007; Nikolaeva et al., 2016), whereas
others suggest increasing mTOR signaling promotes
greater recovery of function and regeneration, and this
transient increase in mTOR signaling after TBI may be
critical in stimulating neural stem cell proliferation
(Wang et al., 2016b).
Hyperactivation of mTOR seems to play a critical

role in the pathogenesis of acquired epilepsy, such as
PTE, and rapamycin administration has prevented
epileptogenic mechanisms and reduced seizure bur-
den in certain models. In a rat hippocampal organo-
typic slice culture model of PTE, inhibition of Akt,
PI3K, or mTOR reduced both ictal activity and cell
death (Berdichevsky et al., 2013). In the clinical set-
ting, rapamycin and its derivatives have been tested
mainly on severe, refractory epilepsy disorders, such
as tuberous sclerosis complex. Rapamycin and everoli-
mus treatments improved seizure control in phase I/II
studies (Krueger et al., 2013), and, in some cases,
patients experienced complete cessation from previ-
ously intractable seizures (Perek-Polnik et al., 2012).
The mechanisms by which mTOR inhibition reduces
seizure activity in experimental models is still largely
unclear but seems to point toward neurocircuitry reor-
ganization. Inactivation of phosphatase and tensin
homolog induces aberrant mossy fiber sprouting in ani-
mal and human hippocampal granule cells. Sutula and
Dudek demonstrated that phosphatase and tensin
homolog deletion was sufficient to trigger spontaneous
seizures and that mTOR hyperactivation played a cen-
tral role in this process (Sutula and Dudek, 2007). Fur-
thermore, rapamycin inhibition of mTOR signaling
reduces abnormal axonal sprouting and other patholo-
gies associated with epileptogenesis, including neuronal
excitability (Zeng et al., 2009). Although these data are
positive, other studies have found rapamycin treatment
reduces mossy fiber sprouting but has little effect on
decreasing seizure frequency or duration (Buckmaster
et al., 2009). Inhibitors of mTOR possess low efficacy in
halting seizures within the preclinical models since
multiple days of treatment are needed to achieve an
antiseizure impact and beneficial effects typically cease
after drug discontinuation.
When considering the mechanisms of epileptogene-

sis for prophylactic approaches, it is important to con-
sider that both adaptive and maladaptive processes
are activated by brain injury. The former can contrib-
ute to functional and beneficial recovery, whereas the
latter may contribute to epileptogenesis. Questions
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emerge to determine whether these processes are sep-
arate or concurrent, if they are distinctly different
forms of plasticity involved in either functional recov-
ery or epileptogenesis, and if these processes are not
distinct, do they differ quantitatively in their timing
or intensity? Preventative or curative treatments may
interfere with both epileptogenesis and development
of comorbidities. It is likely that multiple agents will
be needed to provide full spectrum symptomatic relief
to patients. The answers to these questions are criti-
cal to pharmacological progress in epilepsy and head
trauma.

IV. Emerging Biomarkers of Post-Traumatic
Epilepsy

In 2015, the U.S. Food and Drug Administration
(FDA) developed the Biomarkers, EndpointS, and other
Tools effort to promote consistent use of biomarker
terms and concepts. The use of the Biomarkers, End-
pointS, and other Tools resource has evolved the term
“biomarker” to be labeled as “a defined characteristic
that is measured as an indicator of normal biological
processes, pathogenic processes, or responses to an
exposure or intervention, including therapeutic inter-
ventions.” This definition includes characteristics such
as changes in a patient’s molecular, radiographic,
genetic, or genomic, electrographic, physiologic, and
histologic traits. Biomarkers are objectively measured
and quantifiable and should ideally be cost-effective
and noninvasive for both the patient and healthcare
provider. Furthermore, an effective biomarker should
have limited variability among the general population.
Within the context of disease or environmental expo-
sure, the presence of biomarkers can indicate change in
a biologic condition, predict risk or development of
comorbidities, and measure progression of a disease
state. In this section, we review the current state of
PTE biomarker discovery and use, both in the clinical
state as well as experimental animal model research.

A. Imaging Biomarkers. Imaging within the con-
text of TBI has thus far focused largely on primary
lesion formation and the evolution of gliosis; however,
imaging techniques have the potential to capture pro-
gression of pathologies of PTE. Neuroimaging bio-
markers are incredibly appealing not only due to their
noninvasive procedures but also because they are rou-
tinely performed as part of a patient’s routine medical
care. Furthermore, imaging can detect patterns across
specific structures or within the whole brain (Reddy
et al., 2019).
CT scans have been used for decades to assess

global structural damage after TBI (D’Alessandro
et al., 1988). Characterization of early CT scans
have identified an increased risk of PTE develop-
ment in patients with depressed skull fracture,
dural penetration, and intraparenchymal, subdural,

or epidural hemorrhage. Additionally, patients with
cortical/subcortical contusions or large lesions in
the temporal lobe have shown higher rates of PTE
incidence, regardless of injury severity (Englander
et al., 2003; Tubi et al., 2019).
Positron emission tomography (PET) allows research-

ers to visualize inflammatory responses and the
metabolic impact of neuronal injury after TBI. 18F-Flu-
orodeoxyglucose (FDG) is a radioactive tracer of cere-
bral metabolism often used in PET experiments.
Hypometabolism has been observed within the first 24
hours after kainic acid-induced status epilepticus, sug-
gesting abnormal metabolism may play a role in epilep-
togenesis (Jupp et al., 2012). Conversely, FDG-PET
scans of patients with severe TBI demonstrate hyper-
glycolysis occurs up to 2 weeks after initial damage
(Bergsneider et al., 1997). This increase in glucose con-
sumption may be due to the rise in inflammatory cell
populations surrounding the impact site.
Gliosis appears bright on T2-weighted MRI and fluid

attenuated inversion recovery techniques. Inflammation
and glial scarring are extremely common around the
impact site after TBI in both rodent models and in the
clinical setting (Dixon, 2017). Activation of astrocytes
and microglia through maladaptive inflammatory cas-
cades have been correlated to excitotoxicity, mitochon-
dria dysfunction, and cell loss—all of which have also
been indicated as epileptogenic factors (Alyu and Dik-
men, 2017; Shandra et al., 2019). Magnetic resonance
spectroscopy is also a useful tool for providing quantita-
tive data on altered metabolite profiles related to inflam-
mation and hyperexcitability. Reductions in glucose and
GABA neurotransmitter, as well as increased glutamate
have been observed after TBI using magnetic resonance
spectroscopy (Friedman et al., 1999). To further assess
metabolite profiles as a function of epileptogenesis, Fili-
bian et al. (2012) investigated glutathione levels, an
antioxidant produced by activated astrocytes, in rats
with pilocarpine-induced status epilepticus. Glutathione
was negatively correlated with seizure frequency, pro-
viding strong evidence of astrocytic involvement in sei-
zure generation.
MRI has excellent resolution and tissue classifica-

tion, using strong magnetic fields to form images of
the anatomic and physiologic processes of given
organs (Reddy et al., 2019). Structural MRI studies
have revealed minor, but significant, changes in the
ipsilateral hippocampus relative to baseline in rats
experiencing post-traumatic seizures versus nonepi-
leptic rats one week after lateral FPI (Shultz et al.,
2014). The same study boasted high predictability of
PTE incidence using a multivariate logistic regres-
sion model of serial FDG-PET parameters among all
injured and noninjured cohorts. Similarly, hyperex-
citability in the hippocampus has been correlated to
early 3-hour postinjury decreases and later 1- to 12-
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month postinjury increases in hippocampus diffusion
(Kharatishvili et al., 2007). Furthermore, mossy fiber
sprouting scores, which have been long considered a
hallmark of epilepsy, were correlated with diffusion
values after lateral FPI, providing greater evidence
that quantitative diffusion MRI is a potential tool for
facilitating the prediction of increased seizure risk
after TBI. In a follow-up study, the same group accu-
rately predicted seizure susceptibility to pentylenetet-
razol (PTZ)-administration using similar MRI diffusion
patterns, with the greatest accuracy to be found with a
combinational biomarker calculated from diffusion in
the ipsilateral somatosensory cortex and thalamic
regions at 2 months post-TBI (Immonen et al., 2013).
Functional MRI can be used to analyze connectivity,

plasticity, and remodeling within the brain after
injury. There is extensive reporting on functional
changes after TBI and clinical outcome, but studies
focusing on epileptogenesis and PTE are scarce and
inconsistent. Evidence of both hypoconnectivity and
hyperconnectivity have been observed in several net-
works after TBI, and these abnormalities have been
linked to changes in behavior, cognitive impairment,
and motor control (Hillary et al., 2011; Tang et al.,
2011; Stevens et al., 2012; Palacios et al., 2013). For
example, abnormal frontoparietal network connectiv-
ity after mild TBI affected performance in working
memory tasks, suggesting that interhemispheric con-
nectivity between left and right inferior frontal gyri
may contribute to learning and memory impairments
seen in the clinical setting (Kasahara et al., 2010). A
single experimental study has investigated functional
MRI biomarkers in relation to epileptogenesis using
lateral FPI and PTZ susceptibility as a model. Mishra
et al. (2014) observed decreased connectivity between
the ipsilateral and contralateral parietal cortex and
between the hippocampus and parietal cortex in the
injured hemisphere compared with sham-operated
rats. However, no significant relationship was found
between functional connectivity and seizure suscepti-
bility during the PTZ test.
Blood-brain barrier (BBB) dysfunction has long been

suggested to play a key role in seizure susceptibility
after TBI and in epilepsy disorders (Cornford and Old-
endorf, 1986). Recent studies demonstrate that abnor-
malities in the BBB can be visualized using dynamic
contrast-enhanced MRI and fluid attenuated inversion
recovery techniques. Disrupted BBB function has been
found with increased frequency and to a larger extent
in patients with post-traumatic seizures versus nonepi-
leptic patients with TBI (Tomkins et al., 2011). Fur-
thermore, reduced BBB integrity within the cortical
regions surrounding the impact site or within the piri-
form network have been suggested as sensitive predic-
tors of epilepsy (Bar-Klein et al., 2017). There are
several hypotheses that associate cerebrovascular

permeability with epileptogenesis, including imbalance
of ion and molecule distribution and disturbance of
neuronal homeostasis (Dadas and Janigro, 2019).
Two of the biggest challenges regarding imaging

biomarkers is the heterogeneity of PTE-related inju-
ries and the rarity of longitudinal studies. Thus, a
consistent and validated imaging biomarker for PTE
has yet to be discovered. For a full review of imaging
biomarkers in PTE, see Garner et al. (2019) and
Immonen et al. (2019).

B. Electrographic Biomarkers. Electrographic bio-
markers may predict the onset of seizures and epilep-
togenesis, allowing for development of targeted
preventative therapies. Currently, there are no vali-
dated electrophysiological biomarkers for PTE; how-
ever, experimental EEG studies using lateral FPI
and CCI in rodents have identified potential candi-
dates, including pathologic high-frequency oscillations
(HFOs), reduction in sleep spindle duration, changes
in theta oscillations, dominant frequency at the stage
III to rapid eye movement sleep, and epileptiform
spiking/discharges preceding seizure onset.
HFOs are commonly classified into ripples (80–250

Hz) and fast ripples (250–500 Hz) and are believed to
be a naturally occurring phenomena involved in both
physiologic and pathologic processes (Zijlmans et al.,
2012). Although physiologic and pathologic HFOs can-
not be differentiated on spectral frequency alone,
increased rhythmic patterns and power of HFOs have
been correlated to epileptic foci (Jirsch et al., 2006;
Staba, 2012). Early investigators of HFOs questioned
whether HFOs could be evaluated by standard inva-
sive macroelectrodes, but recent reports have shown
that HFOs can be detected for long periods of time by
a wide variety of methods, including the standardized
scalp EEG (Andrade-Valenca et al., 2011).
The premise that HFOs may play a role in epilep-

togenesis was first hypothesized by Bragin et al.
(2000) who observed fast ripple occurrence preceded
spontaneous seizures by weeks in a kainic acid
model of status epilepticus. A follow-up study found
that 19 out of 26 rats developed pathologic HFOs in
the first month postkainic acid injection and that all
19 rats later developed epilepsy, whereas the remain-
ing seven rats did not exhibit pathologic HFOs or
seizures (Bragin et al., 2004). In a lateral FPI study,
repetitive HFOs occurred at a significantly higher
rate after moderate or severe injury, compared with
mild or sham-injured animals, providing additional
evidence that injury severity correlates to epilepsy
(Reid et al., 2016). Among these FPI rats, HFOs
tended to occur more frequently in the early stages
of the study before seizure onset. These studies sug-
gest a pattern of intense and increasing abnormal
epileptic activity during the epileptogenic period,
starting with increased HFOs and ending the latency
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period with spontaneous seizures (Fig. 4). Neverthe-
less, alterations in characteristics of HFOs in people
at risk for epilepsy or epileptogenesis may serve as
valuable noninvasive biomarker of epilepsy or risk
prediction. For full review of HFOs as biomarkers
for epilepsy, see Perucca et al. (2019) and Jacobs and
Zijlmans (2020).
Sleep spindles occur at a frequency between

10–20 Hz (typically 12–14 Hz) with a duration of
500–2000 milliseconds. Spindle generation involves
interaction between inhibitory neurons in the tha-
lamic regions to function as pacemakers. An
increase in spindle frequency is known to occur
immediately preceding REM sleep in both rodents
and humans (Vyazovskiy et al., 2004; Purcell et al.,
2017). Sleep disturbances are well documented after
TBI, and disruption of normal spindle activity may
contribute to epileptogenesis (Duclos et al., 2014). A
study by Andrade and colleagues discovered 92% of
detected seizures occurred during the transition

period between stage III and REM sleep after lat-
eral FPI in rats (Andrade et al., 2017). Sleep spin-
dles in these epileptic rats were significantly
shorter and slower during the transition from slow-
wave N3 to REM sleep, compared with nonepileptic
rats. These changes were identified at 9 weeks post-
injury but were not observed within the first 2–3
weeks (Bragin et al., 2016), providing greater evi-
dence of the progression of abnormal EEG over
time. However, these results somewhat contradict
those of a more recent study in which Konduru
et al. (2021) confirm shorter spindle duration and
lower band frequency in injured versus noncraniectomy
mice but did not find significant differences in these
features between TBI mice with and without a seizure
response. Furthermore, sham-injured animals have
been known to exhibit abnormal EEG activity com-
pared with noncraniectomy groups, suggesting sham
cohorts may not always be the best control for all
parameters.

Fig. 4. Evolution of TBI-induced hyperexcitability and seizure activity. Electrographic biomarkers may predict onset of seizures, as hyperactivity in
the brain progresses over time to the culmination of spontaneous recurrent seizures. TBI induces a state of heavy inflammation, disrupting both neuro-
transmitter and metabolic homeostasis. The emergence of these abnormal electrographic activities may reflect different stages of the epileptogenic pro-
cess postinjury. Pathologic HFOs often precede seizures by weeks, followed by reduced frequency and duration of sleep spindles during the transition
between stage 3 and REM sleep. Disruption of normal sleep spindles contributes to several sleep-wake disorders reported by patients with TBI. EEG
spiking and discharges represent an advanced hyperactive disturbance that has been described as epileptiform abnormalities in animal brain slices
and in vivo at various time-points postinjury. The final stage is the end of latency indicated by the occurrence of spontaneous seizures; however, epilep-
togenesis can continue to progress even after the first seizure.
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EEG spikes, sometimes called interictal spiking,
have been observed in both rats and mice after brain
injury (Statler et al., 2009; Bolkvadze and Pitk€anen,
2012). These spikes can take the form of isolated
spikes, runs of spike-wave discharges, or absence-like
spike-wave discharges and represent abnormal fluctu-
ations in brain waves but have yet to be correlated
with the onset of SRS. Furthermore, stimulation-
evoked hyperexcitability in the hippocampus has been
demonstrated after weight drop and in neocortical
brain slices after CCI (Golarai et al., 2001; Yang et al.,
2010). It is unclear whether these electrophysiological
disturbances are associated directly with the injury
state or with epileptogenesis. It should be noted that
not all studies show a correlation between animals
with spiking activity and documented seizures,
although recordings in this case were short 1-week
recordings (Konduru et al., 2021). Recently, Golub and
Reddy (2022) observed short bursts of high-energy
activity lasting between 3 and 9 seconds after CCI
injury in mice. Although this definition of epileptiform
discharges is intermediary to interictal spikes and seiz-
ures, it does provide further evidence of the evolution
of abnormal EEG activity to seizure development.
Although there are currently no validated electro-

physiological biomarkers for PTE, experimental stud-
ies continue to identify potential candidates that may
be instrumental in predicting and, therefore, prevent-
ing epilepsy with targeted therapeutic approach.
These EEG abnormalities include pathologic or repet-
itive HFOs, sleep spindle disturbances, and abnormal
interictal spiking. Further experimental studies using
a controlled means of EEG analytics are needed to
determine which features may be reliable biomarkers
of PTE in the clinical setting. Machine learning,
which has been recently instituted for seizure detec-
tion (Abbasi and Goldenholz, 2019), may also help to
classify these abnormal EEG patterns in more mean-
ingful ways. Furthermore, standardization of detec-
tion protocols, analysis algorithms, and sampling of
EEG recordings will aid the progress of neurophysio-
logic biomarker discovery.

C. Molecular Biomarkers. Biofluid markers are
useful for determining TBI severity and play a critical
role in monitoring disease progression and clinical
prognosis (Sharma and Laskowitz, 2012). Molecular
biomarkers refer to nonimaging factors that have bio-
physical properties allowing for measurement in bio-
logic samples, such as blood, plasma, cerebrospinal
fluid (CSF), saliva, or biopsy. Circulating biofluid
markers, such as microRNAs (miRNAs), proteins,
extracellular vesicles, and cytokines have been widely
studied in both TBI and epilepsy conditions (see
reviews Engel et al., 2013; Agoston et al., 2017), but
few studies have combined their efforts to identify
biomarkers for epileptogenesis and PTE. Furthermore,

there is little evidence to suggest biomarkers for TBI
overlap with those for epileptogenesis; therefore, this
subsection will briefly cover molecular biomarkers of
TBI that have been indicated as potential risk factors
for seizures.
Severe and penetrating TBI represent the highest

risk of PTE development due to the extent of tissue
damage, bleeding, inflammation, and bone fracture.
These processes produce a graded increase in circulat-
ing levels of inflammatory chemo- and cytokines, reg-
ulators, and bone morphogenic proteins, providing a
molecular basis for classifying injury severity (Hegge-
ness et al., 2017). Deposition of bone particles and
other foreign bodies in the brain parenchyma are
among the most important risk factors for developing
seizures after TBI (Salazar and Grafman, 2015). Like-
wise, increased serum and/or CSF levels of claudin-5,
VEGF, occludin, aquaporin-4, and von Willebrand fac-
tor may indicate a breakdown of the BBB and/or vas-
cular injury (Croll et al., 2004; De Oliveira et al.,
2007; Jiao et al., 2011; Thrane et al., 2011; Ahmed
et al., 2015).
Iron levels, due to excessive bleeding, increase risk

of PTE (Ding et al., 2016). Accumulation of iron in the
blood can be cytotoxic, resulting in mitochondrial dys-
function and oxidative stress through the generation
of free radical particles. In the clinical setting,
patients with TBI and low ceruloplasmin, an impor-
tant protein involved in iron metabolism and injury
repair, develop increased intracranial pressure that
can lead to post-traumatic seizures (Dash et al.,
2010a). Neuroinflammation around the impact site
also contributes to the rise in intracranial pressure.
Increased cytokines and inflammatory proteins, such
as IL-1, IL-6, TNFa, CD53, fibrinogen, and MIP1a,
have been implemented in prolonged inflammation in
human and animal studies (McManus et al., 1998;
Katayama et al., 2009; Woodcock and Morganti-Koss-
mann, 2013). A genetic biomarker study demon-
strated higher CSF:serum IL-1b ratios were
associated with increased PTE incidence (Diamond
et al., 2015a). Furthermore, due to the astrocytic roles
in both inflammation and glucose metabolism, CSF
and/or serum levels of glial fibrillary acidic protein
(GFAP) can provide insight into more than one
pathology associated with PTE. It is likely that a com-
bination of disrupted neural connectivity due to cell
loss, metabolic dysregulation, and inflammation are
critical components of immediate and early seizure
onset after TBI (Tubi et al., 2019).
MiRNAs are noncoding RNA molecules that have

emerged as potential molecular biomarkers for a
number of neurologic disorders. miRNAs are consid-
ered good biomarker candidates since they are more
stable than mRNA and proteins, are present in bio-
fluids, such as blood and CSF, and are inexpensive to
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assay. The human genome contains approximately
2300 miRNAs, and about 500–700 of these are also
present in laboratory rodents, such as mice and rats
(Alles et al., 2019). In plasma, miRNA can be either
bound to argonaute2 protein or held within extracellular
vesicles. Extracellular vesicles are involved in intercellu-
lar communication and can carry biomolecules such as
DNA, mRNA, miRNA, proteins, and lipids. Raoof et al.
(2017) conducted a study including patients with tempo-
ral lobe epilepsy and status epilepticus that identified
miR-19-3p was largely argonaute2-bound in both epilep-
tic conditions, and miR-21-5p was mostly carried within
extracellular vesicles in status. A follow-up study discov-
ered the proportion of argoaute2-bound miR-328-3p
increases after a spontaneous seizure in temporal lobe
epilepsy (Raoof et al., 2018). Lastly, patient levels of
transfer RNA fragments 50GluCTC, 50AlaTGC, and
50GlyGCC have been found to be upregulated in presei-
zure versus postseizure samples (Hogg et al., 2019).
Since extracellular vesicles can be extracted from all bio-
logic fluids, they have exciting potential for identifying
biomarkers of post-traumatic epileptogenesis. However,
most clinical research in this area have so far investi-
gated miRNA levels in patients with pre-existing epi-
lepsy, rather than conditions with an epileptogenic
trigger.
Dysregulation of miRNAs has been observed in both

patients with epilepsy and TBI; however, no study has
been done to identify biofluid miRNA biomarkers of epi-
leptogenesis in humans. There is little overlap between
TBI and epilepsy in potential miRNA candidates, and
previous studies have presented a high frequency of
contradictory data regarding serum and plasma miRNA
dysregulation and their usability in disease trajectory
for PTE. Table 3 shows a list of potential miRNA bio-
marker candidates and whether they have been shown
to be upregulated or downregulated in epilepsy, TBI,
and/or PTE. Data from this table are mixed between
preclinical and clinical studies, as there is limited
knowledge in this field at present (Simonato et al.,
2021). miRNAs, such as miR-21-5p, miR-27b-3p, miR-
93, miR-135a, miR-146a, miR-155, miR-203, and miR-
451, have all been shown to be upregulated in various
epilepsy conditions as well as after brain injury,
whereas miR-27a-3p, miR-128, and miR-221-3p are
downregulated (Redell et al., 2010; Gorter et al., 2014;
Liu et al., 2014b; Roncon et a., 2015; Atif and Hicks,
2019; Brennan et al., 2020). These data hold promise
for PTE biomarker discovery in that there seems to be
some similarity between these two neurologic condi-
tions. However, there are many other candidates with
opposing dysregulation, such as miR-23a, miR-30a-5p,
miR-153, miR-182, miR-219, miR-300, miR-328-3p, and
miR-574. We are currently at the beginning of the pro-
cess to adequately validate the first biomarkers for epi-
leptogenesis, and more time and effort will need to be

dedicated toward discovery before their subsequent clin-
ical use.
The first step in establishing plasma miRNA or pro-

tein biomarker discovery is to harmonize protocols
and procedures used to collect data and perform
experiments, providing an objective framework for
quality control. Recently, there has been a great effort
across three international sites (University of Eastern
Finland, University of Melbourne/Monash University,
and the University of California, Los Angeles) to stan-
dardize the protocols for miRNA biomarker validation
and analysis for PTE (van Vliet et al., 2017; Kamnaksh
et al., 2019). These studies highlight the need for rigor-
ous quality assessment, as hemolysis and anesthesia
presented as confounding factors. Moreover, the study
suggests improved training is needed for technicians
to obtain a more precise venipuncture, faster blood
draws, and less coagulation in the catheter lines.

D. Genetic and Genomic Influences. A genetic bio-
marker is a sequence of DNA that causes or is

TABLE 3
Putative miRNA targets with highest biomarker potential for epilepsy,

TBI, and PTE

Epilepsy TBI PTE

miR-7-5p — # —
miR-9a " " —
miR-10a/b-5p " " —
miR-16-5p — " —
miR-21-5p " " —
miR-23a " # —
miR-26b-5p — " —
miR-27a-3p # # —
miR-27b-3p " " —
miR-29a/c — # —
miR-30a-5p # " —
miR-93 " " —
miR-124 # Mixed —
miR-128 # # —
miR-129-2-3p " — —
miR-132 " — —
miR-134 " — —
miR-135a " " —
miR-142 " " —
miR-146a " " "
miR-151a-3p — " —
miR-153 # " —
miR-155 " " —
miR-181a — " —
miR-181b # — —
miR-181c " — —
miR-182 " # —
miR-203 " " —
miR-211 " — —
miR-219 # " —
miR-221-3p # # —
miR-300 # " —
miR-320c — " —
miR-324-5p " — —
miR-328-3p # " —
miR-423-3p — " —
miR-451 " " "
miR-532-5p — " —
miR-574 # " —
miR-629-5p — # —
miR-1307-3p — " —

" 5 upregulated; # 5 downregulated; — 5 unknown
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associated with susceptibility of a disease. Genetic bio-
markers typically present as a genetic variant, such as a
copy number variant or single-nucleotide polymorphism
in the clinical setting. Likewise, genomic biomarkers
reflect the expression, function, and regulation of a gene
and its interrelationships to identify a combined influ-
ence within a biologic state or within the context of dis-
ease progression (WHO, 2002). Genomic biomarkers
include both DNA and RNA characteristics. DNA char-
acteristics include single nucleotide polymorphisms,
DNA modifications (e.g., methylation or acetylation),
variability within short sequence repeats, insertions,
deletions, copy number variations, or cytogenetic rear-
rangements (e.g., duplications, deletions, inversions,
translocations). Characteristics of potential RNA bio-
markers include changes in RNA expression levels and
sequence, alteration of RNA processes, such as splicing
or editing, and variation of microRNA levels. These two
terms “genetic” and “genomic” biomarkers are similar in
that they represent a change at the level of DNA or
RNA but should not be used interchangeably. The main
difference between genetic and genomic biomarkers is
their respective focus on a specific gene and heredity
versus an organism’s entire genetic make-up including
coding and noncoding DNA and their interactions. For
example, Huntington’s disease is caused by a genetic
mutation in the HTT gene, representing a genetic bio-
marker; whereas, significantly altered mRNAs found in
the peripheral blood of patients with Huntington’s serve
as a genomic biomarker (Borovecki et al., 2005). Geno-
mic biomarkers could be a useful prognostic marker for
PTE by identifying individuals with a higher risk of epi-
leptogenesis and enriching the population of antiepilep-
togenesis trials.
Preclinical rodent trials have included genetically

modified mice and/or animals with varying genetic
backgrounds to help identify genomic influence on
epileptogenesis and TBI. Adenosine is known to
exhibit some anticonvulsant effects within epilepsy
(Knutsen and Murray, 1997; Avsar and Empson,
2004). Knockout of the Adora1 gene, affecting the
adenosine receptor A1, was found to increase the inci-
dence of acute postimpact status epilepticus (Kocha-
nek et al., 2006). Adenosine receptor deficiency also
exacerbated the microglial and neuronal damage
response after TBI (Haselkorn et al., 2010). In the
clinical setting, variants of adenosine kinase influ-
enced the rate of epileptogenesis after TBI (Diamond
et al., 2015b). This same study also identified the
genotype rs1143634, a variation in the IL-1 proinflam-
matory cytokine profile, increased risk for developing
seizures.
Several studies have focused on genes related to

plasticity of the extracellular matrix. Pijet et al.
(2018) used matrix metallopeptidase 9 (MMP-9)
knockout and overexpression mice to determine the

role of extracellular matrix restructuring in post-trau-
matic epileptogenesis. Two peaks of MMP-9 expres-
sion were found at 30 minutes and 6 hours postinjury.
Their results demonstrate overexpression of MMP-9
resulted in greater seizure frequency and lowered
PTZ seizure threshold after TBI. Prevalence of post-
traumatic seizures was also correlated to increased
lesion volume in these mice. APP/PS1 mice, which are
predisposed to plaque deposition and gliosis, were
found to have more pronounced epileptogenesis and
robust comorbidities, such as cognitive impairment,
after TBI (Miszczuk et al., 2016). A series of studies
investigated the role of the extracellular matrix pro-
teinase urokinase-type plasminogen activator and its
receptor on PTE. Neither mutation of the Plua or
Pluar gene, resulting in the deficiency of urokinase or
its receptor, affected the progression of PTE after
TBI. The authors concluded that epileptogenesis and
seizure susceptibility was not worsened with uroki-
nase-type plasminogen activator or its receptor defi-
ciency, although comorbidities, such as cognitive
impairment and motor function, were exacerbated
(Bolkvadze et al., 2016). However, a recent follow-up
study using a double knockout of both Plau and Plaur
genes found significantly increased susceptibility to
PTZ without brain injury (Kyyri€ainen et al., 2019).
In the clinical setting, mutations affecting the bal-

ance of inhibitory-excitatory circuitry have been
linked with an increased risk of PTE. Variations in
the GAD1 gene, responsible for producing the enzyme
that catalyzes the production of inhibitory GABA
from glutamate, increases a patient’s risk for exhibit-
ing post-traumatic seizures. Three high-risk geno-
types have been identified for higher risk thus far:
rs769391, rs3791878, and rs3828275 (Darrah et al.,
2013). Genetic variation in the SLC1A1 gene respon-
sible for neuronal glutamate transporters has also
been associated with an increased risk for post-trau-
matic seizures and excitotoxicity (Ritter et al., 2016).
Moreover, a major neuroprotective and inhibitory
molecule, adenosine, has become increasingly impor-
tant in identifying risk of PTE. Multivariate analysis
of rs3766553 revealed a strong link between variabil-
ity in the adenosine A1 receptor and increased risk of
late seizures after injury (Wagner et al., 2010). Fur-
thermore, a military-cohort study found a common
variant in the methylenetetrahydrofolate enzyme
C677T may predispose an individual to PTE and
other epilepsy disorders (Scher et al., 2011). Lastly,
the role of APOPE gene has also been studied within
the context of clinical PTE. Although no statistically
significant associations were found, Miller et al. (2010)
found half of the individuals with the E4/E4 genotype
of APOPE had exhibited chronic post-traumatic seiz-
ures, suggesting this variant may be at greater risk for
delayed PTE. The lack of studies reporting the effect of
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genetic and genomic factors on epileptogenesis after
TBI limits the progress to be made in determining tar-
geted measures for therapeutics and clinical trials
(Kumar et al., 2019). There is a great need to continue
research on these mechanisms to contribute to the pro-
gress in preventative therapies for PTE.
Discovery for PTE biomarkers is at an early stage.

Each potential biomarker discussed has both advan-
tages and disadvantages; therefore, it is unreasonable
to expect a single biomarker to measure the progres-
sion of a heterogenous disease, such as PTE. It is more
likely that a combination of multimodal biomarkers
will be needed to accurately identify epileptogenesis
after brain injury. Relatively noninvasive biomarkers,
such as imagining, surface EEG, and blood/plasma
samples, are promising for patients with TBI in which
the likelihood for seizures is uncertain. However, there
is little evidence to suggest that biomarkers for epilep-
togenesis after brain injury overlap with those of TBI
in general. These differences may be exaggerated by
variance in models, detecting methods, analysis plat-
forms used, and stage of epileptogenesis. Furthermore,
translating preclinical studies into clinical biomarkers
is challenging. The timeline of molecular and cellular
changes that occur in the development of epilepsy is
much shorter in rodents than in humans, explaining
why dozens of successful experimental pharmaco-
therapies have failed in clinical trials (Agoston et al.,
2019). Longitudinal data in both rodent and clinical
studies are lacking; therefore, no standard temporal
window comparing imaging pathology or sampling
has been followed. A concerted effort to standardize
biomarker efforts for TBI, PTE, and other epilepsies
may be an optimal strategy for discovery of novel
biomarkers that are translatable throughout these
related disorders.

V. Comorbidities of Post-Traumatic Epilepsy

Apart from seizures, traumatic insults are well-
known to be associated with an assortment of behav-
ioral and psychiatric dysfunctions, including depres-
sive symptoms, learning and memory deficits,
personality changes, anxiety-like behavior, difficulty
with social interactions, balance, motor impairment,
as well as sleep disturbances. These features can
have a profoundly negative effect on an individual’s
quality of life, perhaps more so than even the seizures
themselves (Boylan et al., 2004). A population-based
cohort study found patients with PTE have 7.85 times
as many medical visits per year compared with none-
pileptic patients with TBI, suggesting a significantly
increased medical burden (Lin et al., 2019). Preinjury
behavior and functioning are also strong indicators of
long-term behavioral and recovery outcomes, includ-
ing development of psychiatric disorders after TBI.

Children who experience high stress or significant life
changes were found to be at greater risk for persis-
tent postconcussion symptoms after brain injury
(Smyth et al., 2014). The relationship between behav-
ioral functions and seizures is extraordinarily com-
plex, likely influenced by both recurrent seizure
activity, but also the therapeutic regimens used to
control seizures (Szemere and Jokeit, 2015). A retro-
spective clinical study on rehabilitation after TBI
found patients given prophylactic antiseizure medica-
tions predicted poorer recovery, independent of
whether these patients experienced post-traumatic
seizures (Pingue et al., 2021). Despite the well-estab-
lished overlap of comorbidities between TBI and epi-
lepsy patients, there is little research looking into the
prevalence, presentation, or mechanisms associated
with these impaired recovery outcomes in PTE. More-
over, most ASMs interact with each other and with
other medications. The effects of these drug-drug
interactions can vary greatly and can be potentially
dangerous. Therefore, it is important for future stud-
ies and practicing clinicians to consider the potential
challenges and treatments of PTE comorbidities to
find the best combination of symptom relief in
affected patients. Table 4 briefly outlines major
comorbidities associated with PTE.

A. Sensorimotor Abnormalities. Risk of complica-
tions increases with the severity of trauma, although
mild TBI can also result in disabilities that interfere
with daily life (van der Naalt, 2001). Patients may
experience sensory problems, especially complications
with vision (Ripley and Politzer, 2010). One of the
brain’s primary functions is to integrate information
from the outside environment, process it, and deter-
mine an appropriate reaction or response. Disturban-
ces in vision, either in recognition or registration of
objects, can lead to clumsiness and poor hand-eye coor-
dination. Double vision also affects depth perception
and ambulatory balance. Other sensory deficits, such
as those affecting hearing, taste, smell, or touch, are
less common but not unlikely. Damage to regions of
the brain that process taste or smell may cause the
perception of bitter and/or noxious smell. Likewise,
injury to sensory pathways can trigger neuropathic
itch, skin tingling, or pain (Oaklander, 2011).
The motor and somatosensory cortices are among

the most vulnerable brain regions affected by TBI
and diffuse axonal injury due to their superficial
position. Damage to these regions is associated with
impaired motor control and function. Patients with
TBI often report difficulty with balance, changes in
ambulatory stride, and loss of fine motor control.
Recently, a first-of-its-kind study characterized the
presence of a newly defined neurologic disorder
called vestibular agnosia in patients with TBI (Cal-
zolari et al., 2021). This condition results in the loss
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of vertigo perception and imbalance. The Seemungal
group found that patients with TBI who exhibit ves-
tibular agnosia have worse balance problems and are
unlikely to experience dizziness. Therefore, these
patients are at higher risk of subsequent falls or
TBI.
In preclinical studies, researchers have focused on

changes in motor functionality as a parameter of recov-
ery outcomes. These changes in motor function have
been measured with numerous behavioral tests, includ-
ing comprehensive neurologic scoring, beam walk, and
rotarod testing. Furthermore, tasks, such as open field
and water maze, can also provide insight on functional
recovery by evaluating walking and swim speed
between injured and noninjured cohorts. Rodents with
TBI and/or PTE demonstrate significantly worsened

sensorimotor complications compared with sham-
injured controls (Gold et al., 2013; Nissinen et al.,
2017; Golub and Reddy, 2022). Insulin-like growth fac-
tor-1 overexpression attenuates post-traumatic motor
dysfunction, suggesting sensorimotor recovery may be
influenced by overactive inflammatory signals or reac-
tive astrocytes (Madathil et al., 2013). Although loco-
motive ability progressively recovers over time, sensory
and cognitive deficits often persist for months or years
after injury. Therefore, it is critical to assess sensorimo-
tor outcomes as an indicator of rehabilitation in both
preclinical and clinical trials.

B. Memory and Cognitive Dysfunction. There are
many forms of cognitive dysfunction, whether it be diffi-
culty retaining or recalling information, disrupted focus,
or higher order impairments, such as inability to plan,

TABLE 4
Comorbidities of PTE

Conditions/Diagnoses Symptoms

Sensorimotor Deficits Vision disturbances Difficulty recognizing or processing objects,
blurry or lost vision, double vision, loss of
depth perception

Tinnitus High-pitched ringing or buzzing in one or
both ears, often associated with hearing
loss

Neuropathic itch Skin tingling or pain resulting from nervous
system damage

Vestibular agnosia Loss of vertigo perception and imbalance
Motor deficits Imbalance, changes in ambulatory gait, loss

of fine motor skills
Cognitive Impairments Mental fatigue and attention impairment Inability to concentrate or focus, even on

simple tasks
Short-term memory impairment Inability to recall or remember information

to which the subject was recently exposed
Difficulty with critical thinking or problem

solving
Difficulty processing, analyzing, evaluating,

or synthesizing information to reflect,
reason, communicate, or solve problems

Psychiatric Disorders Depression/affective disorders Constant feeling of sadness, loss or interest,
and irritability; often associated with
fatigue, lack of motivation, difficulty with
recall, or suicidal thoughts

Anxiety Intense, excessive, and persistent worry or
fear about everyday situations; avoidance;
phobias; obsessive compulsive symptoms

PTSD Difficulty recovering after a traumatic event
that triggers moments of intense
emotional and physical reactions, such as
headache, nightmares, pain, flashbacks,
amnesia, or difficulty concentrating

ADHD Hyperactivity, impaired attention, reduced
work speed, and difficulty with working or
short-term memory

Sleep Disorders Insomnia Difficulty falling or staying asleep,
insufficient number of hours or sleep
despite adequate opportunity

Parasomnia Night terrors, sleep walking/talking,
confusion arousals, REM sleep behavior
disorder

Idiopathic hypersomnia Excessive daytime sleepiness
Narcolepsy Overwhelming daytime sleepiness and

sudden attacks of sleep, cataplexy, sleep
paralysis, sleep-related hallucinations

Sleep apnea Snoring, restlessness, apnea, open-mouth
breathing, sleep fragmentation

Circadian rhythm disorder Sleep-wake cycle is not aligned with
environment/schedule and interferes with
daily activities; difficulty falling asleep or
staying asleep
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lack of motivation, or psychosocial disability. Psycho-
metric tests found patients with PTE exhibited a signifi-
cantly reduced ability to plan, showed a lack of
initiative, and had a higher incidence of disinhibited
behaviors compared with patients with TBI and no seiz-
ures (Mazzini et al., 2003). Furthermore, clinical studies
have found evidence for impairments in attention (Fen-
wick and Anderson, 1999), problem solving (Cazalis
et al., 2006), short-term and working memory (Vallat-
Azouvi et al., 2007), and mental fatigue (Ziino and
Ponsford, 2005).
Preclinical research has hypothesized altered syn-

aptic plasticity and neurodegeneration induced by
TBI may play a critical role in cognitive impairment.
Mild to moderate TBI is associated with altered hip-
pocampal bursts, with longer duration and lower
interburst spike frequency (Munyon et al., 2014).
Shorter interval bursts in CA1 hippocampal neurons
provoke long-term potentiation and plays a role in
synaptic plasticity, thus affecting information coding
after TBI and resulting in hippocampal-associated
cognitive impairments (Thomas et al., 1998; Ouyang
et al., 2017).
TBI is known to affect both short- and long-term

memory (Enomoto et al., 2005; Carron et al., 2020).
Preclinical in vivo studies often use behavioral tests,
such as the Morris water maze or Barnes maze, to
evaluate spatial learning and memory (Barnes, 1979;
Morris, 1984; Reddy, 1988). Both tests involve train-
ing rodents to use visual spatial cues to escape the
arena. Over a series of trials, rodents remember the
location of the hidden platform or escape box and
complete the task progressively faster. Another com-
mon task is the Novel Object Recognition Test, which
was initially described in 1988 (Ennaceur and Dela-
cour, 1988). The Novel Object Recognition Test exam-
ines recognition memory by exposing rodents to two
identical objects during a familiarization phase, followed
by the replacement of one of those objects with a novel
object. Healthy rodents recognize the new object, spend-
ing more time investigating it, using hippocampal-depen-
dent recognition memory (Bevins and Besheer, 2006).
Several research groups have evaluated short- and long-
term cognitive deficits within the context of PTE, finding
PTE cohorts perform poorly at these tasks compared
with uninjured controls (Scheff et al., 1997; Lu et al.,
2015; Nissinen et al., 2017; Golub and Reddy, 2022).
These studies reflect similar cognitive deficits found after
TBI (Paterno et al., 2017). Due to the extent of cognitive
impairment often seen after TBI and how this relates to
poorer quality of life in the human condition, it is our
opinion that the success of future clinical trials of PTE
depends on preclinical models that incorporate both the
measurement of cellular and molecular pathologies asso-
ciated with hyperexcitability as well as memory and
behavior tasks.

C. Depression, Mood Disorders, and Anxiety. Cogni-
tive deficits resulting from brain injury can also over-
lap with development of affective disorders. For
example, emotion-recognition difficulties, such as facial
affect recognition disorder, contribute to a suite of
social functional impairments in patients with TBI
(Babbage et al., 2011). Social dysfunction in TBI is
well-documented and can negatively affect a person’s
ability to form relationships, impairs empathy, and
results in low social participation and stress (Ham-
mond et al., 2004).
Among the general population, anxiety and depres-

sion have the highest prevalence of any other group
of psychiatric disorders, with a lifetime occurrence
reported at approximately 30% (Barlow, 2004). A
growing body of research indicates that mood and
anxiety disorders are even more prevalent in patients
with TBI. Approximately 70% of patients with TBI
experience a psychiatric illness within the first year
after initial injury (Bombardier et al., 2010; Ponsford,
2017). The most common manifestations of psychiat-
ric disorders among adolescents and adults with TBI
are generalized anxiety, depression, phobias, post-
traumatic stress disorder, and obsessive-compulsive
disorder. A long-term neuropsychiatric study found
that patients with PTE showed higher incidence of
irritability and agitated behaviors, aggression, and
personality disorders compared with nonepileptic
patients with TBI (Mazzini et al., 2003). Aggressive
behaviors may limit access to rehabilitation treat-
ment, participation in employment and social activi-
ties, as well as contribute to drifting friendships and
romantic relationships.
Neuropathological changes associated with TBI can

lead to dysfunction of the lateral and dorsal prefrontal
cortices and increased activation of the limbic and para-
limbic structures, including the amygdala. Altered
amygdala connectivity has been identified as a possible
biomarker of both comorbid depression and anxiety in
patients with TBI. Relative increases in amygdala con-
nectivity were found in the left dorsomedial and right
dorsolateral prefrontal cortices and thalamus as well as
the brainstem with spatially dissociable patterns of cor-
relation between this increased connectivity and symp-
tom severity (Han et al., 2015). Another study
investigating psychiatric symptoms associated with TBI
found that patients with a history of major depression
often exhibit comorbid anxiety (77%) and aggressive
behavior (57%) (Jorge et al., 2004). These patients had
significantly worse executive functionality compared
with their nondepressed counterparts. Furthermore,
neurotransmitters, such as norepinephrine, serotonin,
dopamine, and GABA, are mediators of anxiety and
depression symptoms. Disruption of these systems, by
either direct impact of TBI or indirect pathologies, such
as chronic stress or inflammation, can negatively influ-
ence comorbid development of psychiatric disorders.
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D. Attention Deficit Hyperactivity Disorder. A meta-
analysis documented a significant association between
mild TBI and attention deficit hyperactivity disorder
(ADHD) (Adeyemo et al., 2014). ADHD is a neurodeve-
lopmental, childhood onset, and persistent disorder
characterized by increased impulsivity and risk-taking
behavior in individuals. Not only has ADHD been
shown to heighten risk of experiencing a TBI, but pre-
existing diagnosis of ADHD may also result in wors-
ened recovery outcomes after injury (Bonfield et al.,
2013). Compared with patients with TBI but not
ADHD, individuals with both diagnoses were signifi-
cantly more impaired on individual scores of working
memory, planning/organization, metacognition indices,
and behavioral regulation (Ponsford and Kinsella,
1992; Biederman et al., 2015).
ADHD that develops as a comorbidity of TBI is

referred to as secondary ADHD and has been shown
to occur in 10%–20% of patients post-TBI (Gerring
et al., 1998). Many studies support the hypothesis
that dysfunction in the prefrontal cortex, basal gan-
glia, and their related neurotransmitter systems
underlie deficits in inhibitory regulation found in
patients with ADHD (Dickstein et al., 2006). There-
fore, damage to these areas have the potential to
manifest as secondary ADHD or other psychiatric dis-
orders in children and adults. Secondary ADHD may
be more prevalent in children and adolescents due to
the underdevelopment of brain regions linked to inat-
tention and hyperactivity. Anatomic studies of youth
with developmental ADHD demonstrate a loss of vol-
ume of frontal and striatal structures without lesions.
One case study describes secondary ADHD develop-
ment in a 10-year-old boy who suffered head trauma
and early post-traumatic seizures (Ceylan and Akca,
2013). Cranial CT scans demonstrated decreased den-
sity of the right basal ganglia and loss of corticome-
dullar differentiation in the right frontal area. Six
months after the accident, reports from the patient’s
parents and teachers describe a change in the child’s
behavior of overactivity, boredom at class and home,
difficulty maintaining concentration, and depressive-
like symptoms. Social disinhibition, hyperactivity, poor
impulse control, forgetfulness, and lack of judgement/
foresight are among the chronic sequelae of closed
head injuries (Kaitaro et al., 1995).

E. Sleep Disorders. Sleep-wake dysfunction after
brain injury is common, affecting up to 70% of
patients (Viola-Saltzman and Watson, 2012). Common
diagnoses after TBI include insomnia, parasomnia,
idiopathic hypersomnia, narcolepsy, sleep apnea, and
circadian rhythm disorder (Morse and Garner, 2018).
This sleep-wake cycle is regulated by a concerted
effort between circadian rhythms, sleep-wake homeo-
stasis, metabolism, and external environmental fac-
tors, such as diet, stress, medication, and surroundings.
Pre-existing sleep conditions can increase the likelihood

of post-TBI sleep-wake disturbances. Additionally,
comorbid sleep disorders contribute to psychologic
instability, resulting in behavioral problems, mood or
emotional lability, and worsened daily functioning
(Shay et al., 2014; Reddy et al., 2018c).
Alertness and cortical arousal are mediated by sev-

eral pathways that project from the brainstem near
the junction of the midbrain and pons to innervate
the thalamus, posterior hypothalamus, and forebrain
(Fuller et al., 2006). These ascending pathways are
populated by key cell types, including cholinergic, his-
taminergic, noradrenergic, dopaminergic, and seroto-
ninergic neurons, that fire in a distinct pattern to
promote wakefulness. Orexin peptides produced in
the lateral hypothalamus reinforce the arousal state.
However, this system is inhibited roughly every 24
hours by sleep-active GABAergic and galaninergic
neurons of the ventrolateral preoptic nucleus (VLPO)
to promote sleep onset (Schwartz and Roth, 2008).
The VLPO is a known sleep center influenced by the
suprachiasmatic nucleus and activated by endogenous
sleep-promoting substances, such as adenosine and
prostaglandin D2. Melatonin production from the
pineal gland plays a role in REM sleep and aids in
synchronizing circadian rhythms.
The pathophysiology of post-traumatic sleep disor-

ders has not been fully explored; however, decreased
levels of wake-promoting neurotransmitters, such as
hypocretin (orexin) and histamine, are believed to
play a contributing role. Post-mortem assessments of
brains from patients with TBI demonstrate signifi-
cant reductions in hypocretin neurons (Shekleton
et al., 2010). Even after 6 months of recovery, many
patients with TBI exhibit persistently low hypocretin-
1 levels, suggesting sleep disorders as a chronic con-
sequence of TBI (Baumann et al., 2007). Disturbed
orexin signaling contributes to sleep-wake disorders
by causing excessive daytime sleepiness and circadian
rhythm disruption (Nishino et al., 2000; Baumann
et al., 2005). Moreover, decreased CSF levels of orexin
have been associated with poorer clinical outcomes
and higher risk of depression and sleep disorders
(Brundin et al., 2007). Low CSF histamine levels
have also been reported in patients with narcolepsy
and after TBI (Kanbayashi et al., 2009). Injury may
cause lifestyle changes that can affect sleep and
arousal, including changes to diet or medication, exer-
cise routines, or environmental factors. Furthermore,
insomnia may develop because of psychologic trauma
resulting from personal assaults or accidents that
resulted in TBI. Lastly, direct injury to sleep-wake
brain centers, such as the VLPO or suprachiasmatic
nucleus, may also explain development of circadian
rhythm disorders.
Comorbid disturbances in the sleep-wake cycle

have also been observed after severe TBI in mice.
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One critical study tracked nonrapid eye movement
sleep for up to 4 months postinjury and found
changes in delta power contributed to predictive sei-
zure modeling (Konduru et al., 2021). The authors
state that delta power increased in injured mice ver-
sus no craniectomy control mice; however, responding
injured mice displayed lower delta power at a chronic
time point compared with injured mice without sei-
zure activity. Moreover, sleep spindle duration and
dominant band frequency is lower in PTE rats com-
pared with sham controls during the transition from
stage III to REM sleep (Andrade et al., 2017). These
studies suggest sleep-wake disturbances may be a
potential biomarker for post-traumatic seizures.
Once the prevalence of PTE-associated comorbidities is

established, the search for biomarkers for PTE and
recovery may benefit from the neurocognitive network
model of affective and/or sleep disorders currently
applied to primary epilepsy. Since sensorimotor, cogni-
tive, psychiatric, and sleep-wake comorbidities are so
common after TBI, it is important for future work to
incorporate quality of life measurements as indicators of
recovery outcomes when assessing new therapeutic tar-
gets. Additionally, the potential of drug-drug interactions
between antiepileptogenesis or antiseizure medications
and those that reduce comorbid symptoms should also be
evaluated. By examining cellular and synaptic changes
in the affected neural circuitry, we can better understand
how learning and memory deficits occur. Using newer
technologies, such as chemogenetics or optogenetics,
could substantiate the relationship between behavior
and physiology in a meaningful way.

VI. Pharmacological Interventions for Post-
Traumatic Epilepsy

Epilepsy and epileptogenesis are both associated
with a wide range of comorbidities, ranging from mild
to severe, and often originating from overlapping pro-
cesses. Therefore, disease modification has two major
components: antiepileptogenesis and/or the reduction
of its associated comorbidities. Antiepileptogenesis
includes the prospect of the prevention of epilepsy,
seizure modification, or cure. Prevention can be either
partial or complete. Partial prevention consists of
delayed epilepsy development or reduced severity,
whereas complete prevention is the termination of
the development of epilepsy. Modification of seizures
is considered a form of partial protection and can
come in many forms: reduced frequency, milder seizure
type, and shorter duration (Cross and Lagae, 2020).
Antiepileptogenic treatments can be administered
before or after the onset of seizures to prevent or delay
the development of epilepsy. This contrasts modifica-
tion of the epileptogenic insult in which a treatment is
given before the onset of seizures and alters epilepto-
genesis by modifying the injury or insult directly.

Modification of seizures, if they occur in either case,
can be milder in their progression, severity, frequency,
or duration (Reddy and Estes, 2016a). On the other
hand, a cure refers to the absolute and permanent
reversal of the epileptic state such that no seizures
occur after withdrawal of treatment. Treatments that
treat or modify comorbidities of PTE may alleviate or
reverse the progression of somatosensory or functional
impairment, cognitive decline, anxiety, depression, or
any other epilepsy-associated comorbidity. Treatments
of comorbidities may be singular or broad with their
ability to affect a range of symptoms.
To date, the current management of clinical PTE

remains as prophylactic treatment with first-line
therapies, such as levetiracetam or phenytoin, for the
first seven days after initial injury (Temkin et al.,
2001). These ASMs have shown efficacy in focal epi-
lepsies but have limited effectiveness in PTE. Many
studies have reported evidence that there is currently
no pharmacological prevention or treatment of post-
traumatic seizures, and PTE is often refractory to
medical management (Piccenna et al., 2017; Zimmer-
mann et al., 2017). Novel drug discovery requires
reliable animal models to elucidate the complex path-
ophysiology of epileptogenesis, validate targets, and
test agents for efficacy and safety.
Rodent studies have been particularly useful for

discovering novel therapeutic targets, although there
are limited studies that have specifically investigated
interventions for PTE. This next section reviews
research that has focused on pharmacological preven-
tion of PTE. Table 5 details the available data on
experimental and clinical trials of therapeutic inter-
ventions for PTE. Since there are not many studies
that have tested therapeutic interventions for epilep-
togenesis after brain injury, we have also included
studies that identify changes in hyperexcitability—
either through chemically or electrically induced sei-
zure threshold changes. Furthermore, as recovery fac-
tors from the TBI often interfere with the ability to
record immediate (<24 hour) and early seizures (first
week), most of these studies focus on late seizure (>1
week) occurrence. As previously stated, immediate
and early seizures are thought to occur as a result of
the impact itself and not considered classically epilep-
tic. Moreover, immediate and early seizures do not
have predictive validity for late seizure occurrence.
Therefore, studies that seek to demonstrate therapeu-
tic potential in PTE should focus on models that use
long-term EEG recording and can identify late and/or
early seizures after a latent period. Figure 5 depicts
the timeline progression of immediate/early seizures
and spontaneous epileptic seizures after TBI.

A. Antiseizure Medications. Antiepileptic drugs,
recently renamed as antiseizure medications, are the
mainstay for the control of early and late seizures,
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TABLE 5
Therapeutic interventions for PTE

System/Focus Model Species Effect on Epileptiform Activity Disease Modification Reference

AEDs
Carbamazepine Human condition Clinical Not effective for

preventing or modifying
seizures

N/A Temkin, 2009

Phenytoin Human condition Clinical Not effective for
preventing or modifying

seizures

N/A Temkin, 2009

Phenobarbital Human condition Clinical Not effective for
preventing or modifying

seizures

N/A Temkin, 2009

Valproate Human condition Clinical Not effective for
preventing or modifying

seizures

N/A Temkin, 2009

Carbamazepine FPI Rat Not effective for
preventing or modifying

seizures

N/A Eastman et al., 2010

Valproate FPI Rat Reduced seizure
frequency; reduced
cumulative seizure

duration

N/A Eastman et al., 2010

Carisbamate FPI Rat Not effective for
preventing or modifying

seizures

N/A Eastman et al., 2011

Gabapentin Cortical undercut Rat Evoked epileptiform
discharges in cortical

slices 1d and 14 d post-
gabapentin

Reduced GFAP
expression

Li et al., 2012

Phenytoin Penetrating brain
injury

Rat Reduced incidence,
frequency, and duration of
nonconvulsive seizures in
a dose-dependent manner

No effect on lesion
volume or body
weight with
treatment

Mountney et al.,
2013

Ethosuximide Penetrating brain
injury

Rat Reduced incidence,
frequency, and duration of
nonconvulsive seizures in
a dose-dependent manner

No effect on lesion
volume or body
weight with
treatment

Mountney et al.,
2013

Levetiracetam Human condition Clinical Trended with lower
seizure incidence in

clinical patients but never
reached significance

N/A Hazama et al., 2018

Retigabine CCI Mouse Reduced seizure
susceptibility; reduced

seizure frequency

Reduced
inflammation;
lessened BBB

breakdown; reduced
neurodegeneration

Vigil et al., 2020

Inhibitory/Excitatory Pathways
Halothane

(anesthetic,
GABAA agonist)

FPI Rat No seizures occurred
while subjects were under

anesthesia

N/A Eastman et al., 2010

Ceftriaxone (beta-
lactam antibiotic
and stimulator of
GLT1 expression)

FPI Rat Reduced cumulative
seizure duration

Preserved GLT1
expression

Goodrich et al., 2013

Ceftriaxone (beta-
lactam antibiotic
and stimulator of
GLT1 expression)

FPI Rat Reduced cumulative
seizure duration

Preserved cortical
inhibitory

interneuron function
with continuous

treatment

Hameed et al., 2019

2-deoxyglucose
(glycolysis
inhibitor)

CCI Mouse Restored excitatory and
inhibitory synaptic
activity; reduced

epileptiform activity

Reduced
neurodegeneration of
PV1 interneurons

Koenig et al., 2019

Imidizodiazepine
KRM-II-81
(selective for
alpha2/3
containing
GABAAR)

CCI Mouse Reduced hyperactivity N/A Witkin et al., 2020

mTOR pathway
Rapamycin CCI CD1 mouse Reduced seizure incidence

(13% versus 50%); reduced
seizure frequency;
lessened behavioral

component of seizures

Reduced
neurodegeneration;
attenuated mossy
fiber sprouting

Guo et al., 2013

(continued)
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TABLE 5—Continued
System/Focus Model Species Effect on Epileptiform Activity Disease Modification Reference

Rapamycin CCI Mouse Reduced seizure frequency Reduced
neurodegeneration;
attenuated mossy
fiber sprouting;

stabilized
neurogenesis

Butler et al., 2015

Rapamycin CCI Mouse Modified synaptic and
tonic GABAAR-mediated

currents.

N/A Butler et al., 2016

Inflammation
Minozac CCI CD1 mice Reduced seizure

susceptibility
Reduced

inflammation;
improved cognitive

impairments

Chrzaszcz et al.,
2010

Kineret (IL-1R
antagonist)

CCI Pediatric mouse Reduced seizure
susceptibility

Improved
neuropathology;

improved cognitive
impairments

Semple et al., 2017

Monophosphoryl
lipid A and
Pam3Cys

CCI; kindling Rat Reduced seizure
susceptibility; slowed

kindling rate

Reduced TNF-alpha
brain levels

Hesam et al., 2018

Glycyrrhizin
(HMGB1
inhibitor)

CCI Pediatric mouse Not effective for
preventing or modifying

seizures

Reduced HMGB1
brain levels, edema,

and microglial
activation

Webster et al., 2019

Plasticity
BDNF blocker

(TrkB-Fc)
Ex vivo Schaffer

collateral lesions in
organotypic

hippocampal slice
cultures

Pediatric mouse Reduced hyperexcitability
of CA3 neurons

Attenuate mossy fiber
sprouting

Gill et al., 2013

LM22A-4 (partial
agonist of TrkB)

Cortical Undercut Rat Decreased incidence of
epileptiform discharges

Increased
parvalbumin

immunoreactivity

Gu et al., 2018

PTX BD4-3 (partial
agonist of TrkB)

Cortical Undercut Rat Reduced PTZ
susceptibility.

N/A Gu et al., 2018

Hypothermia
Hypothermia FPI Rat Reduced PTZ

susceptibility
Attenuate mossy fiber
sprouting; did not

exhibit
neuroprotective

effects on cell loss

Atkins et al., 2010

Hypothermia FPI Rat Abolished ictal activity up
to 10 weeks after

hypothermia treatment

N/A D’Ambrosio et al.,
2013

Electrical Stimulation
Deep Brain

Stimulation
Human Condition Clinical Reduced seizure frequency N/A Piacentino et al.,

2018
Hyperphosphorylation of Tau
Sodium Selenate FPI Rat Increased latency to

seizures/epileptiform
activity

Ameliorated
enlargement of
ventricles and

hippocampal atrophy

Liu et al., 2016.

Cell Transplantation Therapy
Cell transplantation

therapy
(GABAergic
progenitors from
medial ganglionic
eminence)

CCI Mouse Reduced incidence of PTE Improved cognitive
impairments;

Zhu et al., 2019

Other
Rimonabant CB1R

antagonist 1 or 10
mg/kg
immediately or
20min after TBI

FPI Rat Reduced KA susceptibility N/A Echegoyen et al.,
2009

Ketogenic Diet FPI Rat Not effective for
preventing or modifying

seizures

N/A Schwartzkroin et al.,
2010

Creatine FPI Rat Not effective for
preventing or modifying

seizures

Reduced oxidative
stress markers

Saraiva et al., 2012

Exercise (Treadmill) FPI Rat Lengthened latency to
seizures; reduced seizure
duration; reduced PTZ

susceptibility

N/A Silva et al., 2013

(continued)
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irrespective of the source of such seizures. More than
three dozen ASMs, including first, second, and third,
or recent generation, have been extensively tested
against post-traumatic seizures (Reddy, 2020). Per-
haps the most accessible experiments for PTE are
those that evaluate the effect of clinically available
ASMs for beneficial effects on disease modification or
recovery outcomes. Early studies with positive but
uncontrolled results led to widespread use of pheno-
barbital and/or phenytoin for prophylaxis against
immediate and long-term post-traumatic seizures.
One survey, conducted in 1973, reported over 60% of
clinicians supported immediate pharmacological pro-
phylaxis for head injuries, with 40.3% of respondents
prescribing treatment of 1 or more years after injury
(Rapport II and Penry, 1973). Current evidence sug-
gests treatment of early seizures does not influence
the incidence of PTE (Agrawal et al., 2006). Within
the clinical setting, carbamazepine, phenytoin, pheno-
barbital, and valproate all failed to prevent long-term
PTE after head injury (Temkin, 2009). In a recent
clinical trial, Hazama et al. (2018) evaluated the ben-
efit of levetiracetam after head trauma. The study
consisted of 403 patients, 227 of whom were treated
with levetiracetam for early post-traumatic seizure
prophylaxis. Although patients receiving levetirace-
tam treatment trended with lower seizure incidence,
this trend never reached statistical significance.
These ASMs have shown successful seizure control in
other epilepsy disorders but have little effect on pre-
venting or modifying epileptogenesis.
Preclinical research has demonstrated a similar lack

of efficacy in reducing PTE incidence with ASMs. East-
man et al. (2010) used the FPI model to systematically
detect potential antiepileptic effects of carbamazepine
and valproate 1-month postinjury. Carbamazepine (up
to 12mg/kg/d for 4.5 days) treatment did not reduce
seizure frequency or duration, nor did it reduce inci-
dence of PTE. However, valproate (480 mg/kg/d for

7 days) reduced seizure frequency and cumulative sei-
zure duration. Comorbidities were not evaluated as
part of these investigations. In a follow-up study, caris-
bamate administration was also found to be ineffective
at reducing seizure burden or preventing PTE (East-
man et al., 2011) Recently, retigabine, an ASM that
was removed from the commercial market in 2017, has
shown some promise in reducing seizure burden after
CCI in mice. Not only did retigabine administration
reduce inflammation, BBB breakdown, and neurode-
generation at the impact site, but also significantly
reduced frequency of spontaneous seizures and
enhanced susceptibility to chemoconvulsants (Vigil
et al., 2020). Gabapentin administration inhibited syn-
apse formation and decreased excitatory synaptic
activity after cortical injury (Li et al., 2012). Gabapen-
tin treatment also reduced the expression of astrocytic
GFAP expression and thrombospondin-1 protein, as
well as the number of fluoro-jade B1 stained cells.
These results suggest gabapentin may modify path-
ways associated with plastic changes in brain excitabil-
ity, but a controlled in vivo study with continuous EEG
recording has yet to confirm an antiepileptogenic
effect.
Lastly, Mountney et al. (2013) demonstrated admin-

istration of ethosuximide, or phenytoin dose-depen-
dently attenuates in the incidence, frequency, and
duration of nonconvulsive seizures after a penetrating
blast-like brain injury. In this study, a loading dose of
either ethosuximide or phenytoin was given 30-
minute post-TBI, followed by a maintenance dose
8 hours later. Four doses of each drug were used to
provide a full dose-response curve, with the two high-
est doses of each drug showing significance in reduc-
ing seizure burden. Although these data are promising,
this study only follows the rats for up to 72 hours post-
injury and identifies immediate and early nonconvulsive
seizures, which are considered to be caused by direct
impact rather than epileptogenesis. Furthermore, there

TABLE 5—Continued
System/Focus Model Species Effect on Epileptiform Activity Disease Modification Reference

C-10068 (Dextrome-
thorphan
Derivative)

PBBI Rat Lengthen latency to
seizures; reduced seizure

frequency, reduced
cumulative seizure

duration

Reduced
inflammation

Lu et al., 2015

Atipamezole, Alpha2
Adrenergic
Receptor
Antagonist

FPI Rat Reduced PTZ
susceptibility

Improved functional
recovery

Nissinen et al., 2017

Creatine
Supplementation,
May Be Needed
Long-Term;
300mg/kg P.O. 4
wks

FPI Rat Lengthened latency to
seizures; decreased

duration of tonic-clonic
seizures; reduced PTZ-
induced epileptiform

discharges

Reduced
neurodegeneration

Gerbatin et al., 2019

Progesterone Weight drop Rat Reduced length of PTZ-
induced seizures; lessened
behavioral component of

seizures

N/A Ghadiri et al., 2019
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is little evidence that suggests early seizure prophylaxis
to reduce incidence of long-term spontaneous seizures.

B. Targeting Neuronal Excitability Network Path-
ways. The balance of inhibition and excitation in
the brain is very delicate. TBI triggers changes that
ultimately result in the disruption of this harmony,
leading to increased risk of seizures and epileptogene-
sis. One approach aimed at minimizing excitotoxicity
and preserving cortical inhibition after TBI is the
administration of ceftriaxone, a common b-lactam
antibiotic with BBB permeability. Ceftriaxone is also
a known potent stimulator of glutamate transporter-1
(GLT-1) expression, a critical protein responsible for
95% of total glutamate clearance in the rat brain
(Lehre and Danbolt, 1998). Ceftriaxone (200 mg/kg)
rescues TBI-induced downregulation of GLT-1 expres-
sion within the first week after injury (Goodrich
et al., 2013). Authors also report a reduction in
regional GFAP expression relative to untreated rats.
A follow-up study reported ceftriaxone significantly

suppressed both the frequency and duration of post-
traumatic seizures weeks after injury (Hameed et al.,
2019).
Enhancing GABAergic inhibitory tone is a well-

established mechanism for seizure prophylaxis, as
many ASMs are approved in this class. GABAA recep-
tors are also targets of general anesthetics, such as
halothane, that can completely suspend seizure activ-
ity after FPI, although it leaves the subjects immobile
(Eastman et al., 2010). Neurosteroids that modulate
tonic inhibition can suppress seizures (Carver et al.,
2016; Chuang and Reddy, 2020). Recent attention has
been directed toward selective, rather than nonselec-
tive (e.g., diazepam), positive allosteric modulators of
GABA due to a lower risk for somnolence, motor
impairment, and drug abuse (Witkin et al., 2018).
KRM-II-81 is an orally bioavailable compound selec-
tive for a2/3-containing GABAA receptors. Witkin
et al. (2020) used several models of pharmaco-resis-
tant epilepsy, including kainate-induced mesial

Fig. 5. Timeline progression of TBI-induced early seizures and late spontaneous recurrent seizures. TBI triggers acute cascades resulting in immediate
or early seizure, referred to as post-traumatic seizures, and propels the process of epileptogenesis. ultimately resulting in chronic epileptic state with
spontaneous recurrent seizures. The general premise about epileptogenesis can be divided into three distinct stages. The first stage occurs with an ini-
tial brain injury event. This is followed by the second latent stage that can last a varied amount of time. The third stage is the chronic period in which
the patient suffers from spontaneous seizures. The time required to reach chronic stage represents a window of opportunity for testing interventions in
people at high risk for epilepsy after brain injuries.
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temporal lobe seizures, CCI-induced focal injury, and
corneal-kindling, to investigate the antiepileptogenic
properties of KRM-II-81. They report complete sup-
pression of corneal-kindling seizures in treated mice
as well as reduced paroxysmal discharges after kai-
nate injection. Furthermore, repeated injection of
KRM-II-81 administration immediately reduced neu-
ral hyperactivity for weeks after CCI, suggesting
drug resistance or tolerance was negligible. Many
ASMs have little therapeutic impact after TBI for
controlling post-traumatic seizures; therefore, the cor-
tical excitatory reductions by KRM-II-81 encourage
future preclinical and clinical studies.
Lastly, 2-deoxyglucose (2-DG), a competitive

inhibitor of hexokinase, the rate-limiting enzyme in
glycolysis, has also shown anticonvulsive properties
both in vivo and in vitro. Recently, Koenig et al.
(2019) explored the compound as a disease modify-
ing agent to prevent epileptogenesis after TBI.
Using the CCI model of brain contusion, they report
acute 2-DG treatment attenuated hyperexcitability
in the brain and prevented development of epilepti-
form activity in slices taken 3–5 weeks after injury.
Additionally, 2-DG treatment reduced the loss of
parvalbumin-expressing interneurons, thereby
showing neuroprotection against TBI-induced cell
loss.

C. Neuroinflammatory Modulation. Targeting
neuroinflammation has been a therapeutic strategy
in epilepsy disorders for decades, for good reason.
Neuroinflammation involves both resident microglia
and astrocytes, as well as peripheral immune sig-
naling when the BBB integrity becomes compro-
mised (Reddy et al., 2016b). Furthermore, reactive
glial cells can be the drivers of abnormal neuronal
activity by impairing the inhibitory action of GABA
receptors, reduced neurotransmitter clearance, and
disrupted homeostasis (Robel and Sontheimer,
2016). To this end, a handful of compounds have
been tested as potential antiepileptogenics for PTE.
Although glycyrrhizin, a HMGBI1 inhibitor, was
recently found to be ineffective at preventing seiz-
ures or reducing susceptibility after TBI, its admin-
istration did reduce edema and microglial activation
after CCI in pediatric mice (Webster et al., 2019).
Toll-like receptor agonists, such as monophosphoryl
lipid A and Pam3Cys, significantly slowed amygdala
kindling after TBI, demonstrating a reduction in
seizure susceptibility (Hesam et al., 2018). Treated
rats also exhibited a lessened behavioral response
to kindled seizures similar to nontraumatic rats.
Given that monophosphoryl lipid A and Pam3Cys
are safe and have clinical use as components in vac-
cines, they have the potential to be used in combina-
tion with other agents as a therapeutic strategy for
PTE.

Minozac, a suppressor of proinflammatory cytokine
upregulation, has been shown to significantly reduce
electroconvulsive shock seizures after TBI in mice
(Chrzaszcz et al., 2010). These data were coupled with
a favorable reduction in TBI-induced metallothionein
expression in the CA1, suggesting a reduction in oxida-
tive stress with treatment. Similarly, kineret, an IL-1
receptor antagonist, reduces seizure susceptibility and
improved neuropathology associated with epileptogene-
sis 2 weeks after CCI (Semple et al., 2017). Moreover,
mice treated with kineret showed significantly lower
seizure frequency compared with vehicle-treated con-
trols at 5 months postinjury. Combined with improved
neurobehavioral function, these data provide evidence
of IL-1 signaling as a mediator of injury-associated
epileptogenesis.

D. Disrupting the Mammalian Target of Rapamycin
Pathway. As discussed above, the mTOR signaling
pathway is implicated in the regulation of multiple
cellular functions that contribute to epileptogenesis.
The current hypothesis is such that mTOR signaling
is hyperactivated after TBI and triggers multiple
downstream mechanisms of PTE. Several studies of
mTOR inhibition have demonstrated a beneficial
effect of rapamycin, an mTOR inhibitor, in the treat-
ment of epilepsy disorders and improving recovery
outcomes after TBI.
Within PTE models, three studies have shown reduced

seizure incidence, frequency, or duration after CCI in
mice (Guo et al., 2013; Butler et al., 2015; Butler et al.,
2016). Guo et al. (2013) observed a significant reduction
in seizure incidence, dropping from 50% to 13% in
treated versus untreated mice. It was also noted that
when rapamycin-treated mice did exhibit seizures, the
behavioral component was lessened, suggesting seizure
intensity was also reduced by mTOR inhibition. Butler
et al. (2015) reported a trend of reduced seizure fre-
quency and incidence with continuous rapamycin treat-
ment but indicated mTOR inhibition was not sufficient
to prevent epileptogenesis after CCI. Furthermore, a fol-
low-up study confirmed rapamycin treatment can modify
synaptic and tonic GABAA receptor-mediated currents,
hinting toward another mechanism of antiepileptogenic
properties (Butler et al., 2016).
Similar to reports on status epilepticus, rapamycin

administration resulted in reduced neurodegenera-
tion and attenuated mossy fiber sprouting. Unfortu-
nately, the beneficial effects of rapamycin appear to
cease upon discontinuation of the drug in both animal
and clinical trials (Buckmaster et al., 2009). Lifelong
treatment with mTOR inhibitors is questionable given
the known adverse effects, such as immunosuppression,
risk of cognitive impairment, and negative influences
on normal growth and development in children or ado-
lescents (Bissler et al., 2008).
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E. Targeting of Neuronal Plasticity. Neurotrophic
factors like BDNF, nerve growth factor, and fibroblast
growth factor promote cell survival, growth, and differ-
entiation through activation of signaling pathways after
TBI. Abnormalities of interneurons and cell loss play
critical roles in epileptogenesis after TBI; therefore,
enhancing the function of remaining parvalbumin1
interneurons may be a novel therapeutic approach to
preventing PTE. BDNF is known to have positive influ-
ences on interneuron growth and function through acti-
vation of its receptor, TrkB (Marty et al., 1997). A
recent study tested the hypothesis that supporting
TrkB function may decrease epileptogenesis after corti-
cal undercut (Gu et al., 2018). LM22A-4 or PTXBD4-3,
both partial agonists of the TrkB receptor, were admin-
istered up to 2 weeks after injury. PTXBD4-3 reduced
seizure susceptibility to PTZ but did not affect seizure
duration or latency. LM22A-4, however, decreased the
incidence of epileptiform discharges compared with
untreated controls. Activation of the TrkB receptor also
resulted in increased parvalbumin immunoreactivity,
suggesting that partial activation of TrkB may be neu-
roprotective to interneurons, thereby preserving inhibi-
tory circuity and reducing seizure susceptibility. A
different approach explored the use of BDNF blockers
in ex vivo organotypic hippocampal slice cultures with
collateral lesions and observed reduced hyperexcitabil-
ity of CA3 pyramidal neurons as well as a reduction in
aberrant mossy fiber sprouting (Gill et al., 2013). These
differing approaches provide supporting evidence for
TrkB signaling modification, but further investigations
are needed to confirm antiepileptogenic effects.

F. Hypothermia. Focal cooling can be broadly neu-
roprotective and has suppressed seizures in animal
models, providing evidence that therapeutic hypother-
mia should be investigated within the context of PTE.
Blind, randomized studies of FPI found that a graded
cooling up to 2�C significantly reduced seizure fre-
quency and duration in rats. Cessation of ictal activ-
ity lasted up to 10 weeks after hypothermia
treatment ended (D’Ambrosio et al., 2013). Another
study reported reduction of seizure threshold to chem-
ical convulsants and reduced mossy fiber sprouting
with hypothermia treatment but did not exhibit neu-
roprotective effects on cell loss (Atkins et al., 2010).
Hypothermia appears to be safe with few negative
consequences; however, more research is needed to
optimize treatments and define its clinical value.

G. Electrical Stimulation. Deep brain stimulation
(DBS) has shown to be remarkably effective, safe, and
practical for the treatment of movement disorders, such
as tremor, dystonia, and Parkinson’s disease (Deuschl
et al., 2006). These successes inspired the application of
DBS for other neurologic disorders, including epilepsy.
The action of DBS is multifaceted and complex, with
high-frequency stimulation (>50 Hz) mimicking the
effects of ablative procedures by inducing a reversible

functional lesion (Benabid et al., 2002). Lower-frequency
stimulation has been associated with anticonvulsant
effects, changes in adenosine receptor expression, and
altered levels of neurotransmitters and hormones in
cerebrospinal fluid. The basis of DBS is to improve
abnormal synchrony between different brain regions.
One case study was found using DBS as a potential ther-
apeutic intervention for PTE. The patient reported a
post-traumatic episode during childhood that resulted in
subsequent seizures throughout adulthood. ASM treat-
ments, such as carbamazepine, phenobarbital, and clo-
nazepam, had all been unsuccessful in providing
adequate symptomatic control of seizures. Bilateral DBS
hippocampal stimulation resulted in a progressive
decrease in seizure frequency over the 8 years of follow-
up, although some clinicians postulate whether the sur-
gical placement of the DBS system may have contrib-
uted to the disruption of the epileptic foci in this case
(Piacentino et al., 2018). Other studies have found
behavioral improvements and functionality using DBS
after TBI, although seizure outcomes were not applicable
in these cases (Lee et al., 2013; Shin et al., 2014; Rezai
et al., 2016).

H. Tau Hyperphosphorylation. Tau is a microtu-
bule-associated protein that has roles in maintaining
neuronal health, axonal transport, and microtubule sta-
bilization. Tau phosphorylation is a normal metabolic
process critical to tau’s ability to bind to microtubules.
Hyperphosphorylation of tau can cause aggregation and
form insoluble fibrillar deposits in tissues. Hyperphos-
phorylated tau is a long-known hallmark of neurodegener-
ative diseases, such as Alzheimer’s disease and dementia;
however, the causal role of TBI-induced tauopathy has
been debated for decades (Castellani and Perry, 2019).
Recent studies have confirmed moderate and severe brain
injury can trigger the formation of pathologic tau aggre-
gates, linking TBI to increased risk of Alzheimer’s disease
(Edwards et al., 2020; Wu et al., 2020).
Sodium selenate mitigates hyperphosphorylated

tau by antagonizing PP2A activity and can improve
TBI outcomes. Liu et al. (2016) administered sodium
selenate (1mg/kg/d), a less toxic form of selenium, via
osmotic pumps for 12 weeks after FPI. Treatment
with sodium selenate ameliorated the enlargement of
ventricles and hippocampal atrophy, which often
accompanies brain injury. Additionally, the latency
period to spontaneous epileptiform activity, such as
seizures or discharges, was extended compared with
vehicle-treated rats, suggesting possible interruption
of the epileptogenic process. Although this is the only
study to specifically investigate the effects of sodium
selenate on PTE, sodium selenate has been demon-
strated to suppress seizures, improve comorbidities,
and reduce seizure susceptibility in experimental
models of Lafora disease and temporal lobe epilepsy
(Jones et al., 2012; Sanchez-Elexpuru et al., 2017).
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I. Cell Transplant Therapies. Cell transplantation,
including genetically modified cell types, have been
tested as a recovery-enhancing treatment after TBI.
Outcome measures include the effects of treatment on
lesion volume, severity of neurodegeneration, axonal
injury, edema, motor ability, and cognitive function
(Jackson et al., 2017). Although positive data have
emerged from these studies, most reports have not
measured development of spontaneous seizures as an
outcome. One recent study, however, found the trans-
plantation of GABAergic progenitors derived from the
embryonic medial ganglionic eminence migrated, inte-
grated, and restored post-traumatic decreases in synap-
tic inhibition (Zhu et al., 2019). Using a CCI model of
PTE, mice were recorded using continuous 24/7 video-
EEG for between 7 and 20 days at 4 months postinjury.
Since most models of PTE find the onset of seizures to
be between 20 and 90 days, this timeline was assumed
to be after onset of spontaneous epileptiform activity.
Incredibly, no electrographic seizures were observed in
TBI mice that were implanted with medial ganglionic
eminence cells, whereas five of eight untreated mice
exhibited repeated ictal events. Cell transplantation
therapy also resulted in improved memory precision in
transplant mice using the novel object location test.
Together, these results provide powerful evidence of anti-
epileptogenesis using cell-based therapies by restoring
long-term deficits in both synaptic inhibition and
neurobehavioral impairments. However, this study
was limited by the relatively small cohort sizes and
shortened length of EEG recording. Follow-up stud-
ies could easily address these limitations. This work
establishes a promising framework for future studies
to evaluate other populations of neurons for cell
transplantation therapies for PTE.

J. Dietary and Phytochemical Therapeutic Strate-
gies. Studies dating back to the 1920s have shown
that diet and exercise can improve seizure control for
patients with epilepsy, with a special emphasis on the
ketogenic diet (Wilder, 1921). The ketogenic diet is a
high-fat, adequate-protein, and low-carbohydrate diet
that has been shown to reduce seizure frequency by
over 50% in children and adolescents but has not
demonstrated evidence of disrupting the epileptogenic
process (Neal et al., 2008). Similar to clinical indica-
tions, the ketogenic diet was found to not be effective
in preventing PTE after brain injury (Schwartzkroin
et al., 2010). However, regular treadmill exercise not
only lengthened the latency to seizure onset, but also
reduced ictal duration and susceptibility to PTZ-
induced seizures in rats (Silva et al., 2013). Creatine
supplementation to the diet, on the other hand, has
produced contradicting results. Gerbatin et al. (2019)
report decreased duration of tonic-clonic seizures
and reduced PTZ-induced epileptiform discharges.
Creatine supplementation was also found to reduce
neurodegeneration of parvalbumin1 interneurons in

the hippocampus at 1-month postinjury. These results
required long-term administration of daily creatine.
Saraiva et al., however, found no reduction on convul-
sive parameters induced by PTZ in the first week
after TBI, but did reduce oxidative damage at the
impact site (2012). Together, these studies suggest
creatine supplementation may not be a sufficient pro-
phylactic for early post-traumatic seizures but may
possess long-term downstream effects which stabilize
epileptogenesis.
Cannabis and related compounds have recently

broke foreground in epilepsy disorders with the USA
FDA-approval of Epidiolex for Lennox-Gastaut and
Dravet syndromes in 2018 (Golub and Reddy, 2020a).
Cannabidiol has yet to be evaluated for post-trau-
matic epilepsy, but Rimonabant (SR141716A), a CB1
receptor antagonist may modify disease progression.
CB1 receptors are present on both excitatory and
inhibitory nerve terminals, where they inhibit gluta-
mate and GABA release, respectively. Therefore,
agents which act at this receptor may have multiple
effects on neurotransmission. Interestingly, rimona-
bant is a proconvulsant that has been demonstrated
to lower threshold to kainate-induced seizures. Block-
ing CB1 receptors prevented increased seizure suscepti-
bility in an experimental model of febrile seizures (Chen
et al., 2007b). Similar results were found in a rat model of
PTE in which a single injection of rimonabant reduced
long-term hyperexcitability and susceptibility to kainic
acid (Echegoyen et al., 2009). Rimonabant administration
after LFPI reversed the overexpression of mGluR5 in late-
stage brain injury, thereby lengthening latency to PTZ-
induced seizures (Wang et al., 2016c; 2016d). However,
these studies are limited by their use of secondary convul-
sants, such as PTZ and kainic acid, and did not use contin-
uous EEG recording. Moreover, a recent report found
investigated the therapeutic effects of D9-tetrahydrocan-
nabinol on repetitive mild traumatic brain injury and
found postinjury administration reduced anxiety, depres-
sive-like behaviors, and mitigated injury-induced deficits
in short-term working memory (Bhatt et al., 2020). More
research is needed in this field to fully understand how
these compounds may positively or negatively affect recov-
ery outcomes.
Atipamezole, a synthetic a2 adrenergic receptor

antagonist, is used mainly in veterinary medicine as
it is indicated for the reversal of sedative and anal-
gesic effects of dexmedetomidine and medetomidine
in dogs. Treatment with atipamezole reduced PTZ
seizure susceptibility at 14 weeks after TBI and
improved motor performance but did not prevent
the development in spontaneous seizures (Nissinen
et al., 2017).
Dextromethorphan, typically used as an over-the-

counter cough suppressant, has multiple mechanisms
of action including acting as a nonselective serotonin
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reuptake inhibitor, sigma-1 receptor agonist, and
blocks NMDA glutamate receptors at high doses. The
dextromethorphan derivative, C-10068, was found to
reduce non-convulsive seizure frequency and cumula-
tive seizure duration in a penetrating ballistic-like
brain injury model of PTE (Lu et al., 2015). The most
efficacious dose of C-10068 also reduced inflammation
and reactive microglia accumulation around the
lesion site. However, this study reported little
improvement in neurobehavioral function and con-
tinuous EEG recording was only performed for up to
72 hour postinjury.
Lastly, steroid hormones have been proven to be

neuroactive and protective in a variety of CNS disor-
ders (for review see Reddy and Estes, 2016a). Neuro-
steroids regulate the plasticity of synaptic and
extrasynaptic GABAA receptors involved in the patho-
physiology of epilepsy. Progesterone is the precursor
to allopregnanolone, which acts as a positive allosteric
modulator and direct activator of GABAA receptors to
enhance inhibition in the brain. A recent study utiliz-
ing the weight-drop model of PTE reported a reduced
duration of PTZ-induced seizures after progesterone
treatment (Ghadiri et al., 2019). The behavioral
component of seizures was also reduced, suggesting
decreased seizure intensity and neuroprotection.

K. Novel Epigenetic Interventions. Epigenetic
interventions, such as histone modifiers, represent a
novel therapeutic pathway that remains to be fully
explored. Global and regional changes in gene expres-
sion due to epigenetic modification have been observed
after TBI and in epilepsy disorders (Golub and Reddy,
2020b). TBI is known to increase HDAC activity in
the brain, resulting in reduced H4 acetylation and
increased seizure susceptibility (Dash et al., 2010b;
Huang et al., 2012; Reddy et al., 2018b). Reversing
hyperacetylation improves motor function and reduces
the inflammatory response (Zhang et al., 2008). Fur-
thermore, post-translational histone modifications,
such as histone methylation and acetylation, have also
strongly implicated in TBI-induced neuropsychiatric
disorders (Sagarkar et al., 2017).
Epigenetic HDAC inhibitor treatments, such as val-

proic acid, sodium butyrate, and suberoylanilide
hydroxamic acid (SAHA), have been recently identi-
fied as potential disease modifying agents. Valproate
has been administered as an anticonvulsant drug for
decades, yet its inhibitory effect on HDAC activity
was not discovered until 2001 (Gottlicher et al., 2001).
Valproate administration reduced neuronal damage,
improved cognitive outcomes, and decreased BBB per-
meability in a CCI model of TBI (Dash et al., 2010b).
Although experimental and clinical trials using val-
proate for PTE have not been effective, some of the
observed neuroprotective properties may be linked to

this mode of action (Temkin, 2009; Eastman et al.,
2010).
Recently, Reddy and team discovered inhibiting

HDAC hyperactivity via sodium butyrate treatment
retarded the rate of hippocampal kindling in a model
of temporal lobe epilepsy (Reddy et al., 2018a).
Sodium butyrate treatment also reduced aberrant
mossy fiber sprouting in the hilar region of the hippo-
campus. In addition to blocking a broad spectrum of
HDAC enzymes, sodium butyrate is also a known
anti-inflammatory agent and shows neuroprotection
after stroke (Reddy et al., 2017; Park and Sohrabji,
2016). Stroke is a common cause of epileptogenesis in
animal models and humans (Reddy et al., 2017).
These data point toward the potential of sodium buty-
rate as a multifunctional approach to reducing sev-
eral pathologies associated with epileptogenesis.
In a drug screening study with 870 unique com-

pounds, SAHAwas identified as a potential antiseizure
drug with selective inhibition of HDAC1 and HDAC3
proteins (Ibhazehiebo et al., 2018). Downstream activ-
ity of SAHA results in increased transcription factors
crucial to expression of genes needed to induce cell dif-
ferentiation. Additionally, recent study concluded that
SAHA administration after TBI protected against neu-
ronal injury by reducing oxidative stress and inflam-
mation by inducing the inducible nitric oxide synthase/
nuclear factor-erythroid factor-2related factor/antioxi-
dant response element (iNOS/Nrf2/ARE) pathway (Xu
et al., 2018). Mice treated with SAHA exhibited signifi-
cantly improved grip test scores and reduced water
content in the brain compared with untreated mice.
SAHA (Vorinostat) is FDA-approved in patients with
cutaneous T cell lymphoma; therefore, validating addi-
tional indications in the clinical setting will be a much
faster and cost-effective process. Currently, an ongoing
phase 2 clinical trial is evaluating the safety and effi-
cacy of SAHA in pediatric patients with drug resistant
epilepsy (NCT03894826). Results from this study are
forthcoming.
As new biomarkers for PTE are identified, future

therapeutic strategies could also include miRNA
mimics or antisense oligonucleotides. For example,
recent preclinical studies of epilepsy have attempted
to control epileptogenesis by regulating expression of
miR-146a and found that intranasal delivery of
miRNA-146a mimics improved seizure onset and
reduced hippocampal damage after pilocarpine admin-
istration (Tao et al., 2017). An additional study found
similar results in immature rats after an intracerebro-
ventricular injection of miR-146a (Wang et al., 2018).
Furthermore, miRNA-146a mimics have been shown
to ameliorate injury cascades after TBI (Zhang et al.,
2020). Although this method has yet to be studied in
PTE directly, studies involving epilepsy or TBI as a
singular pathology model have been promising.
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There are many studies that highlight disease-mod-
ifying effects of test treatments on TBI and comorbid-
ities (Yun Ng and Lee, 2019), but evidence of an
antiepileptogenic effect is rare. Furthermore, many
studies investigating PTE have done so by measuring
seizure threshold to chemical convulsant administra-
tion after injury. Although this information is valu-
able, it does not speak toward the agent’s effect on
development of spontaneous seizures and prevalence
of long-term epilepsy.
Traditional management of epilepsies has involved

the evaluation of the electroclinical phenotype; how-
ever, seizures are a symptom of many different
causes. Interventions for PTE require the disruption
of underlying maladaptive network processes as well
as protection against functional impairment. Antisei-
zure medications are often used for prophylaxis
against early TBI-induced seizures but are ineffective
at preventing long-term PTE (Wat et al., 2019).
Although progress in the field continues to be made,
the issue remains as to whether more effective agents
will be discovered once the distinct causal processes
of PTE are determined and whether these more pre-
cise therapeutics will have an improved efficacy and
beneficial impact when used earlier in the epilepto-
genic process.

VII. Conclusions and Future Directions

Head injury is a leading cause of acquired epilepsy.
Epileptogenicity that occurs after TBI is a complex
chronic network disorder with hyperexcitability and
neural connectivity for hypersychronization. PTE
research has progressed slowly due to many complex
issues. The federal funding agencies, such as the U.S.
Department of Defense and National Institutes of
Health, have made TBI and PTE research a top prior-
ity because of the disease burden in military and civil-
ian people at risk for chronic disabling conditions
after brain injuries. TBI is a leading cause of PTE,
especially for young adult persons. About 35%–40% of
people with PTE have onset within six months; 50%
within one year; and nearly 80% within two years of
brain injury. The PTE latency is highly variable and
may occur even 15 years after head injury. The delay
in SRS development presents a significant challenge
for clinical and preclinical investigations. However,
such latency period represents an exceptional oppor-
tunity for therapeutic interventions. Presently, there
is renewed emphasis to identify both the cellular and
molecular pathways through which seizures are
orchestrated by TBI. The clinical prognosis via con-
trolled studies is essential.
Our understanding of epileptogenesis is continuously

evolving as animal models are improved to simulate
the human condition. FPI and CCI models are the
leading experimental models of PTE, and several

research groups have implemented continuous EEG
recording as the gold standard of epileptiform brain
activity. These models are very helpful for further elu-
cidating the mechanisms of epileptogenesis and testing
novel therapeutic interventions. There are critical dif-
ferences in injury patterns, genetic factors, and out-
come parameters that need to be considered in the
context of model validation for pathophysiology, seizure
frequency, and behavior deficits reminiscent of human
PTE. Furthermore, a new line of imaging and protein
biomarkers is emerging, and advances in machine
learning EEG analysis will aid in seizure prediction
and patient diagnoses. An evolving interest in this field
is finding the genetic basis of differential susceptibility
to PTE by identifying factors that may contribute to
variable outcomes among populations exposed to the
same brain injury, even though only a fraction will
later develop seizures. (Chuang and Reddy, 2018a;
Reddy et al., 2021).
Treating TBI and preventing PTE is a complex and

daunting challenge. Heterogenous injury categories,
variances in pathologic responses, differential diagnosis
of epileptic seizures versus psychogenic nonepileptic
seizures, and difficulty powering both clinical and pre-
clinical trials make this task even more complex. The
critical goal of epilepsy research is to identify therapeu-
tics that can prevent, interrupt, or reverse the epilepto-
genic process (Clossen and Reddy, 2017). Ideally,
therapeutic strategies should also relieve PTE-associ-
ated comorbidities and thereby help improving the
quality-of-life issues, including social and employment
opportunities. As discussed in this review, such an
intervention has yet to be identified; however, the last
decade has provided promising data demonstrating dis-
ease modifying, anti-inflammatory, and neuroprotective
effects of selected test compounds, suggesting this goal
is not unrealistic. Overall, there is greater need to opti-
mize preclinical and clinical research to prevent PTE
after TBI. To optimize and achieve this critical goal,
there are many challenges and critical gaps in knowl-
edge that need to be addressed, including: (a) recruit-
ment of new teams with multidisciplinary expertise to
study TBI/PTE and their comorbidities; (b) optimize
preclinical models and markers to reduce replication of
efforts and to improve predictive value of experimental
models to the clinic; (c) uncover cellular and molecular
pathologic signals and network reorganization in brain
regions associated with PTE; (d) identify precise latency
periods and valid biomarkers for longitudinal monitoring
of therapeutic strategies for prevention of PTE; and (e)
identify the most promising strategies for preclinical and
clinical development of treatments to prevent PTE and its
comorbidities. Therefore, future research efforts should be
directed toward filling these gaps to open new frontiers in
the field of PTE therapeutics. The national research agen-
cies are actively considering special programs and
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roadmaps to encourage multidisciplinary thematic
research as per the PTE research benchmarks. Acceler-
ated collaborative efforts are essential for uncovering key
milestones in the pathophysiology and intervention of
PTE.
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