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Abstract

Software programming is a complex and relatively recent human activity, involving the integration of mathematical, recursive
thinking and language processing. The neural correlates of this recent human activity are still poorly understood. Error monitoring
during this type of task, requiring the integration of language, logical symbol manipulation and other mathematical skills, is
particularly challenging. We therefore aimed to investigate the neural correlates of decision-making during source code under-
standing and mental manipulation in professional participants with high expertise. The present fMRI study directly addressed error
monitoring during source code comprehension, expert bug detection and decision-making. We used C code, which triggers the
same sort of processing irrespective of the native language of the programmer. We discovered a distinct role for the insula in bug
monitoring and detection and a novel connectivity pattern that goes beyond the expected activation pattern evoked by source code
understanding in semantic language and mathematical processing regions. Importantly, insula activity levels were critically related
to the quality of error detection, involving intuition, as signalled by reported initial bug suspicion, prior to final decision and bug
detection. Activity in this salience network (SN) region evoked by bug suspicion was predictive of bug detection precision,
suggesting that it encodes the quality of the behavioral evidence. Connectivity analysis provided evidence for top-down circuit
“reutilization” stemming from anterior cingulate cortex (BA32), a core region in the SN that evolved for complex error monitoring
such as required for this type of recent human activity. Cingulate (BA32) and anterolateral (BA10) frontal regions causally
modulated decision processes in the insula, which in turn was related to activity of math processing regions in early parietal cortex.
In other words, earlier brain regions used during evolution for other functions seem to be reutilized in a top-down manner for a new
complex function, in an analogous manner as described for other cultural creations such as reading and literacy.
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Introduction

Software programming is a complex and phylogenetically
very recent human activity, even more than reading and
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literacy. In neuroscientific terms, it requires the expert
integration of mathematical, including logical thinking
and symbol manipulation, and language skills at an ab-
stract level. Programming languages are universal in the
sense that they do not depend on the native language of
the programmer, which further enhances the interest to
study this type of complex expertise from the neurosci-
entific point of view.

From a practical point of view this human ability is at the
basis of one of the biggest industry sectors in the world: the
software development industry, where error monitoring is crit-
ical. The global annual cost of information technology (IT)
failures worldwide reaches stunning figures, ranging from $3
to $6.2 trillions, (CompTIA 2016). A large share of IT failures
results from software faults (usually known as bugs), which
are in fact the consequence of human errors in the software
development process (Christmansson and Chillarege 1996;
Duraes and Madeira 2006; Natella et al. 2013). It is therefore
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relevant to understand the neural basis of such errors, which
might also generalize to other complex skills. Despite decades
of intensive research on software engineering, a breakthrough
in software reliability improvement has not been reached yet.
Even when software is developed using highly mature devel-
opment processes, the deployed software still has a relatively
high density of residual bugs (Boehm et al. 2002; Duraes and
Madeira 2006; Honda and Yamada 2012). With the huge de-
pendency of our society on IT and software, bad quality soft-
ware caused by residual bugs represent one of the most endur-
ing and difficult technical challenges.

Despite decades of SW reliability research, software bugs
have never been investigated from a neuroscience perspective.
We aimed to find the neural underpinnings associated to hu-
man error in such highly abstract and complex intellectual task
such as software programming. Furthermore, any possible
insight on the deep reasons why human fails so often in soft-
ware programming and debugging may have a big impact not
only on software quality improvement, but also on other areas
of human behavior requiring complex skills.

A previous proceedings report of Siegmund et al. (2014)
suggested that software programmers strongly recruit lan-
guage regions of the brain to understand source code.
However, Siegmund et al. (2014) did not consider specific
cognitive processes involving software related error monitor-
ing and decision-making, nor did the analyzed programs con-
tain bugs. Their task was focused on reading and understand-
ing source code, which could include syntactic errors (but no
real bugs), which likely increase the likelihood of activating
areas related to conventional language processing (Siegmund
etal. 2012). It is worth noting that software syntactic errors are
always detected by compilers (i.e., they are not a technical
problem for the software industry), while real bugs are related
to the program semantics and are very hard to find.

Cultural creations of neuroevolutionary relevance, such as
reading or mathematical thinking, have been proposed to re-
utilize cortical circuits that have evolved for different purposes
(Dehaene 2013). Dehaene et al., have proposed that cortical
regions maybe partly recycled for new human-specific uses
(Dehaene et al. 2015). In other words, a brain region that
evolved for a given processing demand might be reutilized
when new demands emerge during human history for a given
new function (Cohen et al. 2000).

Regarding language related ‘errors’ a few fMRI studies
showed an involvement of the expected frontal and temporo-
parietal regions in semantic analysis of anomalous sentences
(Kuperberg et al. 2000). Left inferior frontal gyrus and clusters
in frontal Brodmann areas 44, 45 and 46 (S. D. Newman et al.
2012), superior frontal cortex and right middle temporal gyrus
activations are related to processing of anomalous sentences,
syntactic and semantic violations respectively (A. J. Newman
et al. 2001). However, software analysis/error monitoring re-
quire complex cognitive operations that deal with abstract
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concepts and software program structures, which are far be-
yond common language processing.

Given the particular nature of software programming con-
structs and logical operations (e.g., conditionals and loops)
and related calculations, sorting, recursivity and working
memory load, we performed a whole brain fMRI study to
investigate the role of regions (e.g. insula, ACC) within the
salience network in this relatively recent skill requiring com-
plex processing. We expected to find effective connectivity
going beyond the usual separation of semantic/syntactic error
related areas (BA 9, 21, 44, 47) (A. J. Newman et al. 2001)
and areas involved in math processing (in the parietal and
frontal lobes, BA 7, 40) (Zago et al. 2001). Moreover, we
expected to elucidate the role of distinct prefrontal regions
involved in causal reasoning (middle frontal BA46, BA 9,
10) and necessary for binding information from different mne-
monic sources (Baddeley 2000; Baddeley and Hitch 1992)
and calculation or language processing. The conference report
of Siegmund et al., did not find activation in math processing
related regions such as in the intraparietal sulcus. This possi-
bly because error detection just involved the type of simple
syntactic analysis required by language processing (Amalric
and Dehaene 2016; Dehaene et al. 1999; Desco et al. 2011;
Gruber et al. 2001; Maruyama et al. 2012).

We tried to clarify the neural correlates of error monitoring
during deep source code analysis using fMRI in a task requir-
ing expert decision-making and bug detection during a code-
inspection task by programming specialists. We created con-
ditions similar to software code inspections as used in indus-
try, where a software inspector (i.e., a software specialist)
analyses code excerpts to try to find possible bugs. In our
experiments, faults (bugs) have been previously seeded in
the programs, using well accepted fault models that represent
both realistic and representative faults found in real software
in the field (Duraes and Madeira 2006; Perry and Evangelist
1996; Sullivan and Chillarege 1991). Moreover, we aimed to
identify neural patterns relating to code understanding with an
emphasis on two particular moments: first, when the inspector
suspects he has identified a bug (‘eureka moment’, but uncer-
tainty still present), which is based on intuition; and second,
the moment when the participant reports definite confidence
on bug detection (confirmation/high certainty). We expected a
delay of several seconds from intuition to formal confirma-
tion, as confidence levels increase based on evidence
accumulation.

Giving the nature of our task (participants have to decide
whether a given portion of code contains a bug), we expected
to identify a relevant contribution from regions within the
salience network. This include regions such as the insula,
and other expert decision-making related brain regions
(Buckley et al. 2009; Hauke R Heekeren et al. 2008;
Kennerley et al. 2011; Stoewer et al. 2010; Wallis 2007;
Wunderlich et al. 2012). The lateral orbitofrontal cortex, the
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ventromedial prefrontal cortex and adjacent medial
orbitofrontal cortex (OFC), anterior cingulate cortex (ACC),
and the anterior lateral prefrontal cortex have been related to
reward-guided decision-making both in humans and animal
models (Neubert et al. 2014, 2015; Rushworth et al. 2011;
Sallet et al. 2013). The activation of these regions was also
expected from the inherent reward value of the eureka detec-
tion moment. Previous studies showed that OFC integrates
multiple sources of information to reach a motivated decision
(Wallis 2007). The information integrated and processed in
medial prefrontal cortex (Wunderlich et al. 2012) can then
be held in working memory where it can be used by lateral
prefrontal cortex to plan and organize actions (Wallis 2007)
towards source code debugging. Moreover, the ACC is a re-
gion of the salience network which is critical in encoding
choice predictions and prediction errors using a common val-
uation currency reflecting the integration of multiple decision
parameters (Kennerley et al. 2011; Wunderlich et al. 2012).
However, brain regions playing a key role during decision
processes and error monitoring (lannaccone et al. 2015) in-
clude not only the anterior cingulate, prefrontal cortex
(Domenech and Koechlin 2015; Krawczyk 2002), but also
the insula (Bastin et al. 2017; Castelhano et al. 2014;
Droutman et al. 2015) which is modulated by task difficulty
and uncertainty levels (Lamichhane et al. 2016). We thus
asked whether activity in these brain regions within the sa-
lience network is predictive of bug detection accuracy during
source code debugging. These results can make an important
contribution to our understanding of the neural mechanisms
related to error monitoring during tasks requiring complex
integration of mathematical and general logical and language
skills such as software programming.

Material and methods
Participants

We recruited a group of 20 software-development profes-
sionals. All of them had formal master and/or PhD degrees in
informatics or equivalent and more than 3 years of experience
with C language programming. All had previously realized
code-inspection during their career and had strong experience
as formal code inspectors. One was excluded due to having
exceeded the motion criteria inside the scanner, rendering the
scanning data unusable. The participants included in the anal-
ysis have a mean age of 28 years. 18 out of 19 participants are
male and right handed, but the whole group used the joystick
(to control the task) with the right hand due to individual per-
sonal preference. All the participants had normal or corrected to
normal vision. The study was approved by the Ethics
Committee of the Faculty of Medicine of the University of
Coimbra, in accordance with the Declaration of Helsinki and

all experiments were performed in accordance with relevant
guidelines and regulations. Informed consent was obtained
from all participants. The data associated with this research
are available upon request to the corresponding author.

Source code description

We used source code blocks, written in C language as a main
stream programming language, with 20 to 60 lines of code
(see examples in Figs. A.1 to A.3) so that the subject would
be able to identify faults in the allotted time, using a joystick
for line navigation and button choice selection (see video A.1
highlighting task details). For details about these source codes
please refer to appendix A. As software inspections are used in
relatively small program segments (to limit the duration of the
inspection), we selected some examples of representative pro-
grams with adequate size for inspection in a single session.
The programs used are C implementations of Quick sort, Shell
sort, and Matrix multiplication. The programs have been pre-
viously seeded with realistic bugs (Quick sort with 7 bugs,
Shell sort with 4 bugs and Matrix multiplication with 4 bugs)
and are inspected (in the fMRI session) at a random order.
There are also three control programs with no faults (neutral
code) that are used by inspectors to perform a simple mental
reading of the neutral code to understand what the instructions
do. Although the main goal is to contrast between bug suspi-
cion and detection we also aimed to investigate the contrast
between code reading/understanding and the search for a bug.
These programs (neutral code vs. code with bugs) have a
relatively similar complexity as calculated by the Modified
cyclomatic McCabe algorithm (average complexity of neutral
codes: 3.33 £2.65; average complexity of code with bugs: 3.0
+2.27,U=21, p=0.755).

We design the task in such a way as to be as close as
possible to real-life source code inspection, to try to increase
the ecological validity of the study while ensuring a sufficient
number of trials to allow for adequate statistical power.
Programs were shown to participants as a series of screens
containing 20 lines of source code at a time. The first screen/
page of the programs with faults was a text description of the
algorithm in pseudo-code to help the subjects recall the logic
and goal of the code shown (Fig. 1, and Video A.1). Subjects
were free to explore and navigate to the pseudo-code and
source code screens as many times as needed. Besides the
code, the screen also contains control buttons to navigate in
the code and to record/unregister a given line as containing a
fault. Before the fMRI session, the participants received a
detailed explanation of the programs goals, structure, and al-
gorithm. Subjects performed a brief training session outside
the scanner to make sure that they were familiarized with the
task procedures inside the scanner. In order to reinforce the
debugging process, all programs include a main function to
help contextualize their use, namely by showing an example
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A)

Baseline Neutral Code Code with Bugs

Pseudo-code

Source code

30s <4min 30s <15min

10 minutos

Fig. 1 Example of task timeline of one run. a Subjects were presented
with the code in the centre of the screen and navigated through the code
with an fMRI compatible joystick. 6 types of programs (3 neutral code
without bugs and 3 codes with bugs) were presented divided by two runs.
The codes were separated by a baseline block and the order of
presentation was randomized. Following the logic of the code
inspections as performed in the industry, subjects are given the tools to
help find bugs, including the explanation of what the code is about
(except the code itself) outside the MRI scan (including a training

of inputs and how the results could be displayed. Participants
were told that faults could exist anywhere in the code, includ-
ing in the main function.

Task details

Stimulation was implemented with virtual-reality toolkit
Vizard (WorldViz, Santa Barbara, CA). The stimuli were pre-
sented in an LCD monitor (NordicNeuroLab, Bergen,
Norway) placed approximately 156 cm away from the partic-
ipants’ head (that could be seen through a mirror system
mounted above the participant’s head), with a frame rate of
60 Hz and dimensions of 698.40 x 392.85 mm. All subjects
were shown the above-described programs in a random order
(three stimuli with bugs and three neutral code without bugs,
plus eight baseline blocks) divided into two runs to avoid
subject fatigue. Subjects were told which blocks included er-
rors and which were error free. The participants were
instructed to understand and identify bugs in the source code
and signal the events in the corresponding button of the screen
(Fig. 1). We used the neutral code as a secondary control
condition without bugs, although the main contrast of interest
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10 minutos

session). b Screen snapshot. Left: example of pseudo-code screen (text
trial). Right: example of source code with bugs. Subjects were instructed
to detect bugs and press the line with the bug or suspicion as soon as
possible. The bug had to be confirmed in the BUG button available in the
left pannel. Subjects were free to explore and change to the pseudo-code
and source code screens as many times as needed (‘< >’ buttons). Each
block of code for inspection has a maximum duration but ends when the
subject press the ‘FIM” (meaning “END”) button (this happens when the
subject is confident that he/she has found all the bugs)

was bug suspicion vs. bug detection. In the latter case, subjects
were asked to follow the code lines with the joystick, as a
pointer while reading/understanding the code, to match for
movement patterns. Participants were able to activate the con-
trols and navigate through the code using an fMRI compatible
joystick (Hybridmojo, San Mateo CA, USA). Participants
were also instructed to select a line as soon as they suspected
the presence of a bug (‘suspicion/eureka moment’) and to
confirm the bug in the button ‘Bug’ when they were sure that
there was a fault (‘Bug detection’). The timings of these ac-
tions (behavioural data) were synchronous with fMRI data
and used as predictors for functional data analysis. The same
source codes were used for all subjects but the order of the
blocks and runs were randomized and counterbalanced be-
tween subjects to avoid order effects (see Fig. 1 and video
A.1 for an example of the task). The duration allowed for each
condition was as follows: baseline 30s; neutral code <4 min;
code with bugs (Quick sort <15 min; Shell sort <15 min;
Matrix Multiplication <10 min). See Table A.1 for a group
summary of durations per stimulus and subject, as each exper-
imental block ends when the subject is confident that he found
all the bugs.
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Behavioral and eye tracking acquisition and analysis

Behavioral data (button presses) were simultaneously record-
ed during fMRI. Analysis was then performed offline. The
stimulus duration, suspicion events and bug detection events
(true positive, false positive and clear bugs) were extracted
and precision (true positive / (true positive + false positive))
% measures were calculated per subject.

Eye tracking data were recorded to visually assess online
the compliance of the subject with the task and to control for
attentional allocation. An EyeLink 1000 (SR Research Ltd.)
long-range mount, binocular (corneal reflection and pupil
tracking) fMRI compatible eyetracker was used to record
eye movements during the fMRI sessions with a sampling rate
of 500 Hz. The default 9-point calibration of the eye tracking
system was performed before the functional runs, including a
validation step (recalibration was performed if necessary to
achieve good tracking accuracy; two subjects did not yield
eye tracking data of sufficient quality). Saccade events were
generated online by the EyeLink eye tracker using a default
internal heuristic saccade detector. Subsequent analyses were
performed offline in Matlab R2013a (Mathworks, USA). An
area-of-interest (AOI) analysis was implemented for the
source code with bugs. We classified fixations into one of
two categories: fixations inside bug AOIs, fixations outside
bug AOIs. Fixation parameters (number of fixations, fixation
duration min, max and mean values) were extracted per time-
window of source code and the suspicion and bug detection
events. We performed statistical t-tests (alpha 0.05) to assess
the differences between fixation patterns inside vs. outside
bug AOIs (IBM SPSS statistics v22).

fMRI acquisition parameters

We acquired anatomical and functional data in a 3 T Magnetom
Trio Tim MRI scanner (Siemens, Erlangen, Germany) with a
12-channel head coil. Anatomical images were acquired using
MPRAGE sequence at an isotropic resolution of 1 mm®. This
information was used for further co-registration with functional
data. Regarding functional images, EPI sequences were ac-
quired with slice thickness of 3 mm and voxel size 4 mm?>,
36 slices covering the whole brain, with repetition time
3000 ms, echo time 30 ms, flip angle of 90°, matrix size
256 x 256 and field-of-view of 256 x 256. Participants
underwent 2 functional runs each.

fMRI analysis

fMRI analysis was performed using BrainVoyager QX 2.8
(BrainInovation). The preprocessing was performed with the
default parameters (cubic spline slice scan time correction;
trilinear 3D motion correction; GLM with Fourier basis set
with 2 cycles high-pass filtering). Structural and functional

data were coregistered and transformed to the standard
Talairach space. A random effects General Linear Model
(K J Friston et al. 1995) multi study/subject analysis was then
performed to assess the brain activity patterns. Only the sub-
jects with 5 bugs or more were included in the group analysis
(N=17). The baseline blocks were defined for the time-
windows without a task (fixation cross). We used the eye
tracker data to help set a semantic/reading predictor as defined
by the period the participants were spending time reading an
explanatory window of source code with bugs, the pseudo-
code. Blocks of source code with bugs were divided in:
Pseudo-code (blocks of text reading); Source code (blocks
of source code screens with bugs). The number of trials and
duration of each block are summarized in Table A.1.

The Bug detection predictor included true and false positive
bugs. True and false suspicions predictors were also pooled
together since no differences were found in the contrast between
true positive and false positive suspicions or bug detection re-
sponses (nor in suspicion and bug detection events separated by
small and large delays) in an exploratory analysis.

We defined the following contrasts regarding source code
debugging:

1) As the main contrast, in order to study the functional
differences in suspicion and bug detection during code-
inspection, we defined a contrast during the search for a
bug component of the paradigm: 1) Suspicion (the first
moment a bug is signaled) vs. Bug detection (when a
‘BUG’ is confidently confirmed). We then computed a
random effects group analysis. The average delay be-
tween suspicion and bug detection were 10 s (of evidence
accumulation) thus the potential temporal correlation/
overlap responses between them due to the hemodynamic
delay is minimal.

As secondary contrasts we also investigated:

2) understanding software source code (contrast between
source code blocks, with and without bugs, and pseudo-
code/text periods); 3) searching for a real bug (source
code with bugs vs. neutral code).

Data were corrected for multiple comparisons with the False
Discovery Rate (FDR) approach at the single voxel level
(p<0.05). A cluster threshold was also applied to discard small
clusters (<150 voxels). Note that correction with FDR at the
single voxel level and cluster threshold instead of FWE makes
a compromise between the limitations inherent to type II and
type I errors. Furthermore, the beta values (Suspicion vs. Bug
detection events) were extracted from the resulting region of
interest (ROI) in regions of the SN and in particular the insula
and a Pearson correlation analysis of these values and behavioral
precision (% of correct bug detections) was computed.
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Connectivity analysis

We aimed to clarify the roles of different nodes within the sa-
liency network, but with no additional a priori hypothesis. The
insula has been reported as a key node of the saliency network,
executive-functions and decision-making tasks (Sridharan et al.
2008). We thus calculated the Granger causality map (GCM
plugin tool from Brainvoyager) to find the regions that
influence/are influenced by the insular ROI. We computed
GCM that is a method exploring directed influences (effective
connectivity) between distinct regions in fMRI data without an a
priori model of assumed regional connections between regions.
This plugin computes GCM with respect to a single region-of-
interest using temporal precedence information to compute
Granger causality maps and identify voxels that are sources or
targets of the selected ROI. Briefly, it makes use of Granger
concept to determine if the past of a time-series may improve
the prediction of the current value of another time-series
(Roebroeck et al. 2005). In this way, one could map our ROI
influence over the brain with a measure of effective connectivity.
The instantaneous correlation/functional connectivity without a
direction was also computed. The difference between influence
(from the insula, because of its identified relation with precision
of bug detection) and influence from the voxel to the reference
region is finally extracted. The positive value represent voxels
where influence from the reference region dominates (i.e. that
are targets of the ROI) and the negative value at voxels signal
the voxels where influence to the reference region dominates
(i.e. that are sources of influence to the ROI).

Results
Behavioral and Eyetracking results

The programming experts reached a relatively high precision
for bug detection/confirmation: group median true positives: 7
(min 5, max 8); false positives: 2 (min 1, max 8). The same
bugs reported more than on one occasion were only consid-
ered once for behavioral analysis. The median number of true
suspicion events was 9 (min 5, max 14) and false suspicion
events was 3 (min 1, max 10).

The eyetracking data unraveled the expected patterns of fix-
ations during source code debugging. We performed an area-of-
interest (AOI) analysis defined for the code lines with bugs
during source code inspection and the suspicion and bug detec-
tion moments. As trivially expected, the number of fixation in/
out bug AOI differed significantly (¢ =—6.60, p <0.00001) but
this effect disappears if one normalizes the data for the size of
the AOIs. Moreover, the mean fixation duration in/out bug AOI
did not differ (t =—1.387 p =0.177). Furthermore, the number
of fixations (¢ =—0.678 p =0.513) and mean fixation duration
(t=0.295 p =0.774) of the Suspicion vs. Bug detection events
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did not differ. Supplementary Table A.2 summarizes the de-
scriptive statistics and Fig. A.4 shows an example of the track-
ing scan path for one subject. Notably, we did not observe sig-
nificant correlations between Suspicion and Bug detection fixa-
tion durations ( =0.21, p =0.53).

The neural basis of software source code
understanding

We investigated the neural underpinnings of software program
processing in expert participants by using fMRI while subjects
performed a bug detection task. The task included conditions
with and without bugs, and the main contrast of interest was
bug suspicion vs bug detection.

We found a middle frontal, parietal and occipito temporal
network that is activated more during software source code
understanding than pseudo-code text reading (z>5.49,
p<0.00005 (FDR corrected)). Pseudo-code text reading
showed increased activation in middle temporal areas (—57,
—-16, —10; t=—4.87, p<0.00017 (FDR corrected)). We found
activation in several areas related to program comprehension,
language processing (e.g. visual word form area, X =—43,Y =
=53, Z=-13 t=—4.80, p=0.0001296) (Vigneau et al. 2005),
working memory (D’Esposito et al. 1998), error detection and
decision-making (BA 9, p < 0.00005 (FDR corrected)) (Fig. 2)
(Hauke R Heekeren et al. 2008). Table 1 summarizes the sig-
nificantly activated regions per contrast.

We then compared the ‘searching for a bug’, source code
with the bugs with the source code without bugs (neutral).
This contrast replicated a similar network of areas (Fig. 3;
Table 1) as reported for the above-mentioned contrast.
Moreover, ‘search for a bug’ also revealed activation of high-
level visual processing and recognition memory regions in the
inferior temporal gyrus (BA 20) (Cheung et al. 2009; Desco
etal. 2011; Kroger et al. 2008; Tanaka 1992). Other frontal areas
related to multiple-task coordination (superior frontal gyrus)
(Kennerley et al. 2011; Szameitat et al. 2002, 2006;
Waunderlich et al. 2012), error detection and management of
uncertainty (middle frontal gyrus) (Eickhoff et al. 2009;
Iannaccone et al. 2015) are also activated.

Decision related regions are activated at the ‘eureka
moment’ of bug suspicion in comparison to bug
detection

When analyzing the main contrast of interest, the reports of
“feeling of suspicion” revealed regions activated for moments
of intuition prior to bug detection (the suspicion of a bug,
‘eureka moment’ of uncertainty) in contrast to the bug detec-
tion moment (high confidence/certainty). Critically, we found
an important role for the insula in relation to this particular
contrast (see detailed results in Table 2). Accordingly, the
anterior insula is activated by suspicion or intuition of a bug
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Fig. 2 The neural correlates of
source code reading and
comprehension (source code vs.
pseudo-code text). Note that a
frontoparietal network is
recruited. See Table 1 for regions
labels and statistical details

(t>4.11, p <0.0008) as well as small regions in dorso-lateral
pre-frontal cortex (Fig. 4). Notably, also an area related to

(Source code vs. Pseudo-Code Text)

Medial L

Medial R

q(FDR) < 0.050
-10.30 ==
|

semantic processing in the inferior frontal gyrus (Binder
et al. 2009) was also activated by the contrast suspicion vs.

Table 1 Regions recruited by source code inspection

Anatomical Label Brodmann  PeakX PeakY PeakZ T P-value (FDR  NrOfVoxels
Area p<0.05)
Understanding Source-code R Middle Frontal Gyrus BA6 48 5 40 6,73 0,000005 1579
(Source-code vs. Pseudo-Code Text) R Middle Frontal Gyrus BA9 51 29 34 549 0,000049 342

R Middle Occipital Gyrus ~ BA 19 30 =79 10 7,71 0,000001 2069
L Sup Occipital Gyrus BA 19 -30 =70 28 8,30 0,000000 4798
L Precentral Gyrus BA 6 —42 -1 34 6,21 0,000012 852
L Middle Frontal Gyrus BA9 —48 26 28 6,89  0,000004 579
L Middle Temporal Gyrus ~ BA 21 —60 —40 —-11 721 0,000002 444
L Mid Temporal Gyrus BA 21 =57 -16 -11 -4.87  0,000172 702

Searching for a Bug (Source-code R Inf Temporal Gyrus BA 20 57 —46 -11 5,38 0,000062 1333

with bugs vs. Source-code without bugs) L Sup Frontal Gyrus BA 10 -39 56 25 6,02 0,000018 1252

L Middle Frontal Gyrus BA 9 —48 17 31 8,00  0,000001 10,945
R Middle Occipital Gyrus ~ BA 18 27 -85 -2 9,40 0,000000 20,927
L Parietal Lobe, Precuneus  BA 7 =27 —67 40 991 0,000000 34,032
R Middle Frontal Gyrus BA 8 48 8 40 11,63 0,000000 7743
L Medial Frontal Gyrus BA9 0 47 16 —6,27  0,000011 4297
R Middle Temporal Gyrus ~ BA 21 57 -16 -8 =594 0,000021 3339
R Medial Frontal Gyrus BA 10 15 35 -5 -5,86  0,000024 2713
L Parietal Lobe, Precuneus  BA 7 0 =37 43 -5,75  0,000030 3434

Summary of the recruited regions for each contrast is reported with the correspondent anatomical localization and statistical values (P-values are FDR
corrected for multiple comparisons, please note the sign of't values for interpretation of the polarity of significant contrasts). Anatomical label is based on
the peak voxel. (R, right; L, left; inf.,, inferior; mid., middle; med., medial; sup. superior)
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Fig. 3 Statistical parametric (Source code with bugs vs. Source code without bugs )
maps for the ‘searching for a
bug’ condition. A network of
error monitoring areas and
uncertainty related middle frontal
areas are activated for the contrast
of code with bugs vs. code
without bugs

q(FDR) < 0.010
-8.00 ==

-4.06 ==
8.00

({11

4,06 mm
t(16)
p < 0.000910

Bottom

Medial L Medial R

Table 2 Regions recruited by ‘Eureka moments’ of bug detection

Anatomical Label Brodmann Area  PeakX ~ PeakY  PeakZ T P-value NrOfVoxels
(FDR
p<0.05)
‘Eureka Moments‘(Suspicion L Inf Frontal Gyrus BA 44 =51 8 19 3,46 0,003241 218
vs. Bug confirmation) L Sup Frontal Gyrus BA 8 -3 23 52 3,73 0,001835 524

L Precentral Gyrus BA 6 -39 -7 43 3,77 0,001687 233
R Anterior Insula BA 13 30 20 16 4,11 0,000821 939
R Anterior Cingulate BA 10 3 53 -2 4,17 0,000724 154
R Middle Frontal Gyrus BA9 51 36 34 4,68 0,000251 443
R Sup Frontal Gyrus BA 6 15 26 59 4,68 0,000249 993
L Middle Frontal Gyrus BA 47 =30 35 -8 5,08 0,000112 2460
L Sup Frontal Gyrus BA 10 21 50 4 5,37 0,000063 579
L Middle Frontal Gyrus BA 46 —42 38 16 5,46 0,000052 2823
R Posterior Insula BA 13 36 —28 19 -6,36 0,000009 5202
R Posterior Cingulate BA 23 9 —43 25 -6,19 0,000013 17,618
L Parahippocampal Gyrus BA 34 -15 -10 -23 5,01 0,000127 535
L Postcentral Gyrus BA2 =36 —28 40 -4,39 0,000455 875
R Thalamus 21 -16 19 —4,33 0,000517 627
R Postcentral Gyrus BA 43 51 -13 13 —4,16 0,000732 758
R Parahippocampal Gyrus BA 28 21 —-13 —14 -3,98 0,001066 893
R Culmen 9 —40 ) -3,75 0,001737 196
R Superior Parietal Lobule BA7 24 —46 62 -3,67 0,002079 150

A summary of the recruited regions is reported with the correspondent anatomical localization and statistical values (please note the sign of't values for
interpretation of the polarity of significant contrasts). Anatomical label is based on the peak voxel. (R, right; L, left; inf., inferior; mid., middle; med.,
medial; sup. superior)
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Fig. 4 Decision related regions (Suspicion vs. Bug detection)
and the insula are activated at

the ‘eureka moment’ of bug

suspicion in comparison to bug

detection. This map represents

the areas activated for the

statistical contrast of suspicion

events with still remaining

uncertainty vs. bug detection

(certainty or high confidence)

-8.00 ==
|
|
|
-
-
-
-
L}

-3.50 mm

8.00
|
|
|
-

3.50 mm

t(16)
p < 0.002964

bug detection (# =3.46, p =0.0032). On the other hand, the
largest region activated during bug confirmation in compari-
son to bug suspicion was in posterior cingulate (f=—6.19, p =
0.000013) a region known as a central node of the default
mode network (DMN) (Leech and Sharp 2014).

The strongest activations for the Suspicion vs. Bug detec-
tion events (Fig. 4) were found in parietal regions and in the
right anterior insula. A less specific contrast of bug detection
vs. baseline also reveals a right posterior region (X=53,Y =
—41, Z = 25; Inferior parietal lobule, BA40; p <0.000008) in-
volved in math processing (Desco et al. 2011). On the other
hand, the activation of right posterior insula is higher for bug
detection than for bug suspicion maybe due to sensorimotor
processing (Chang et al. 2013; Rebola et al. 2012) related to
the preparation of bug confirmation.

Activation in the anterior insula correlated with bug
detection precision

We found a brain region that shows increased activation dur-
ing the ‘suspicion’ events vs baseline (in the sense of an intu-
itive feeling of the presence of a bug). This region is located at
the right dorsal anterior insula (X =42,Y=13,Z=7;t=8.41;

Medial L Medial R

p <0.000018). This contrast shows that this region is highly
activated at the very first moment a bug is suspected to be
present (Fig. 5a).

The beta values of bug suspicion activation observed in
insula under the contrast between bug suspicion and bug de-
tection, were then analyzed in terms of correlation analysis
with behavioral precision values. We found that the activity
in this insular region at the suspicion event is positively cor-
related with the precision performance of our group of experts
(the % of correct bug detections; »=0.540; p = 0.021; Fig. 5b)
suggesting that it encodes the quality of the evidence. Notably
no correlations were found between activity in other areas
(e.g. posterior cingulate; » =0.223, p =0.359) and precision,
or the eye tracking fixation parameters of the bug AOI.

Granger causality analysis reveals a top
down modulation network during bug detection

Connectivity analysis allowed to investigate the main network
of instantaneous correlations and directed influences related to
this insular region. Granger causality analysis provided evi-
dence for top-down circuit “reutilization” (from the salience
network to parietal regions) for this relatively recent human
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Fig. 5 The Insula activates at
the very first moment of
suspicion and its BOLD signal
is correlated with behavioral
precision. a The activation map
shows the insula as activated for
the contrast Suspicion vs.
baseline. b A significant
correlation is found between beta
values of this contrast in the insula
and the individual precision for
bug detection by all participants
that have precisions over 50%
(r=0.540; p=0.021; N=18)

q(FDR) < 0.001

-8.00 ==
—

-
|

B) Correlation in the Insula

-0,5 0,0 0,5 1,0

Beta values: Suspicion

activity. Anterior areas at the cingulate (BA32, salience net-
work) and middle frontal gyrus (BA10) causally modulate the
insula (also belonging to this network) while BAS in the mid-
dle frontal gyrus, cingulate BA24 and fusiform gyrus BA37
receive influence from the insula (Fig. 6; p <0.0057). Most
importantly, the latter shows functional influences to earlier
math processing parietal regions (BA 40) and higher-level
sensory processing regions (BA 18).

Discussion

Considerable effort has been made to elucidate the neural
correlates of decision-making and error monitoring
(Iannaccone et al. 2015) across several information processing
domains, but not in which concerns evolutionarily recent com-
plex tasks requiring integration of mathematical thinking, ab-
stract language and symbol manipulation such as in software
code processing. Many studies stemming from low-level de-
cision tasks (Castelo-Branco and Castelhano 2015), related to
visual object classification (or perceptual decision-making (H
R Heekeren et al. 2004)) to simple behavioural decisions,

@ Springer
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2,0

suggest an important role of the insula in monitoring conflict
and error during decision (Chang et al. 2013; Droutman et al.
2015). The study of such decisions is important but more
complex decision-making processes as instantiated by the
phylogenetically more recent software-programming frame-
work, and related Eureka decision moments, remain to be
understood. We studied decision-making processes and error
monitoring while subjects (programming experts in code in-
spection) performed a bug monitoring and programming
(source code related) decision task.

Programming is a relatively new cultural acquisition and it is
likely that the brain needs to “reutilize” brain networks for this
type of complex activity, by reorganizing this form of complex
integrative processing in a top-down manner. In other words,
brain regions that are known to be active in response to a
specific activity (simple maths) may be alternatively used for
other more complex processing domains, when the need arises
(Dehaene et al. 2015). This is the case when general language,
maths and abstract symbol processing modules need to be in-
tegrated. A previous proceedings study (focusing only on the
detection of simple syntax errors) considered that language/
reading areas were central in understanding these very simple
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Fig. 6 Connectivity analysis reveals a top down influence from the
salience network. The cluster in the anterior insula was the seed region
for the connectivity analysis of all runs pooled together. A) The Red
colormap represents the brain regions showing significant instantaneous
connectivity with the insula. The Blue colormap illustrates the areas that
are influenced by the insula. In green are projected the areas, which
activity significantly influence the insula activation. These areas are
labeled in the Fig. B) GCM analysis summary in a form of directional

violations (Siegmund et al. 2014) but the task used in that
conference report did not require deep integration of language
and mathematical thinking during coding inspection.
Here, we discovered a set of brain regions with a dis-
tinct top-down connectivity pattern which are involved
in the complex task studied here, requiring the integra-
tion of language/semantic processes (in middle temporal
regions), math (middle frontal and inferior parietal
areas) and error monitoring/uncertainty and decision-
related processes (ACC, inferior and middle frontal gy-
rus). These regions are functionally connected in deep
source code comprehension while expert software pro-
grammers are attempting to identify bugs in source
code. We found a distinct role for the dorsal insula in
deep source code analysis involving integration semantic
and mathematical processing. Insula activity levels were
critically related to the quality of error detection, involv-
ing intuition (bug suspicion) prior to final decision of
bug detection, while the ACC causally modulated insu-
lar processing within the salience network. A critical
novelty in our study is that we included ‘real’ bugs
with correct syntax. Given that female programmers still

Occipital Lobe, Cuneus, BA18

diagram. In sum, the insula receives directed input from the green regions
(mainly frontal: anterior cingulate BA32 and middle frontal gyrus BA10)
and gives directed input to the blue areas (in particular frontal regions
cingulate gyrus BA24 and middle frontal gyrus BAS). This functional
integration also includes a path to other sensory (BA18) or math
processing regions (BA40). Only clusters surviving the statistical t-test
of group average (p <0.007) are reported

represent a minority (often <15%), our sampling
reflected this fact. We had only one female programmer
and one limitation of our results is that they cannot be
generalized to female programmers.

Most importantly, we identified the neural signatures of the
moment when the code reviewer identifies a bug in the code
(‘eureka moment’/ suspicion event). Furthermore, these dif-
ferences in brain activity between suspicion and bug confir-
mation events are not due to differences in fixation patterns
because these did not differ between conditions.

Previous studies reported language related left inferior
frontal gyrus and clusters in BA 44, 45 and 46 (frontal areas),
superior frontal cortex and right middle temporal gyrus acti-
vation related to processing of anomalous sentences (S. D.
Newman et al. 2012), and simple syntactic and semantic vio-
lations respectively (Kuperberg et al. 2000; A. J. Newman
et al. 2001). We show that the network related to the process
of ‘searching for a Bug’ also involves other regions, which is
to be expected given the integrative nature of our task, and
includes areas in inferior parietal cortex, middle frontal gyrus
and frontal conflict/error monitoring regions such as the ACC.
In fact, these areas subserve high level control functions such
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as error monitoring, which are important for tasks requiring
the use of mathematical skills (Cragg and Gilmore 2014).

Our paradigm is novel because it forces integration of mul-
tiple processing domains for complex code analysis. The need
for integration across domains is supported by evidence that
language and math both require recursive thinking (Maruyama
et al. 2012; Semenza et al. 2006), which represents an evolu-
tionary landmark per se. Here, we found evidence for the no-
tion that distributed resources might be used for a more de-
manding task as source code debugging. Nevertheless, further
work is needed to clarify if recursivity in source code may
recruit the same regions as language recursive thinking.

Posterior parietal regions were identified to be activated at
the moment of Bug detection. These regions have been related
to cognitive tasks involving symbolic and non-symbolic nu-
merical form and math processing (Fulbright et al. 2000; Zago
et al. 2001). On the other hand, frontal regions related to the
salience network including ACC and prefrontal cortex were
also activated while performing the bug detection task. These
decision and error monitoring (Iannaccone et al. 2015) related
brain regions (Botvinick et al. 2004; Krawczyk 2002) were
consistently activated during continuously checking if there
are bugs in the source code.

We provided evidence that the ACC region causally influ-
ences the dorsal anterior insula (also within the salience net-
work (Uddin 2015)) in relation to suspicion. Notably, we did
not find activation differences between suspicions about true
or false bugs, which is in line with the intuitive nature of bug
suspicion (the “feeling” of a bug). At that eurcka moment of
suspicion the subject is really confident that he/she possibly
found a bug, even if later on he/she finds that it is not the case.

It is known that the ability to monitor our own errors is me-
diated by a network that includes, in addition to the ACC, the
dorsomedial prefrontal cortex (dmPFC) and anterior insula
(Bastin et al. 2017; Droutman et al. 2015). These authors obtain-
ed direct electrophysiological evidence that the anterior insula
rapidly detects and conveys error signals to dmPFC.
Additionally we show that the very first moment of bug detection
(suspicion) activates more the dorsal anterior insula than the bug
detection itself. Accordingly, we found that this part of the insula
is a region critically involved in the processing of error uncer-
tainty during the emergence of bug suspicion and intuition in a
manner that is predictive of future precision. Thus this is in line
with the previous reports regarding insula role on tracking arous-
al variance or error awareness as part of the salience network by
integrating information from disparate functional systems in-
volved in general cognition (Chang et al. 2013; Droutman et al.
2015). In this line, our results extend the notion of the insula as
region involved in simple perceptual decision-making
(Castelhano et al. 2014; Rebola et al. 2012) and suggests that it
processes the quality of the evidence. On the other hand, the
activation of right posterior insula is higher for bug detection than
for bug suspicion which is maybe due to sensorimotor processing
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(Chang et al. 2013; Rebola et al. 2012) that may occur during
detection. Additionally, posterior cingulate is also activated dur-
ing bug detection in comparison to bug suspicion. This is a
region known as a central node of the default mode network
(DMN) (Leech and Sharp 2014) and thus this might be reflecting
a self-reflection mechanism related to the detection itself.

Furthermore, our work can also be put in the context with
the notion that the insula is a key structure within the neural
networks involved in decision-making under uncertainty and
helps refocusing attention and executive function for better
outcome choice (Droutman et al. 2015; Krawczyk 2002).
This was further confirmed by Granger causality analysis that
demonstrated that in this complex task another region in the
salience network, the ACC, causally influences the insula,
which in turn influences lower level math related regions. In
sum, connectivity analysis revealed a relationship between
brain areas for source code related decision making and pro-
vided evidence for a network of top-down modulation for bug
detection: cingulate (BA32) and anterolateral (BA10) frontal
regions causally modulated decision processes in the insula
which in turn influenced activity in math and language pro-
cessing regions. This suggests a network architecture that al-
lows for bug detection in the brain. The instantaneous corre-
lations of these processes show that functional integration
(functional connectivity) of insula and math processing re-
gions (possibly related to the first insight of the algorithm in
the source code), may indeed be distinct from directed inter-
actions (effective connectivity). These extend to a large set of
areas (e.g. underlying decision and executive functions) that
explain observed dependencies as also suggested by previous
reports (see (Duarte et al. 2017; Karl J Friston 2011)).

By showing a correlation between activity in a specific brain
region during error intuition, the insula, and behavioural perfor-
mance of the participants, we raise the possibility that this brain
region signals the quality of programmers’ intuitive capacity to
identify bugs when facing the inspection or analysis of challeng-
ing code.

In sum, we found that an evolutionary recent and complex
task requiring integration across multiple functional domains,
elicits a functional connectivity pattern of top down control
from the ACC to the insula, a region that is predictive of bug
detection accuracy, in the salience network and then to lower
level parietal math processing networks. Such a functional
organization of information processing during computer pro-
gram understanding and error checking underlies integration
of information from multiple functional modules (maths and
logical symbol processing, language) for software source code
debugging. Future studies should further elucidate whether
cognitive processing of recursive programs do share the same
brain circuits as recursive language.
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