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Abstract

This article describes the evolution of minimally invasive intervention technologies for vascular

restoration therapy from early-stage balloon angioplasty in 1970s, metallic bare metal stent and

metallic drug-eluting stent technologies in 1990s and 2000s, to bioresorbable vascular scaffold

(BVS) technology in large-scale development in recent years. The history, the current stage, the

challenges and the future of BVS development are discussed in detail as the best available ap-

proach for vascular restoration therapy. The criteria of materials selection, design and processing

principles of BVS, and the corresponding clinical trial results are also summarized in this article.
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Introduction

Vascular disease is a pathological state of muscular arteries. It starts

with endothelial cell dysfunction, which is followed by the prolifera-

tion and migration of smooth muscle cells (SMCs) toward the blood

vessel lumen. Such chronic effect causes thickening of the vessel

wall, forming a plaque due to the build-up of fat and cholesterol de-

posits on the inside walls consisting of proliferating SMCs, macro-

phages and various types of lymphocytes. Over time, the build-up

narrows the artery and causes inadequate blood flow to various

body tissues. Eventually, the plaque may also rupture causing the

formation of clots. The blockage formed in the coronary arteries

could potentially cause angina or even heart attack. When the block-

age forms in the carotid arteries, it can lead to a transient ischemic

attack or even stroke. When the blockage forms in the legs, it could

lead to leg pain or cramps with activity, while a total loss of circula-

tion can even cause gangrene and loss of a limb.

Among various vascular diseases, the cardiovascular disease, es-

pecially coronary artery disease (CAD), is by far the leading cause of

mortality worldwide. Currently, around 17 million people are dying

of this disease worldwide each year, and this number is expected to

exceed 23 million by the year 2030 [1,2].

In order to treat these vascular diseases, the development of a

new therapy/device has been long expected, which could help the

narrowed vessel restore its original size to re-establish its normal

blood flow condition, regain the once damaged endothelial mono-

layer to prevent the formation of plaque and recover its normal

physiological vascular function. Ultimately, it is also expected that

the new therapy/device could even demolish or eliminate the formed

plague and allow the diseased vessel to regain its original healthy

conditions. Such approach has been widely discussed as vascular res-

toration therapy or vascular reparative therapy [3–14].

Previous approaches for vascular restoration

Originally, various efforts had been done to develop medicines

which could repair the diseased vessel and restore its healthy func-

tion. But so far, most of them normally can only temporarily relieve

the symptom of the disease and could hardly play the magic to move

the narrowed vessel back to its original size.

In early 1960s, the by-pass surgery was introduced for CAD

treatment. However, such open heart surgery was very complicated

and required long time to be fully recovered [15].

In 1970s, the percutaneous transluminal coronary angioplasty

(PTCA), or simply called as balloon angioplasty, was developed

aimed at restoring the regular blood flow to repair diseased vessel.

The PTCA is performed by advancing a small guide wire across the

blockage in the blood vessel first, followed by advancing a pre-

crimped balloon to the blockage site through the guide wire. Once

the pre-crimped balloon arrives at the blockage site, it is inflated to

compress the blockage against the artery wall to open up blocked

coronary artery, allowing blood to circulate unobstructed to the

heart muscle. At the end of the procedure, the balloon is deflated
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and withdrawn from the blood vessel. Since the first performance of

PTCA by Dr. Gruentzig in 1977 in patients [16,17], it had been

quickly applied for cardiovascular disease treatment around the

world. This revolutionary technology is viewed as the initial step to-

ward vascular restoration therapy. However, due to the lack of sup-

port to keep the vessel open once the balloon was deflated, the high

restenosis (30–50%) due to elastic recoil, constrictive remodeling

and intimal hyperplasia were observed as the common side-effects

of balloon angioplasty, which resulted in high rate of repeat inter-

ventions at long-term follow-up, representing a limitation of such

technology [18].

In order to prevent restenosis due to elastic recoil and constric-

tive remodeling of diseased vessel by balloon angioplasty, bare metal

stent (BMS), which is a small tubular wire mesh device, was devel-

oped and quickly widely applied around the world. In practice, BMS

is crimped onto a balloon catheter first. Once it is expanded in the

narrowed section of the vessel, it maintains post-treatment vessel pa-

tency and prevents elastic recoil and constrictive remodeling

[19,20]. Palmaz-Schatz balloon-expandable stent was approved in

USA as the first BMS for elective use by Food and Drug

Administration (FDA) in 1994.

Compared to expanded balloon, BMS could keep the narrowed

vessel open to re-establish its normal blood flow condition. It

seemed that BMS technology might be one step closer to serve as

vascular restoration therapy. However, after large-scale application

of BMS in 1990s, it was found that although BMS reduced rates of

restenosis compared with balloon angioplasty, the re-narrowing of

the treated artery was still observed in 20–30% of patients due to

in-stent restenosis [21]. The in-stent restenosis is defined as diameter

stenosis of �50% in the stented area of the vessel mainly due to ex-

cessive neointimal proliferation within the stented segment initiated

by inflammatory response in the vessel wall area with implanted

BMS, where the inward migration and proliferation of medial SMCs

and the deposition of excess extracellular matrix proteins would ul-

timately obstruct the vessel lumen [22–25].

In order to reduce in-stent restenosis caused by BMS, drug-

eluting stent (DES) was developed in late 1990s [26–30]. DES

normally contains three components: stent platform, therapeutic

agents/drug and drug carrier. The stent platform ensures the patency

of the vessel lumen, whereas the drug and drug carrier-formed coat-

ing layer controls the drug release to limit the growth of neointimal

scar tissue, thus reducing in-stent restenosis. For drug carrier, it is

required to have good adhesion with stent platform, good bio-

compatibility, good mechanical properties such as good strength

and elasticity. Polymer materials have been used as suitable candi-

dates of drug carriers from the beginning. By adjusting the drug/

drug carrier composition, the drug dose and drug-releasing kinetics

could be well controlled.

DES stent platform can be made from the following materials:

316L stainless steel, cobalt–chromium alloy, titanium and its alloy,

platinum–iridium alloy and tantalum, etc.

Many therapeutic agents with antiproliferative and/or anti-

inflammatory properties, such as everolimus, sirolimus,

zotarolimus, biolimus, tacrolimus and paclitaxel have been incorpo-

rated on the stent surface and tested clinically to inhibit neointimal

growth [31].

The first successful trial of DES was of sirolimus-eluting stent. A

clinical trial conducted in 2002 led to regulatory approval of the

sirolimus-eluting CypherTM stent manufactured by J&J Company in

Europe in 2002, and its FDA approval was obtained in 2003.

Followed by the approval of CypherTM stent, the paclitaxel-eluting

TaxusTM stent was manufactured by Boston Scientific and obtained

FDA approval in 2004. In addition, the zotarolimus-eluting

EndeavorTM stent manufactured by Medtronic and everolimus-elut-

ing Xience VTM stent manufactured by Abbott were approved by

FDA in 2007 and 2008, respectively.

Although the DES could greatly reduce the in-stent restenosis,

the continuous release of drug could cause the delay of artery heal-

ing process, and potentially increase the risks of late stent thrombo-

sis after discontinuation of antiplatelet therapy. In case of DES with

durable polymer as coating material, especially for DES with less

biocompatible durable polymer coating layer, the durable polymer

remaining within the coronary artery environment long after com-

plete elution of drug may contribute to the adhesion and activation

of leukocytes, leading to the local chronic inflammation and hyper-

sensitivity, which could potentially increase the risks of late stent

thrombosis [32,33] and late in-stent restenosis [34]. In order to elim-

inate the potential effect of durable polymer on late stent thrombosis

and late in-stent restenosis, many studies focusing on DES with bio-

degradable polymer coating layer have been conducted [35–49].

For current regular metallic DES, though its coating layer is

made of durable polymer or biodegradable polymer, the backbone

platform is a non-degradable metal, which stays in the vessel perma-

nently after implantation, which makes any further non-invasive

screening or re-intervention more difficult, and would also poten-

tially cause late thrombosis and late in-stent restenosis after the anti-

restenosis drug is completely released. In addition, irrespective of

the kind of coating layer is used, as long as the stent platform still

has biostable metal, the vessel would not be able to fully regain its

original physiological functions such as vasomotion functions.

Bioresorbable Vascular Scaffold

Bioresorbable vascular scaffold (or fully biodegradable stent) is a

small tubular wire mesh device with its platform made from fully

bioresorbable materials, which normally has a coating layer contain-

ing bioresorbable material and anti-proliferative drug on the top of

its platform like regular DES. Bioresorbable vascular scaffold (BVS)

is used to avoid permanent metal implant in vessels, allow late vessel

remodeling in the absence of a metallic cage and leave only healed

native vessel tissue after the full absorption of the scaffold. The

stented segment might recover its healthy condition, allowing physi-

ological vascular function after re-establishing normal flow condi-

tions by lumen expansion.

Compared to regular DES, BVS could reduce the possibility of

additional interventions at the sites of device implantation without

concerns for the generation of jailed side branches and does not in-

terfere with non-invasive diagnostic tools [50–52]. The lack of a for-

eign object in the body might reduce the risk of potential long-term

complications and of late thrombosis. The bioresorbable vascular

scaffold has the potential to restore vascular integrity and fulfill all

requirements of vascular restoration therapy.

In the early stage of development of BVS back to 1980s,

none of them contained anti-proliferative drug coating layer.

Nowadays, most of the bioresorbable vascular vcaffolds are de-

signed to have drug coating layer to perform all the functions of

a DES first and then are naturally absorbed and metabolized in

the body. The absence of permanent implant would eliminate the

stimulus for chronic inflammation and accelerate healing process,

and potentially reduce the need for long-term dual anti-platelet

therapy. Late stent thrombosis is thereby abolished or greatly

reduced. In addition, the disappearance of the bioresorbable
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vascular scaffold facilitates any re-intervention at later stages

when needed [53,54].

Principles of BVS design and processing
Since early 1980s, a lot of R&D work on BVS has been done in both

academic and industrial areas and some major breakthroughs have

been achieved in the recent 10 years [54–62]. Based on the recent

studies and various data generated from bench testing, preclinical

and clinical studies, it has been found that the BVS design should

meet a different set of performance criteria other than regular metal-

lic DES design. The lifecycle of a BVS contains three phases: (i) re-

vascularization of blocked vessel after scaffold implantation; (ii)

restoration of reopened vessel; and (iii) resorption of BVS. During

the first phase, the BVS should have high acute radial strength, mini-

mum acute recoil, good deliverability and therapeutic agent deliv-

ered to abluminal tissue at a controlled rate. During the second

phase, the BVS should gradually lose radial strength, deposit cellular

matrix over struts and allow the vessel to respond naturally to physi-

ological stimuli. In the third phase, the scaffold should become dis-

continuous structure and be absorbed in a benign fashion [63,64]. In

order to open the blocked vessel and provide mechanical support,

the BVS must have high radial strength and a certain degree of flexi-

bility. In addition, the degradation products need to be fully non-

toxic. Given an ideal design pattern and processing conditions, the

BVS must be able to perform its mechanical function, facilitate scaf-

fold placement within the vessel and deliver drugs for the prevention

of restenosis. Furthermore, the scaffold must support the artery

while the vessel heals and should gradually transfer mechanical load

to the tissue as the scaffold degrades over time. Radiopacity is an-

other consideration in BVS design. The scaffold should be visible un-

der X-ray while allowing visualization of the vessel and balloon

catheter markers. In order to achieve success, a BVS is expected to

have comparable efficacy to a DES while absorbs safely over a clini-

cally appropriate time frame.

Materials for bioresorbable vascular scaffold

preparation
In order to obtain qualified product of bioresorbable vascular

scaffold, there are some basic criteria for material selection. First, a

candidate material for BVS should possess enough mechanical

strength to hold open the blocked vessel and provide mechanical

support without significant recoil, while the candidate should also

have a certain degree of fracture toughness to avoid cracks or bro-

ken struts. Then, the resorption rate of candidate material should

match the healing process of blood vessel, and the degradation

products should not provoke tissue overload and other inflamma-

tory responses. And then, the material should have great biocompat-

ibility, good fatigue resistance and physical resistance to aging.

At last, the material should be able to withstand high-temperature

heat processing, high-energy laser cutting and critical sterilization

conditions.

Materials that have potential to be used in bioresorbable vascu-

lar scaffold preparation include various bioresorbable polymeric

materials and blends [54, 65–77], and corrosive metallic metals and

alloys [78–93]. Representative bioresorbable materials which might

be potentially used for BVS preparation are briefly summarized in

Table 1. In addition, there are also researches on bioresorbable vas-

cular scaffold made from hybrid bioresirbable materials such as

composites of bioresorbable polymer/bioceramic, and bioresorbable

metal/bioceramic [94,95].

Bioresorbable polymeric materials include bioresorbable polyes-

ters [54, 65–73], polyanhydrides, polyurethanes [74], polyorthoest-

ers, poly(ester amide) [75], poly(amino acid) and tyrosine-derived

polycarbonates [76,77]. Among these polymers, polyesters have

been used in a wide range of medical devices. The typical examples

of polyesters include poly(L-lactide) (PLLA), (poly-D-lactide)

(PDLA), poly(D,L-lactide) (PDLLA), polyglycolide (PGA), poly(e-
caprolactone) (PCL), poly(trimethylene carbonate), and their

copolymers such as poly(lactide-co-glycolide) and poly(lactide-

co-caprolactone), etc. [65–68]. PLLA comprises the naturally

occurring (L) enantiomer of the lactide monomer. The PLLA

homopolymer is semicrystalline, whereas the PDLLA polymer is

amorphous due to the racemic mixture of monomer that disrupts

cystallinity. As a result, PDLLA erodes at a faster rate than PLLA,

which normally degrades over a few years. On the other hand, PGA

is a highly crystalline polymer, but its bonds are highly prone to hy-

drolysis. PGA homopolymer typically degrades over a time period of

6–12 months. Copolymer of 50:50 PGA and PLA degrades more

rapidly than either homopolymer because the PLA interrupts the

crystallinity of PGA and allows for more water penetration.

Homopolymer and copolymers mentioned above can also be mixed

together to form various blends such as PLLA/PCL blend, PLLA/

PGA/PCL blend, PLLA/PDLA stereo-complex blend.

As for corrosive metals, most studies have been focused on the

following two classes of metals: magnesium (Mg) and iron (Fe) and

Mg- or Fe-based alloys. The Fe and Fe-based alloys include pure Fe

[78–81], nitride Fe [82–83], and Fe–Mn alloys [84–87], etc. Mg-

based alloys under investigation include magnesium–rare earth

(Mg–RE) [88–90], magnesium–aluminum (Mg–Al) [91,92], Mg–Zn

and magnesium–calcium (Mg–Ca) alloy [93], etc.

In spite of availability of quite a lot of bioresorbable materials,

the number of materials which would meet all requirements men-

tioned above at the same time is limited. Among them, PLLA has

been used as the most popular material for various BVS products

development.

Based on clinical trial results, the bioresorbable vascular polymeric

scaffold, especially PLLA-based scaffold, has shown very promising

results and some products have received CE marking approval. As for

bioresorbable vascular metallic scaffold, no product has been ap-

proved for sale in the market. For PLLA-based scaffold, during degra-

dation, the polymer breaks down into lactic acid and is ultimately

metabolized into water and carbon dioxide. As for bioresorbable vas-

cular metallic scaffold, the case could potentially be more complicated

partially due to continuous release of corrosive product.

Table 1. Representative bioresorbable materials

which could potentially be used for bioresorbable

vascular scaffold preparation

Name Degradation time

(months)

Poly(D,L-lactide) >12

Poly(L-lactide) >24

Polyglycolide 6–12

Poly(lactide-co-glycolide) 1–28

Poly(e-caprolactone) >24

Poly(trimethylene carbonate) >12

Poly(anhydride) 1–6

Poly(urethane) >6

Magnesium <3

Iron >24
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Various BVSs under development
Since 1980s, especially in recent 10 years, dozens of medical device

companies in the world have been developing various BVS products,

which are listed in Table 2.

The first BVS prototype was developed by researchers from

Duke University in the early 1980s, and was based on PLLA. The

scaffold was described as self-expanding. The preclinical study was

performed with five stents and pathologic data were obtained at var-

ious time-points between 2 hours and 12 weeks. No inflammatory

response and no thrombosis were observed. It was reported that the

stents were endothelialized after 2 weeks [96,97].

The first BVS in clinical trial was Igaki–Tamai BVS/stent, which

was manufactured from a monofilament poly(L-lactide) fiber and

wound into a helical pattern [52, 98–100]. The scaffold was de-

signed as a ‘zigzag’ coil and was described as springy and partially

self-expanding. It requires delivery in a covered sheath (8F), and

once positioned, deployment requires balloon expansion with con-

trast heated to as high as more than 55�C. Subsequent self-expan-

sion occurs over a 30-min period [100].

In 1998, an unblinded clinical study on 55 patients was under-

taken to assess the feasibility and safety of the Igaki–Tamai scaffold/

stent in coronary arteries, and were followed up to 4 years

[101–103]. A total of 84 stents were used to treat 63 lesions. X-ray

angiography and intravascular ultrasound (IVUS) were performed

before and immediately after the procedure to visualize results, and

up to 48 months following the initial procedure. The clinical studies

showed that all stents were successfully delivered to the target le-

sions and that angiographic success was achieved in all procedures

performed. Immediately after the procedure, angiography and IVUS

revealed no further bioactive remodeling of the stented segment. At

12-month post-procedure IVUS follow-up, the scaffold struts were

clearly visible and apparently well opposed to the vessel wall. IVUS

measurement taken 36 months post-procedure showed a decrease in

scaffold strut area. Overall, the Igaki–Tamai biodegradable scaffold/

stent study demonstrated the feasibility and safety of the BVS/stent

over a 4-year follow-up period.

In 2012, the 10-year follow-up data from a second larger

cohort of 50 patients were reported. The cumulative target lesion re-

vascularization over 10 years was 28%, which was comparable to

BMS [104].

One concern of using Igaki–Tamai scaffold/stent is expansion

of the stent due to heat, because the exposure to elevated

temperature can cause necrosis of the arterial wall, followed by

SMC proliferation [105]. A temperature of 55�C has been shown to

promote platelet adhesion to the vessel wall, and thus the increase of

thrombosis [100].

Reva Medical Inc. is a company developing bioresorbable scaf-

fold from a radiopaque tyrosine-derived polycarbonate material and

has initiated its clinical trial since 2007. Reva Medical utilizes a

unique ‘slide and lock’ geometry for its scaffold designs. When ex-

panded, the stent elements slide from the compact state and lock

into an expanded state, similar to safety lockouts on extension lad-

ders. Thus, the expansion is not dependent on material deformation,

and will provide steel-like scaffolding. The Reva BVS is delivered by

standard balloon deployment and is made radiopaque by polymeric

material itself.
Among various metallic BVSs, Biotronik (Berlin, Germany) is

the first and also the only company who has product under clinical

trial stage used in human coronary arteries so far. Biotronik’s first

generation metallic BVS is made from magnesium alloy WE43 con-

taining 93% magnesium and 7% rare earth metals. Its First-in-Man

clinical trial showed that its late lumen loss at 4 months was unac-

ceptably high (1.08 6 0.49mm) and its ischemic-driven Target lesion

revascularization (TLR) rate reached to as high as 26.7% after at

12 months, which was possibly caused due to too fast degradation

(it degraded within 2 months) [106]. With the modification of

the composition of the magnesium alloy and the addition of PLG/

drug coating layer, the second generation product showed consider-

able improvement with the late lumen loss at 0.64 6 0.50 mm

at 6 months follow-up and the TLR rate down to 4.7% at

12 months [107].

ABSORB BVS
The Abbott ABSORB BVS is the first drug-eluting BVS with CE

marking approval. Back in 2006, Abbott initiated First-in-Man

ABSORB clinical trial, the world’s first clinical trial of drug-eluting

polymeric BVS [108]. The ABSORB BVS has been available in

Europe and other international markets since late 2012, and a large-

scale clinical trial of ABSORB BVS has started since 2013 in USA.

Like the Duke and Igaki–Tamai scaffolds, the Abbott ABSORB

BVS is also made from PLLA. However, Abbott ABSORB BVS has a

coating layer containing antiproliferative agent everolimus and poly-

lactide to control drug release. The scaffold is made radio-opaque

by the addition of radial-opaque markers on the two ends of the

Table 2. Bioresorbable vascular scaffold products under development

Company Stent name Platform material Drug Coating material

Abbott AbsorbTM PLLA Everolimus PLA

REVA Medical ReZolveVR Tyrosine-derived

polycarbonate

Sirolimus Absorbable polymer

Elixir DESolveTM PLLA Myolimus PLA

Kyoto Medical Igaki–Tamai PLLA Nil Nil

Amaranth Medical Amaranth PLLA PLLA Nil Nil

Huaan Biotech Xinsorb PLLA Sirolimus PLA

OrbusNeich Acute PLLA-based polymer Sirolimus/CD34 Absorbable polymer

Arterial Remolding Technologies ARTDIVA PLLA Nil Nil

Xenogenics Corporation Ideal PAE salicylic acid Sirolimus salicylate Salicylate linked by adipic acid

Biotronik AMS I WE43 Mg alloy Nil Nil

DREAMS I Refined Mg alloy Paclitaxel PLGA

DREAMS II Refined Mg alloy Sirolimus PLA

Lifetech Scientific Nitriding iron stent Nitride iron Nil Nil
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scaffold. The acute property of ABSORB BVS after deploy-

ment looks similar to regular DES with good mechanical proper-

ties, deliverability and biocompatibility. The ABSORB BVS has

similar radial strength as Abbott MULTI-LINK metallic stent. The

in vivo preclinical model of the drug release profile from ABSORB

BVS is comparable to Abbott’s XIENCETM V everolimus drug-

eluting coronary stent, which has been approved for use in Europe

and USA.

A 2-year pre-clinical study of ABSORB BVS showed that BVS

was safe and effective. Complete luminal endothelialization was

formed within 1 month. Similar to Cypher DES, the neointimal re-

sponse of BVS is minimal at all time points evaluated up to 12

months. The inflammatory response of BVS is overall minimal and

is even less than that of the Cypher DES at 6 and 9 months

[109,110].

The outcome of 2-year follow-up from the ABSORB clinical trial

indicated the full absorption of scaffold. Unique benefits such as lu-

men gain and restored vasomotion have been demonstrated clini-

cally after treatment with ABSORB BVS [111]. The late lumen

enlargement was associated with reduced plaque burden and vaso-

motion was restored similar to the native state of a coronary artery

[112]. Absence of foreign body reaction and the recovery of vasomo-

tion restoration were indications of a healthy vessel and suggested

that late thrombosis risk had been eliminated. Compared to SPIRIT

I clinical trial results using regular DES, after 2 years, the ABSORB

BVS exhibits positive remodeling and full resorption of the scaffold

and a trend back to the deployment state. Such trends are not

observed with non-degradable DES since there are permanent scaf-

folding effects preventing the lumen from exhibiting positive re-

modeling. These results suggest that the BVS is trending back to its

healthy native state.

The future of BVS

The clinical trial results with BVS, especially with Abbott ABSORB

BVS, have shown that BVS could let the narrowed vessel to re-establish

its normal blood flow condition. Furthermore, it could even recover the

normal physiological vascular functions in some cases, which makes

BVS the best available approach for vascular restoration therapy.

It is also expected that the large-scale application of BVS would

dramatically shorten the dual-antiplatelet therapy duration and pos-

sibly remove the risk of late thrombotic events associated with a

permanent scaffold.

In the near future, it requires more research work to further opti-

mize BVS material design and processing to be sure of its bioresorp-

tion profile would match the vessel healing process very well. By

doing so, it is expected that more diseased vessels would regain their

normal physiological vascular functions after vascular restoration

therapy using BVS.

Another optimization work to do in the future is to increase the

rate of full re-endothelialization to promote adequate vessel healing.

Although the healthy animal model showed that the re-endothelializa-

tion of BVS can be finished within 1 month, but based on clinical re-

sults from regular DES, it was known that the continuous release of

antiproliferative drug would delay or even inhibit the formation of a

complete endothelial mono-layer. Such delay or inhibition would defi-

nitely impact the recovery of normal physiological vascular functions.

The vascular healing processes are expected to be very complex

and may vary from patient to patient. Therefore, in the future, there

is a demand to make BVS product with different materials and dif-

ferent designs to meet different requirement.

It is anticipated that BVSs offer the possibility for integration with

local drug delivery, genetic transfer and radiation. Geometrically

modified fully biodegradable implants can act as potential therapeutic

carriers for the treatment of diseases such as cancers, where specific

tissue targeting and high local dosage possibilities could offer an alter-

native to conventional systemic therapies.

Finally, it is expected that the success of BVSs applied in coro-

nary arteries will also prompt the expansion to peripheral arteries,

the trachea, esophagus, and urethra, etc. in the future.
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