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Serum opacity factor (SOF) is a virulence determinant expressed by a variety of streptococcal and staphylococcal species including
both human and animal pathogens. SOF derives its name from its ability to opacify serum where it targets and disrupts the
structure of high-density lipoproteins resulting in formation of large lipid vesicles that cause the serum to become cloudy. SOF is a
multifunctional protein and in addition to its opacification activity, it binds to a number of host proteins that mediate adhesion of
streptococci to host cells, and it plays a role in resistance to phagocytosis in human blood. This article will provide an overview of
the structure and function of SOF, its role in the pathogenesis of streptococcal infections, its vaccine potential, its prevalence and
distribution in bacteria, and the molecular mechanism whereby SOF opacifies serum and how an understanding of this mechanism
may lead to therapies for reducing high-cholesterol concentrations in blood, a major risk factor for cardiovascular disease.

1. Introduction

Serum opacity factor (SOF) was first discovered in 1938
by the Australians Ward and Rudd [1] as a substance
produced by group A streptococci that caused serum to
become cloudy (Figure 1), hence its name. SOF was found
to act on a lipoprotein fraction of serum [2, 3] and
various enzymatic activities were proposed to account for
the opacity reaction of SOF including those as a cholesterol
esterase [4] and apolipoproteinase or aspartic protease [5].
Subsequently, SOF was found not to be a hydrolase but
rather induced opacification of serum by binding to high-
density lipoproteins (HDLs), displacing apolipoprotein A-I
(apo A-I) and disrupting the structure of HDL resulting in
the formation of large, lipid particles that cause serum to
become opaque [6, 7].

SOF is expressed by a variety of streptococci and
staphylococci including both human and animal pathogens.
SOF is expressed by approximately 50% of the invasive

isolates of the group A streptococcus, Streptococcus pyogenes,
an important human pathogen that colonizes the human
skin and the oral cavity where it may stimulate mild to severe
local inflammatory responses resulting in pharyngitis in the
throat and impetigo in the skin [8]. In susceptible hosts, these
infections can lead to life-threatening complications such as
sepsis, necrotizing fasciitis, and toxic shock, or to debilitating
sequelae such as rheumatic fever and glomerulonephritis [8].
The adhesion to and subsequent colonization of the host
by S. pyogenes have been attributed to a number of surface
exposed molecules including SOF [9]. Furthermore, SOF has
been found to contribute to the pathogenesis of streptococcal
infections in animal models [10–12] and to evoke protective
immune responses in humans and animals [13] indicating its
potential as a virulence determinant and vaccine candidate.

SOF is a unique protein exhibiting multiple functions
including not only its ability to opacify serum but also
an ability to bind to a variety of host proteins such as
fibronectin, fibrinogen, and fibulin-1which are involved in
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Figure 1: Opacification of human serum by SOF. Human serum
was incubated overnight with either buffer control (left) or with
1 μg/ml of recombinant SOF (right).

bacterial adhesion. This paper will provide an overview of
the methods of assaying for SOF activity, the structure and
function of SOF, its prevalence and distribution in bacteria,
its role in contributing to the pathogenesis of streptococcal
infections, its vaccine potential, and how investigations into
the mechanisms whereby SOF opacifies serum may lead to
therapies to help control atherosclerosis.

2. Assays for Detecting and Measuring
the Opacity Reaction of SOF

2.1. Soluble Forms of SOF. Whether a particular strain
of bacteria expresses SOF can be determined by several
techniques. Activity of SOF in growth supernatants of
bacteria can be tested by centrifugation of overnight cultures
of the organisms and addition of 100 μL of the supernatant
to 1 mL of horse serum containing sodium azide to inhibit
bacterial growth. After incubating overnight at 37◦C, the
opaqueness of serum is very visible (illustrated in Figure 1)
and this can be quantified by measuring the absorbance at
405 nm.

SOF activity that is noncovalently associated with the
bacterial surface can be detected by extracting a streptococcal
pellet from 10 ml of culture with 0.5 ml of 1% SDS and
adding 100 μl of the extract to 1 ml of horse serum and
recording the absorbance at 405 nm after an overnight
incubation at 37◦C. SDS extraction has been shown to be
an accurate and sensitive method for the detection of SOF
activity [14].

Bacterial extracts can also be examined for opacifying
activity by solid agar techniques. One example of this is
the application of bacterial extracts containing SOF to agar
that has been mixed with 50% horse serum [15]. Opacifying
activity is denoted by opaque areas surrounding the applied
sample. Alternatively, extracts containing SOF can be sub-
jected to SDS-PAGE and the SDS-gel is overlaid with agar
containing 50% horse serum [10, 16, 17]. Opacifying activity
is detected by the appearance of opaque bands after a period
of incubation in a moist environment. This last technique

has the advantage over other assays in that active fragments
of SOF can be distinguished from inactive fragments without
the need for purification.

2.2. Insoluble Forms of SOF. Extraction with SDS will only
remove SOF that is loosely associated with the surface or SOF
that is still in the membrane and is not covalently attached. In
fact, only a minor amount of the total SOF is released by SDS
extraction (Courtney et al., unpublished results) as would be
expected if most of the SOF on the streptococcal surface were
covalently attached via a sortase recognition site. SOF that is
covalently linked to the cell wall can be detected by washing
and suspending the bacteria from 10 ml of culture in 1 ml of
PBS, adding 100 μl of this suspension to 1 ml of horse serum
containing 0.2% sodium azide to block bacterial growth and
recording the A405 after an overnight incubation. Negative
controls would include streptococci that do not express SOF
or SOF-negative mutants.

SOF can also be immobilized on surfaces and used in
the opacity reaction. In one example of this type of assay,
plastic tubes were coated with fibronectin and reacted with
SOF, which binds to fibronectin. The tubes were then washed
multiple times followed by the addition of horse serum
and incubation for several days. SOF remained bound to
fibronectin and was still able to opacify serum after 3 days
and multiple washes [10]. This suggests that SOF that has
bound to fibronectin-coated surfaces in the host may retain
its ability to opacify serum and such binding may allow SOF
to accumulate in the host during an infection.

2.3. Microtiter Method. For assays in which the amount of
reagents is a limiting issue, a microtiter method can be
used [15]. For example, serum from human donors may
be limited. Purified lipoproteins are somewhat expensive
and therefore, techniques that reduce the amounts of these
reagents can be cost saving. In a typical assay, 200 μl of serum
or purified lipoprotein is added to microtiter wells and then
various concentrations of SOF are added. The microtiter
plate should be incubated in a moist environment at 37◦C
and the absorbance at 405 nm recorded at timed intervals.

2.4. Substrates for the Opacity Reaction of SOF. Horse serum
is commonly used to measure the opacity reaction of SOF
due to its availability and cost. Variations in the final
absorbance values have been noted with different lots of
horse serum and other animal sera probably due to variations
in the concentration of HDL. Other animal serum may also
be used, however, not all animal sera works with all serotypes
of SOF. For example, SOF from M types 9, 11, 28, and 49
opacifies horse serum, but SOF from these serotypes does
not work well in rabbit serum [18] and there may be other
examples where SOF from a particular serotype of S. pyogenes
does not work well in certain animal sera as this has not been
examined in detail.

Human sera can be used as well but care needs to be
taken to ensure that no neutralizing antibodies are present
in the sera. Antibodies against SOF are found in human
sera due to prior infections with SOF-positive streptococci
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and in some instances these antibodies can neutralize the
opacity reaction of SOF from a particular serotype. In fact,
type-specific antibodies in serum that neutralize SOF have
been used to serotype strains of S. pyogenes [18–20]. This
form of serotyping was particularly useful for those strains
that were refractory to M protein serotyping and is based
on the findings that the SOF type-specific determinants co-
vary with the type-specific determinants of M proteins. Thus,
identification of the SOF serotype predicted the M serotype
with only a few exceptions [21]. This is mostly of historical
significance as strains are currently genotyped by sequencing
the 5′ terminus of the emm gene (the gene for M protein).

Purified HDL can also be used as a substrate for the
opacity reaction of SOF. Other lipoproteins such as very
low-density lipoprotein (VLDL) and low-density lipoprotein
(LDL) are not opacified by SOF and can serve as negative
controls [6].

It is also important to note that serial dilutions of
extracts with SOF or bacteria should be used in the above
assays, at least initially, as the opacification of serum can
be reduced at high concentrations of SOF. Thus, a false
negative or a low value may be obtained if only one
concentration of extract is tested and that contains high levels
of SOF. In most opacity assays SOF appears to be optimal
at around 1 μg/ml. However, there are many serotypes of
S. pyogenes in which the SOF has not been tested and
there may be some that exhibit a different dose response
curve.

3. Structure and Function of SOF

3.1. Structure of SOF. The gene for SOF was first cloned
and sequenced by Rakonjac et al. [16] and a repeating
peptide was identified within this sequence that bound
fibronectin. Kreikemeyer et al. [22] cloned and sequenced
a gene for a fibronectin-binding protein from S. pyogenes
that was subsequently found to be virtually identical to sof
cloned by Rakonjac et al. [16] A number of sof genes from
other serotypes were later cloned and sequenced or available
from whole genomes of streptococci (Table 1). Analysis of
the predicted amino acid sequences of SOF indicates that
the leader sequence and the C-terminal regions containing
the fibronectin-binding domain are highly conserved and
there are additional stretches of highly conserved sequences
interspersed among areas of high variation (Figure 2). There
is approximately 40 to 60% homology between SOF from
different serotypes of S. pyogenes (Figure 3). Interestingly,
the secondary structure of SOF from different serotypes of
S. pyogenes has been remarkably retained even across those
areas of high divergence (Figure 4). However, there is less
similarity between SOF from S. pyogenes and that from S.
dysgalactiae (31% to 38%) and even less with SOF from
S. suis (∼20%) (Figure 3). Note that SOF from S. suis has
been termed OFS (opacity factor of S. suis) [11] but we
have retained the term SOF in this review for reasons of
consistency.

Some of the diversity of structure of SOF is related to
its propensity for gene rearrangement. Wertz et al. [31]
identified several modules of sof that are highly conserved

Table 1: Accession numbers for sof sequences.

SOF serotype Nucleotide sequence
accession numbers

References

sof2 AF019890, CP000260 [10, 23]

sof4 AY162273, CP000262 [13, 23]

sof12 AF387738, CP000259 [23, 24]

sof13 AF367016 [17]

sof22a UO2290 [16]

sof28 AF082074, CP000056 [10, 25]

sof49 AF057697, CP000829 [10, 26]

sof61 AF138804, AF139752
direct

submission

sof63 AF191974 [27]

sof75b X83303 [22]

sofVT3.1 AF367012 [17, 28]

sofVT3.2 AF367011 [17]

sofVT21c AF367014 [17]

sofVT37.1 AF367015 [17]

sof90d AF367013 [17]

S. dysgalactiae sof e Z22150 [29]

S. suis sof
AY819647, AB325706
AB325707, AB325708
AB325709, AB325710

[11, 30]

aSequence is identical to that of sof75
bWas initially termed sfb1
cVT indicates virulence typing, a PCR-based genotyping scheme
dAlso termed sofVT2.2
eAlso termed fnbA.

and are duplicated numerous times within sof and contain
inverted repeats. Such duplications and inversions can lead to
higher frequencies of recombinational events and variations
in protein sequences that may aid the streptococcus in
escaping immune surveillance.

There are several protein motifs that are conserved in
SOF (Figure 2). A leader sequence that targets proteins for
transport across the membrane is highly conserved among
SOF from various serotypes of S. pyogenes. There are variants
of the leader sequence in SOF from S. suis that in some cases
result in expression of a truncated peptide [30]. There is an
LPXXG anchoring motif that serves as a site for the sortase
enzyme that cleaves SOF and covalently attaches it to the cell
wall [32].

Another conserved domain in SOF is the von Willebrand
Factor A (vWFA) domain, so named because it was originally
found in the blood coagulation protein von Willebrand
factor. The vWFA domain is vital for proper control
of hemostasis and thrombosis and a wide spectrum of
other cellular activities, which are mediated primarily by
ligand/receptor interactions [33]. A metal ion-dependent
adhesion site (MIDAS) is found within the vWFA domain
of SOF, as it is in many of the vWFA domains in eukaryotic
proteins. Based on functions of eukaryotic vWFA domains,
this domain in SOF may mediate interactions with host
cell integrins and/or other cellular receptors. Furthermore,
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Figure 2: A schematic indicating the location of functional domains within SOF. The yellow segments in the top bar indicate regions of
SOF that are highly variable (vary in ≥60% of serotypes), black segments indicate highly conserved regions of SOF (conserved in ≥60%
of serotypes. Only SOFs from S. pyogenes were used to generate this illustration. There are variations in the size of SOF from different
serotypes but most are composed of ∼1050 amino acids including the leader sequence. The black lines signify the general location and size
of the indicated domains. Abbreviations: vWFA: von Willebrand Factor A domain, MIDAS: metal ion-dependent adhesion site, Fn/Fgn:
fibronectin/fibrinogen.
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Figure 3: A comparison of the similarity between SOF from various serotypes of S. pyogenes and other streptococci (top). The bottom part
of the figure illustrates the phylogenetic tree of SOF from different streptococci.

because a MIDAS motif is found in all SOFs, metal ions
are likely to be involved in this binding activity. While SOF
is known to mediate streptococcal adhesion/invasion (see
Section 3.2.2), there has been no investigation into the role
of the vWFA domain of SOF in the attachment and invasion
of host cells by streptococci and its function remains to be
resolved.

A repeating peptide is found in the C-terminus of all
SOF from S. pyogenes and S. dysgalactiae that have been
examined to date. This repeating peptide domain binds
fibronectin and it shares homology with a number of
other fibronectin-binding repeat peptides of other bacterial
proteins [9]. However, the C-repeat peptide of SOF from S.

suis has little similarity with that of S. pyogenes and does not
bind fibronectin and its function remains to be determined
[11].

3.2. Functions of SOF

3.2.1. Opacification Reaction of SOF. That high-density
lipoprotein (HDL) is the target of SOF in the opacity reaction
is supported by the findings that SOF neither opacified
human serum depleted of HDL nor serum from apo-AI−/−

mice, which are deficient in HDL [6]. Furthermore, SOF
readily opacified purified HDL but did not opacify LDL (low-
density lipoprotein) or VLDL (very low-density lipoprotein).
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Figure 4: The predicted secondary structure of SOF is highly con-
served among SOF from different serotypes. Only three serotypes
were selected for comparison in order to have a manageable figure.
The top figure indicates the degree of hydrophobicity/hydrophilicity
and the bottom figure indicates location of helixes, turns, and B-
sheets. The numbering of the amino acids is indicated.

It has been previously suggested that SOF may be an
enzyme with esterase or lipase activity or that it is an aspartic
protease that degrades apo A-I [4, 5, 34]. That SOF is not a
hydrolytic enzyme is indicated by the following observations:
(1) Purified, recombinant SOF did not degrade any of the
apolipoproteins of HDL; (2) SOF did not exhibit any lipolytic
activity; (3) A battery of lipase and protease inhibitors
including an aspartic protease inhibitor had no effect on the
opacity reaction of SOF. Although one inhibitor, dichloro-
isocoumarin, did inhibit the opacity reaction, this was due
to nonspecific modification of amino acids leading to loss
of binding of SOF to HDL and thereby, loss of opacifying
activity [6].

So, if SOF is not a hydrolytic enzyme, then how does
it opacify serum? Clues to a possible mechanism can
be gathered from studies on HDL and its disruption by
chaotropic agents. HDL contains a central core composed
primarily of cholesterol esters and triglycerides surrounded
by a layer of cholesterol, phospholipids, and apolipoproteins
(mainly apo A-I and A-II). These components of HDL
are stabilized by kinetic factors and destabilization can be
induced by detergent, thermal, or chaotropic perturbations
that lead to dissolution of HDL and the concomitant release
of free apo A-I [35–37]. The kinetic stability of HDL is

HDL

CERM

Free apo A-I

CERM

Neo HDL

rSOF
Apo A-I

Apo A-II
Apo E

Figure 5: Model of the opacification reaction of SOF with
high-density lipoproteins (HDLs). SOF initiates the opacification
reaction by binding to HDL. SOF is a heterodivalent fusogen that
crosslinks two or more HDL particles and simultaneously induces
the release of free apo A-I and promotes the fusion of the resultant
particles culminating in the formation of a cholesterol-ester rich
microemulsion (CERM) and neo-HDL. Neo-HDL is deficient in
free cholesterol/cholesterol esters and rich in phospholipids and apo
A-II. Some HDL particles also contain apo E, which is preferentially
retained in CERM. Structures are not drawn to scale. CERM
particles range from 100 to 500 nm in size whereas HDL particles
are ∼8.5 nm [38]. Current data indicates one CERM particle
contains cholesterol-esters from ∼400,000 HDL particles. It is these
CERM particles that cause serum to become opaque due to their
large size and insolubility in aqueous solutions.

a measure of the rate at which the particle dissolves and
determines the half life of the particle in solution. Thus,
agents that interfere with the kinetic stability of HDL will
lead to rapid dissolution of the structure of HDL.

SOF binds to HDL with high affinity and according
to chemical kinetics, SOF is a heterodivalent fusogen that
induces the release of free apo-I, the formation of a neo-
HDL particle that contains apo A-I and A-II and is enriched
in phospholipids, and the formation of cholesterol ester-
rich microemulsion (CERM) that fuses to from very large
CERM particles (Figure 5). An electron micrograph of these
particles is shown in Figure 6 and serves to illustrate the
fusion of particles and the formation of large, lipid particles.

It is the formation of these large CERM particles that
causes opacification of serum due to their large size and
insolubility in aqueous media. SOF is potent and catalytic
with a 10 nM concentration of SOF totally opacifying 8 μM
HDL (an 800 fold excess of HDL) in 1 hour at 37◦C. SOF
induces the transfer of nearly all of the neutral lipids of ∼
100,000 HDL particles (∼8.5 nm diameter) to a single CERM
particle (100–500 nM diameter) [7, 38]. A key component of
HDL that is required for the opacity reaction is a labile form
of apo A-I and the rate-limiting step in the opacity reaction
is the release of free apo A-I. [39]. Other apolipoproteins
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Figure 6: Electron micrographs of HDL treated with SOF. Indicated concentrations of rSOF were incubated with human HDL overnight at
37◦C, stained with 2% phosphotungstic acid, and electron micrographs taken at the indicated magnification.

will not substitute for apo A-I. Murine HDL is opacified at
faster rate than human HDL and this is most likely due to the
higher hydropathy of human apo A-I as compared to that of
murine apo A-I, which would allow a faster displacement of
murine apo A-I by SOF [39].

3.2.2. Role of SOF in Streptococcal Adhesion and Invasion. The
two major portals for group A streptococcal infections are the
tissues of the skin and oral cavity. It has long been recognized
that there are serotypes of S. pyogenes that primarily cause
skin infections, serotypes that primarily infect oral sites, and
serotypes that infect tissues of both the oral mucosa and
skin. SOF is expressed by those serotypes that infect both the
oral epithelium and skin tissues. Thus, SOF may be involved
in the colonization of the host by certain serotypes of S.
pyogenes.

One of the first indications that SOF may actually be
involved in streptococcal adhesion was the finding that SOF
binds to fibronectin [10, 16, 22, 27, 28], an important
component of the extracellular matrix and host surfaces that
has been found to mediate adhesion of a wide variety of
bacteria (Figure 7). Antiserum against SOF blocked adhesion
of S. pyogenes to HEp-2 cells suggesting that SOF is involved
in streptococcal adhesion to host cells [40]. SOF was found

to react with the N-terminal, 30 kDa fragment of fibronectin,
the same region of fibronectin that binds to S. pyogenes
[40]. Coating latex beads with SOF promoted adhesion
of these beads to HEp-2 tissue culture cells and also
enhanced phagocytosis of these beads [40]. Gillen et al. [41]
demonstrated that both the C-terminal fibronectin-binding
domain of SOF (FBD) and SOF in which the fibronectin-
binding domain was deleted (SOFΔFn) are involved in
adhesion and invasion of host cells, as both of these forms
mediated adhesion/invasion but not as efficiently as full
length SOF. Furthermore, SOFΔFn was more effective than
the C-terminal FBD in promoting adhesion of latex beads
to host cells, but the FBD fragment was more effective in
promoting invasion of host cells by latex beads than SOFΔFn.
Interestingly, mutations that attenuated the opacity reaction
of SOF had no effect on adhesion indicating that these
functions are separate and distinct [41].

Another fibronectin-binding protein of S. pyogenes is
Sfbx and its gene is found immediately downstream of sof
(Figure 8) and is cotranscribed with sof as a bicistronic
message [24]. Timmer et al. [12] engineered nonpolar
mutants in these two genes in M type 49 S. pyogenes in
order to evaluate their respective roles in host cell invasion.
Inactivation of sof in S. pyogenes caused a 50% reduction
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Figure 7: Model of fibronectin. Fibronectin (Fn) is a large, dimeric glycoprotein with multiple functional domains. The 28 kDa N-terminal
domain is the primary domain that interacts with most streptococci and staphylococci, but the collagen-binding domain may also interact
with streptococci expressing protein F (or Sfb) [42]. SOF also binds to the N-terminal 28 kDa domain of Fn via the C-terminal, repeating
peptide of SOF [40]. Fibulin-1 binds to the C-terminal, heparin-binding domain of Fn [43]. The interaction of streptococci with the N-
terminal domain of soluble Fn is thought to induce a conformational change that exposes the RGD domain [44]. The RGD domain of Fn
can then bind to integrins on the surface of host cells and tether the bacteria to the surface. Such interactions induce actin polymerization
and promote internalization of the bacteria [45]. Streptococci and SOF can also bind to Fn that has already bound to surfaces. Hep: heparin,
Fib: fibrin/fibrinogen.

in cellular invasion of HEp-2 tissue culture cells, whereas
inactivation of sfbx had no effect on streptococcal invasion.
Complementation of the SOF-negative defect with a sof
plasmid conferred invasion levels that were higher than the
parent strain. The higher degree of invasion was likely due to
increased expression of sof as it was on a multicopy plasmid.
These data suggest that it is SOF and not Sfbx that is the
major contributor to streptococcal adhesion/invasion. That
inactivation of SOF did not completely eliminate invasion
is most probably due to the fact that S. pyogenes utilizes
multiple adhesins to mediate attachment and invasion [46].

To further compare the roles that SOF and Sfbx may have
in invasion, plasmids containing these genes were introduced
into Lactobacillus lactis, a bacterium that does not bind
fibronectin nor invade host cells. L. lactis expressing SOF
had 1000-fold increase in host cell invasion as compared to
only a 10-fold increase in L. lactis expressing Sfbx [12]. These
data clearly indicate that SOF mediates invasion of host cells
and is superior to Sfbx in this function. Similar results were
found when these two genes were introduced into M type 1 S.
pyogenes, which does not contain either of these genes [12].

The finding that Sfbx contains a fibronectin-binding
domain homologous to that in SOF yet was not effective
in promoting invasion suggested that fibronectin-binding
domain of SOF may not be involved in host cell invasion by
streptococci and indicates that SOFΔFn region is involved
in this process. This hypothesis was confirmed by the
findings that complementation of the SOF-negative defect
with SOFΔFn fully restored wild-type levels of invasion
[12]. These data indicate that SOF can mediate streptococcal
invasion of host cells in a fibronectin-independent manner.

A host cell component(s) that could mediate this
fibronectin-independent interaction with SOF was not iden-
tified in the above studies. Recently, we found that fibulin-1,
a component of the extracellular matrix, binds to SOF and
the fibronectin-binding domain of SOF was not required for

this interaction [49]. Fibulin-1 bound to recombinant SOF
from multiple serotypes suggesting that fibulin-1 binding
domain is likely conserved among SOF from different
serotypes. Insertional inactivation of sof diminished fibulin-
1 binding to S. pyogenes by 50%. Purified SOFΔFn also
blocked binding to S. pyogenes by 45%. These findings
suggest that SOF is a major but not the only streptococcal
receptor for fibulin-1.

Thus, fibulin-1 could serve as a receptor for SOF that
mediates adhesion of streptococci to surfaces of the host.
Fibulin-1 also binds fibronectin and these two proteins
are found together in the extracellular matrix [50, 51].
Interestingly, full length SOF containing the fibronectin-
binding domain was found to dramatically enhance the
interactions of SOF with a fibronectin-fibulin-collagen com-
plex suggesting that such complexes may be involved in the
adhesion of S. pyogenes to host surfaces [49]. It was proposed
that interactions between collagen and fibronectin induced
a conformational change in fibronectin that promoted
interactions with fibulin-1 and SOF. An illustration of this
complex is provided in Figure 9.

Fibrinogen is another host protein that interacts with
SOF via the β-subunit of fibrinogen [52]. A SOF-negative
mutant bound 50% less fibrinogen than did its wild-type
parent indicating that SOF is a major fibrinogen-binding
protein on S. pyogenes, but not the only one. This is not a
surprising finding as other streptococcal proteins such as M
proteins and M-related proteins also bind fibrinogen [53].
The fibrinogen-binding domain of SOF was localized to
the same C-terminal repeat domain that binds fibronectin.
Furthermore, fibrinogen blocked the binding of SOF to
fibronectin, indicating that these two proteins bind to the
same domain in SOF. Thus, whether it is fibronectin or
fibrinogen that interacts with SOF will probably depend
upon the local concentration of these two proteins. In blood,
it is likely that fibrinogen will be the major binding protein
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Figure 9: Model of quaternary complex between gelatin, fi-
bronectin, fibulin-1, and SOF. Although SOF can bind to fibulin-1
independently of fibronectin, mixed binding experiments indicated
that SOF binds much better to a complex of fibulin-1, fibronectin,
and gelatin. Such complexes are possible because fibronectin
contains independent binding sites for gelatin (collagen), fibulin-
1, and SOF. Also SOF can react with fibulin-1 and fibronectin via
independent binding domains. It is postulated that interactions
between gelatin and fibronectin induces a conformational change in
fibronectin that facilitates interactions with other ligands and SOF
and enhances adhesion of streptococci to host surfaces. Reproduced
from [49] with permission.

because the concentration of fibrinogen in blood is ∼10
times higher than fibronectin. Fibrinogen is also found in the
extracellular matrix and it also interacts with fibronectin and
fibulin-1. This raises the question of whether such complexes
between fibronectin, fibrinogen, and fibulin-1 could enhance
interactions with SOF to promote streptococcal adhesion.

3.2.3. SOF Is a Virulence Determinant. A comparison of the
survival curves of mice challenged intraperitoneally (IP) with

an M type 2 strain of S. pyogenes and its SOF-negative
mutant provided the first indication that SOF is a virulence
factor [10]. Only 7% of mice challenged IP with wild-
type S. pyogenes survived, whereas 80% of mice survived a
challenge with its SOF-negative mutant. Complementation
of the SOF defect with a plasmid expressing SOF fully
restored virulence as none of the mice challenged with the
complemented strain survived. Subsequent work indicated
that insertional inactivation of sof also inactivated sfbx
[54], a gene for another fibronectin-binding protein that
is cotranscribed with sof. However, it was demonstrated
that the complemented strain expressed SOF and not Sfbx
indicating that it is SOF that is responsible for restoring
virulence [54]. An IP challenge of mice with either a wild-
type M 49 strain of S. pyogenes or its Sfbx-negative mutant
resulted in a death rate of 100%, whereas 25% of the mice
challenged with the SOF-negative mutant survived [12].
Heterologous expression of SOF in an M type 1 strain of S.
pyogenes (an sof and sfbx negative strain) increased mortality
by 25% over that of the wild-type strain, whereas expression
of Sfbx in this same strain had no effect on survival rate [12].
These data suggest that it is SOF and not Sfbx that is the
major contributor to virulence of S. pyogenes.

Further support for SOF as a virulence determinant came
from studies utilizing a murine model of necrotizing skin
infections by S. pyogenes [12]. The skin lesions were larger
in mice challenged with the wild-type strain as compared
those challenged with the SOF-negative mutant. There was
a 7.7-fold increase in the number of cfu obtained from
tissues infected with wild-type strain as opposed to the SOF-
negative mutant. These data again indicate that it is SOF and
not Sfbx that is responsible for virulence and that SOF may
contribute to virulence by enhancing streptococcal invasion
of host tissues.

Another mechanism whereby SOF may contribute to
virulence is by enhancing resistance to phagocytosis in
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blood. Inactivation of sof in M type 4 S. pyogenes decreased
streptococcal survival and growth in human blood [53].
However, inactivation of sof in M type 2 S. pyogenes had
little effect on growth of S. pyogenes in human blood [10].
The reason for this difference is not clear. It is possible that
the contribution of SOF2 to resistance to phagocytosis is too
slight to make a significant impact on growth during the 3
hours of the bactericidal assay, but may be detectable during
a longer time frame. Supporting this possibility is the finding
that the SOF2-negative mutant was significantly less virulent
than its parent in a mouse model of infection after 24 hours
[10]. Furthermore, a small but consistent decrease in the
growth of the SOF2-negative mutant in human blood was
observed in subsequent repeat experiments (Courtney et al,
unpublished data).

Another possibility for why inactivation of sof2 lacked
impact on growth in blood is that M type 2 streptococci may
express other factors that provide a functional redundancy
and thereby mask the loss of SOF2. It is clear, however, that
SOF4 does contribute to resistance of S. pyogenes to phago-
cytosis in human blood. This contribution does not appear
to involve regulating the deposition of complement onto the
streptococcal surface because ablation of sof4 had no impact
on complement deposition. Thus, the antiphagocytic activity
of SOF may depend on one of its known functions such as its
ability to bind blood proteins such as fibronectin, fibrinogen,
and fibulin-1, to bind to and disrupt HDL, or it may depend
on some other, as yet unidentified mechanism(s). Further
work needs to be done to define the mechanism(s) for
resistance to phagocytosis and to determine if SOF has a role
in resistance to phagocytosis in other serotypes of S. pyogenes.

S. suis also expresses SOF and inactivation of sof in a
serotype 2 strain resulted in decreased virulence in piglets
challenged intranasally [11]. Only one of the nine piglets (4-5
week old) challenged with wild-type S. suis survived, whereas
all nine of the piglets challenged with the SOF-negative
mutant survived. An interesting finding from this study was
that SOF from S. suis did not bind fibronectin. There was
no dramatic difference between parent and mutant strain
in the colonization of tonsils of infected piglets. However,
inactivation of SOF did appear to reduce the invasiveness of
S. suis in 4-5 week-old piglets. The above findings have two
implications. First, SOF may contribute to virulence of S. suis
by increasing invasion; second, fibronectin-binding activity
has no role in this activity.

The disruption of the structure of HDL by SOF may
also contribute to the virulence of streptococci. In addition
to its role in reverse cholesterol transport (see Section 7)
HDL has an important role in controlling inflammation
due to infections. Inflammation stimulated by bacterial
components such as lipopolysaccharide or lipoteichoic acid
is neutralized by HDL [55–57]. HDL reduced mortality in
animal sepsis models and it is thought that HDL helps to
control sepsis and shock by attenuating cytokine responses
to infections [57]. Thus, the dissolution of HDL by SOF
may alter the anti-inflammatory activities of HDL. However,
the interactions between free apo A-I and the macrophage
cholesterol exporter ABCA1 were recently found to not
only enhance cholesterol transport but also to suppress

inflammation [58]. Thus, disruption of HDL and the release
of free apo A-I by SOF may actually promote an anti-
inflammatory response.

HDL also has a role in innate immunity via a number
of antimicrobial agents. HDL contains apo A-I, apo L, and
haptoglobin-related protein, which can kill trypanosomes
[59]. HDL also contains the cathelicidin LL-37, an antimi-
crobial peptide that kills a variety of bacteria including S.
pyogenes [60]. However, LL-37 in a free form can also be
cytotoxic for host cells but this cytotoxicity is inhibited by
lipoproteins in serum [61]. This may be why virtually all of
LL-37 in blood is found associated with HDL, LDL, or VLDL.
This raises the question of whether the interaction between
SOF and HDL can release LL-37 and thereby promote its
cytotoxic effects. HDL also contains a surprising number of
complement regulatory proteins and protease inhibitors [62]
but it is not known if the disruption of HDL’s structure by
SOF alters the functions of these proteins.

Although HDL is an antiatherogenic and anti-inflam-
matory lipoprotein [63], infections and inflammation can
trigger events that not only lead to the loss of these properties
of HDL but also convert HDL to a pro-inflammatory form
that contributes to the pathogenesis of diseases [64–66].
Whether SOF may promote or inhibit this conversion process
during infections remains to be determined

4. Regulation of SOF Expression

Expression of SOF in S. pyogenes is controlled by the
multigene activator (Mga, formerly known as VirR and
Mry), which regulates expression of a variety of virulence
factors including M proteins, M-related proteins, Enn, Sic,
and C5a peptidase [67–71]. The primary Mga regulon will
vary among different serotypes as illustrated in Figure 8.
In S. pyogenes, the sof gene is cotranscribed with sfbx as a
bicistronic message [24]. Mga is optimally expressed during
log phase of growth and is activated by environmental
signals such as elevated CO2, temperature, and iron-limiting
conditions [72–74].

The Mga promoters are categorized based on the number
and location of Mga-binding sites. The Mga promoter of
sof-sfbx is a category B promoter with an Mga-binding site
that is the most distal found to date while all category A
promoters have a more proximal Mga-binding site [67].
Mga is considered to be a response regulator of a two-
component system but its cognate sensor has not yet been
identified. Although homologs of Mga have been found in S.
dysgalactiae, it is not known if these also regulate expression
of SOF [71].

5. Distribution of SOF

5.1. Prevalence and Distribution of SOF in Streptococci and
Staphylococci. Table 2 lists the streptococcal and staphylo-
coccal species that either contain the gene for SOF or that
express a functional form of SOF. SOF has been found in
streptococcal groups A, B, C, F, G, and R. Although SOF
was found in some isolates of S. equi and S. agalactiae [75],
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Table 2: Prevalence of SOF among various bacteria.

Bacteria
Number of strains
positive for
SOF/totala

Reference

Group A streptococcus
S. pyogenes

52/117, 77/125,
51/93

[22, 77, 78]

Group B streptococcus
S. agalactiae

0/14, 0/30, 5/18 [75, 76], ∗
Group C streptococcus
S. equi

4/15, 0/20 [75, 76]

Group D streptococcus
S. bovis, S. equinus,
Enterococcus faecalis b

0/3 [76]

Group F streptococcus
S. anginosusc

2/5, 0/5 [75, 76]

Group G streptococcus
S. dysgalactiae, S.
arginosus, S. canis

20/20, 37/68, 0/36 [29, 75, 76]

Group R streptococcus
S. suis

33/36d [30]

Staphylococcus aureus 0/5 ∗
Staphylococcus
epidermidis

3/3 [79]

apositive for sof gene and/or for opacification of serum by extracts
bformerly Streptococcus faecalis
cformerly S. milleri, it is a heterogeneous group that may also express
group A, C F, or G antigens.
dapproximately 70% of the 33 contained a nonfunctional sof gene.
∗unpublished results from Courtney et al.

Top and Wannamaker [76] found no SOF in 14 isolates
of group B or in 20 isolates of group C. We also did not
find SOF in 30 isolates of group B (unpublished data).
These findings suggest that additional tests need to done to
determine if groups B and C do or do not express SOF. SOF
was not found in streptococcal group D or in Staphylococcus
aureus, but the number of isolates tested was low and further
investigations should be done using a larger number of
isolates. Staphylococcus epidermidis has also been found to
express SOF but only three isolates were tested.

5.2. Streptococcus pyogenes. SOF is expressed by ∼45% of
serotypes of S. pyogenes (Table 3) and by ∼50% of invasive
isolates [21]. There are serotypes of S. pyogenes that primarily
infect tissues of the oral mucosa and serotypes that primarily
infect skin tissues. A subset of those serotypes that infect
skin tissues express SOF and these serotypes also infect oral
tissues (Figure 8). Approximately 60% of skin strains express
SOF. One of the major differences between those serotypes
infecting only the skin and those infecting both sites is the
expression of SOF (Figure 8). Thus, acquisition of SOF by
skin strains may have enhanced their ability to colonize the
oral cavity.

5.3. Streptococcus dysgalactiae. A search for genes with
similarity to sof suggested that fnbA of S. dysgalactiae may
also have the capacity to opacify serum. Cloning, expressing,

Table 3: Distribution of SOF among M protein serotypes of S.
pyogenes.

SOF-positive
serotypes

2, 4, 8, 9, 11, 12, 13, 22, 25, 27, 28, 44, 48,
49, 58, 59, 60, 61, 62, 63, 66, 68, 73, 75,
76, 77, 78, 79, 81, 82, 84, 85, 87, 88, 89,
90, 92, 94, 96, 102, 103, 104, 106, 107,
109, 110, 112, 113, 114, 117, 118, 124

SOF-negative
serotypes

1, 3, 5, 6, 14, 15∗, 17, 18, 19, 23, 24, 26,
29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40,
41, 42, 43, 46, 47, 50, 51, 52, 53, 54, 55,
56, 57, 64, 65, 67, 69, 70, 71, 72, 74, 80,
83, 86, 91, 93, 95, 97, 98, 99, 100, 101,
105, 108, 111, 115, 116, 119, 120, 121,
122, 123

Data from Johnson et al. [77] and Beall et al. [21]. Streptococci are
considered positive if SOF is expressed and/or the sof gene is present.
Note that M types 7, 10, 16, 20, 21, 35, and 45 do not exist as these were
subsequently found not to be group A streptococci.
∗There are conflicting reports regarding whether M15 serotypes are
negative or positive for SOF [77, 80].

and testing the recombinant protein of this gene confirmed
that FnbA from S. dysgalactiae is in fact an opacity factor
[10, 27]. FnbA of S. dysgalactiae should not be confused with
FnbA of S. aureus as no opacifying activity has been found
in strains of S. aureus that have been tested and there is
little similarity between these two proteins except for their
ability to bind fibronectin. Southern blot analyses indicated
that fnbA was present in all 20 of the clinical isolates of S.
dysgalactiae tested [29]. FnbA that opacified horse serum was
expressed by S. dysgalactiae, but unlike most strains of S.
pyogenes, only the cell bound form was found and no activity
was found in culture medium [10]. Although these findings
indicate that fnbA is expressed in S. dysgalactiae, only one
isolate was tested and additional isolates need to be examined
to determine if expression of SOF is a common trait.

5.4. Streptococcus suis. The group R streptococcus, S. suis,
also expresses SOF [11, 30]. As one might guess from its
name, S. suis is primarily a swine pathogen but it can also
cause infections in humans [81]. Serotype 2 strains of S. suis
are the major cause of infections in both swine and humans.
The handling of pigs or pig products and eating undercooked
pork is associated with high risk for infections. S. suis causes
similar diseases in pigs and humans such as meningitis,
septicemia, pneumonia, endocarditis, arthritis, and sudden
death. SOF was identified as a virulence factor in a serotype
2 strain of S. suis using a piglet model of infection [11]. The
sof gene was found in 33 of 36 of strains isolated. However,
about 70% of these strains did not express a functional form
of SOF due to point mutations or gene rearrangements [30].
Four allelic variants of sof were found in S. suis [30]. Type 1
and type 2 variants were functionally expressed, whereas the
type 3 and type 4 variants were not expressed. Type 3 variants
contained a point mutation and type 4 variants contained
insertional elements or exhibited gene rearrangement. The
majority of S. suis isolates that expressed SOF contained the
type 1 allelic variant of sof [30]
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6. Vaccine Potential of SOF

The potential of SOF as a vaccine for group A streptococcal
infections was first highlighted by the findings that rabbit
antisera against SOF from an M type 2 strain of S. pyogenes
not only opsonized and killed M type 2 S. pyogenes but
also opsonized and killed heterologous M types 4 and 28
of S. pyogenes in human blood [13]. Opsonization and
killing of S. pyogenes in human blood is a key indicator
of an effective vaccine against group A streptococci [82].
These findings suggest that there are common, protective
epitopes among SOF from different serotypes that may
be useful in developing vaccines and that immunization
with these common protective epitopes may confer pro-
tection against a wide variety of SOF-positive serotypes.
Furthermore, antibodies against SOF that were purified from
human serum by SOF-affinity chromatography effectively
killed S. pyogenes in bactericidal assays indicating that
SOF can elicit a protective immune response in humans
[13].

In toxicity studies, mice were intravenously injected with
100 μg of SOF or a truncated peptide of SOF and no
overt signs of toxicity were seen [13]. These same mice
then received an IP injection of 100 μg of SOF and again,
without overt signs of toxicity. Subsequent experiments
indicated that these mice were protected against an IP
challenge with S. pyogenes. To determine if the fibronectin-
binding domain of SOF is required to elicit a protective
immune response, mice were immunized subcutaneously
with 25 μg of SOFΔFn, boosted with 25 μg of SOFΔFn
two weeks later, and then challenged IP with S. pyogenes.
The results indicated that subcutaneous immunization with
SOFΔFn evoked high titers against SOF in mice and provided
significant protection against challenging IP infections [13].
Thus, the fibronectin-binding domain of SOF is not required
to stimulate a protective immune response. This does not
mean that the fibronectin-binding domain of SOF could not
contribute to a protective immune response but that it is not
required. Indeed, others have reported that immunization
of mice with the fibronectin-binding domain of SfbI pro-
vided protection against challenge infections of S. pyogenes
[83].

Immunization of mice can evoke a strong antibody
response that can provide protection by several different
mechanisms. Antibodies may block adhesion to host surfaces
by binding to a surface antigen and interfering with its
ability to interact with host receptors. Antibodies may also
bind to and neutralize a virulence factor or antibodies
may opsonize bacteria. In the case above where mice were
subcutaneously immunized with SOFΔFn, an antiadhesive
effect can be excluded because the mice were challenged IP
which circumvents the stages of adhesion and colonization.
It is possible that protection was afforded by antibodies
that neutralized the function of SOF. However, this is
unlikely because we have not been able to evoke neutralizing
antibodies in any of the animals immunized with SOF
even though high-titered antisera were developed against
SOF. The difficulty in developing neutralizing antiserum
against SOF has been noted by other investigators [28].

Thus, the stimulation of opsonic antibodies is the most likely
mechanism for providing protection.

Schulze et al. [84] reported that intranasal immunization
of mice with SOF failed to protect against a lethal mucosal
challenge. These findings suggest that the intranasal route for
administering SOF is not the optimal route for stimulating a
protective immune response, whereas a protective immune
response was evoked by the subcutaneous route. Further
work should be done to determine if other immunization
routes such as intramuscular might be more effective.

The above findings indicate that SOF contains common
epitopes that can evoke opsonic antibodies that may protect
against infections from a variety of serotypes of SOF-positive
S. pyogenes. Furthermore, anti-SOF serum enhanced the
effectiveness of antiserum against M protein to opsonize and
kill S. pyogenes [13]. This is particularly relevant when one
considers that M proteins from some serotypes did not elicit
a very effective immune response and these serotypes were
primarily SOF-positive [85]. Current vaccine efforts have
focused primarily on M proteins, but the more than 100
different types of M proteins complicate vaccine construc-
tion and there are some serotypes whose protective antigens
have not been identified. Thus, inclusion of common,
protective epitopes of SOF may enhance the effectiveness
of M protein-based vaccines and broaden their coverage of
serotypes.

7. SOF as a Therapeutic to Enhance Reverse
Cholesterol Transport

High-plasma cholesterol levels are considered to be a major
risk factor for cardiovascular disease and much effort has
been given to developing therapies to control cholesterol
concentrations. An important target in this fight to control
cholesterol is the pathway for reverse cholesterol transport
(RCT). RCT is the major pathway for removing cholesterol
from peripheral tissues and transporting it to the liver for
disposal (Figure 10). Defects in this pathway can lead to
the accumulation of cholesterol in macrophages that line
blood vessels resulting in plaque formation and subsequent
atherosclerosis. Thus, therapies that can enhance RCT would
be beneficial in controlling atherosclerosis.

SOF is a heterodivalent fusogen that binds and crosslinks
HDL and induces the formation of three major products: free
apo A-I, CERM particles, and a neo-HDL particle (Figure 5).
All three of these products promote RCT. Free apo A-I is
known to be a potent stimulator of RCT via ABCA1 [89].
Our studies indicate that neo-HDL promotes efflux of free
cholesterol from tissues at a faster rate than HDL [88] and
this may be due to a new conformational state of apo A-I
that is stabilized by the high percentage of phospholipids in
neo-HDL [90]. In addition, neo-HDL enhances the activity
of lecithin:cholesterol acyl transferase (LCAT) better than
HDL and results in an increase in cholesterol esters in
CERM particles that may aid in removal of cholesterol by
hepatic receptors. Preliminary studies indicate that rSOF
can induce opacification of murine HDL in vivo. What is
even more promising is that SOF reduced plasma cholesterol
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Figure 10: Reverse cholesterol transfer pathway (RCT). RCT is the
major pathway for transfer of excess cholesterol (C) from peripheral
tissues to the liver for disposal as bile. High levels of cholesterol can
be toxic and the accumulation of cholesterol (C) in macrophages
lining the blood vessels transforms these cells to foam cells leading
to the development of plaque and atherosclerosis. Cholesterol is
removed from these tissues and transferred to HDL by interactions
with ATP binding cassette receptors ABCA1, ABCG1/4, and SR-
B1 or by diffusion. The interaction between ABCA1 and apo A-
I is the dominant pathway for removal of excess cholesterol from
macrophages followed by an interaction between HDL and ABCG1.
Together these two receptors account for about 70% of the efflux of
excess cholesterol [86]. The size of HDL is modulated as its load
of cholesterol increases and by interactions with various plasma
factors such as lecithin cholesterol acyltransferase (LCAT) [87]. Free
cholesterol removed from these tissues is esterified by LCAT and
subsequently removed by liver cells by interactions with HDL. SOF
enhances this process in several ways [88]. First, it releases free
apo A-I, which is a better acceptor of free cholesterol than HDL.
Secondly, it forms neo-HDL, a particle that is similar to pre-β HDL,
which is also a better acceptor of cholesterol than HDL. Thirdly,
SOF enhances cholesterol esterification, which may allow a more
efficient uptake of cholesterol by the liver.

by 50% in these mice [91]. These observations suggest
that the reaction of rSOF with HDL may have potential
to therapeutically enhance RCT and reduce high levels of
plasma cholesterol that are a leading cause of cardiovascular
disease.

SOF is a virulence factor and it is logical to question
the practicality of using it as a therapeutic. However, there
are examples of bacterial virulence determinants and toxins
that are safely used as therapeutics. Anthrax toxins have
been used to target and kill cancer cells and the isolated
toxins do not pose a health hazard [92]. The botulinum
toxin (Botox) has been used for years as a muscle relaxant
and treatment for facial wrinkles [93]. Streptokinase is a
streptococcal virulence factor that has long been used in
humans as a thrombolytic agent [94]. Thus, while bacterial

virulence factors may contribute to the pathogenesis of
infections, the isolated virulence factor may not necessarily
be harmful when used properly in a purified form. Previous
studies indicated that an intravenous injection of 100 μg of
rSOF in mice was well tolerated and had no discernable toxic
effects [13] and, as noted above, the cholesterol levels were
dramatically reduced in mice receiving minute quantities
(≤1 μg per mouse) of SOF. These are preliminary data and
more definitive experiments will be required to validate
these initial findings and to determine the relative bene-
ficial/adverse effects of the interactions between SOF and
HDL

8. Future Considerations

It is clear that SOF is a virulence determinant as SOF was
found to contribute to virulence in 3 different models of
infection. However, it is not clear which function(s) of SOF
is mainly responsible for this virulence. Mutants defective in
each function of SOF (opacification, fibronectin/fibrinogen
binding, fibulin-1 binding, etc.) need to be engineered
and tested in appropriate animal models to determine
which function or combination of functions contributes to
virulence. The role of vWFA domain and its MIDAS motif in
these activities should also be investigated.

As a corollary to these studies, the crystal structure of
SOF needs to be resolved. Establishing the crystal structure
of SOF would help to pinpoint areas for targeting to
create mutant forms of SOF. This information may be used
to engineer forms of SOF that are deficient in activities
contributing to virulence while still maintaining ability to
opacify HDL. In addition to loss of function studies, it may
be possible to use the structural information to engineer SOF
mutants that have a gain of function such as enhanced ability
to opacify serum and thereby to increase concentrations of
the reactants of rSOF-HDL interactions to more effectively
control cholesterol levels via RCT.

The potential of SOF as a vaccine needs to be further
explored. Particularly, in regard to defining the common,
protective epitopes of SOF and determining if a combination
of a SOF vaccine with other vaccines such as M protein
vaccines would broaden coverage of serotypes and enhance
efficacy. SOF is also expressed by animal pathogens and
demonstrated to be a virulence factor in one of these
pathogens but there has been no investigation into its vaccine
potential in animals. Thus, there is a clear need for further
studies on SOF and hopefully, the next decade will bring
exciting, new discoveries about the structure and function
of SOF and will lead to new, highly effective vaccines and
therapeutics.
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