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Herpesvirus infections are a leading cause of neurodevelopmental delay in newborns and

end-organ disease in immunocompromised patients. One leading strategy to reduce

the disease burden of herpesvirus infections such as herpes simplex virus (HSV) and

human cytomegalovirus (HCMV) is to prevent primary acquisition by vaccination, yet

vaccine development remains hampered by limited understanding of immune correlates

of protection against infection. Traditionally, vaccine development has aimed to increase

antibody titers with neutralizing function, which involves the direct binding of antibodies to

viral particles. However, recent research has explored the numerous other responses that

can be mediated by engagement of the antibody constant region (Fc) with Fc receptors

(FcR) present on immune cells or with complement molecules. These functions include

antiviral responses such as antibody-dependent cell-mediated cytotoxicity (ADCC)

and antibody-dependent cellular phagocytosis (ADCP). Uniquely, herpesviruses encode

FcR that can act as distractor receptors for host antiviral IgG, thus enabling viral

evasion of host defenses. This review focuses on the relative roles of neutralizing and

non-neutralizing functions antibodies that target herpesvirus antigens for HSV andHCMV,

as well as the roles of Fc-FcR interactions for both host defenses and viral escape.

Keywords: HSV, HCMV, herpes simplex virus, cytomegalovirus, FcR, Fc receptor, non-neutralizing antibodies,

neutralizing antibodies

Herpesvirus infections are the leading cause of infectious brain damage in infants and a leading
source of morbidity and mortality in immunosuppressed individuals. Neonatal herpes simplex
virus (HSV) has 50% mortality in neonates who develop disseminated disease, even among
those who receive appropriate antiviral therapy (1), and congenital human cytomegalovirus
(HCMV) is the most common infectious cause of sensorineural hearing loss worldwide (2).
In immunocompromised patients, HSV and HCMV infection can both cause severe end-organ
disease. HSV-2 causes severe, sometimes refractory disease including orofacial and genital lesions
in patients with HIV/AIDS and other immunocompromising conditions (3), and HCMV is a major
infectious cause of morbidity and mortality in immunocompromised patients, such as recipients
of allogeneic hematopoietic stem cell transplants (4). One strategy to reduce disease burden is to
prevent primary acquisition or viral reactivation by vaccination. In fact, a vaccine to prevent HCMV
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has been designated a “Tier I priority” by the Institute of
Medicine since 2000 (5). Yet despite major advancements in
research and multiple clinical trials of HSV and HCMV vaccines
over the last 20 years, development of efficacious vaccines
remains elusive. These challenges may be due in part to a limited
understanding of the immune correlates of protection against
viral infection, as well as complex mechanisms of herpesvirus
evasion of these immune responses.

Traditionally, vaccine developments for HSV and HCMV
have predominantly focused on the generation of neutralizing
responses to prevent primary acquisition. Neutralization occurs
upon direct binding of antibodies to viral antigens by their
antibody binding (Fab) regions and can often be mediated in
the absence of the antibody constant (Fc) region, as in the
case of isolated F(ab) or F(ab)’2 fragments which are enzyme-
cleaved immunoglobulin G (IgG) that lack the Fc portions. Thus,
neutralization is generally achieved by antibodymasking of target
cell receptor binding sites or inhibition of conformational change
in viral spike proteins required for fusion between the viral lipid
envelope and cellular plasmamembrane (6). However, the results
of animal vaccine studies and recent clinical trials of HSV and
HCMV vaccines have suggested that neutralization may be only
one of several antibody functions that protect against HSV and
HCMV infections, respectively. A previous trial of an HSV-2
subunit vaccine targeting glycoprotein D (gD), which is required
for HSV entry into cells (7), elicited robust neutralization but
did not confer protection against genital HSV-2 infection (8).

FIGURE 1 | Host and virus Fc receptor (FcR)-mediated functions. ADCC and ADCP occur upon engagement of virus-specific antibody Fc fragments to FcR, resulting

in cytotoxic killing of infected cells and whole virion degradation, respectively. Herpesviruses also encode their own viral FcRs (FcRs), which recognize the Fc regions

of host immunoglobulins. Mimicking host FcRs, vFcRs enable herpesviruses to reduce and evade antiviral immune responses. Figure created with BioRender.

Similarly, a subunit vaccine against HCMV glycoprotein B
(gB), which is required for viral entry (9), conferred ∼50%
protection in multiple phase II studies of HCMV but elicited
negligible neutralizing responses against heterologous HCMV
strains (10, 11).

Thus, recent vaccine efforts have aimed to measure both
neutralizing and non-neutralizing antibody responses. These
responses include antibody-dependent cellular cytotoxicity
(ADCC), antibody-dependent cellular phagocytosis (ADCP),
antibody-dependent complement deposition (ADCD), and
antibody-dependent respiratory burst (ADRB), of which ADCC
and ADCP occur upon engagement of Fc and Fc receptors (FcR)
(Figure 1). ADCC is an adaptive immune response wherein
IgG Fc-FcR engagement triggers lysis of target cells. Although
ADCC activity is largely mediated by NK cells, it can also be
mediated by non-NK cell populations in peripheral blood and
mucosal compartments including monocytes, macrophages, and
granulocytes. In ADCP, phagocytic cells such as monocytes,
macrophages, neutrophils, and dendritic cells (DCs) express
FcRs that enable them to efficiently uptake antibody-opsonized
particles, enabling both clearance and presentation of viral
antigens. The FcR most involved in the non-neutralizing
antibody functions ADCC and ADCP are of the FcγR family.

FcγR is which is one of the five main FcR classes, which
includes FcγR, FcεRI, FcµR, FcαRI, and FcRn, so named for the
IgG that they recognize. The FcγR family is broadly categorized
into three groups: FcγRI (CD64), FcγRII (CD32), and FcγRIII
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(CD16), each of which coordinate different functions and are
expressed on different cell types. The FcγRI family are high
affinity (109/M) receptors, which can bind monomeric IgG, and
are constitutively expressed on monocytes and macrophages
(12). By contrast, FcγRII and FcγRIII are low-affinity (106/M)
receptors, which bind only immune-complexed IgG, and are
expressed on many hematopoietic cells. The FcγRII family is
categorized into FcγRIIa, FcγRIIb, and FcγRIIc. FcγRIIa is the
most widely distributed FcγR, found on neutrophils, eosinophils,
B lymphocytes, platelets, mast cells, Langerhans cells, placental
endothelial cells, and dendritic cells (12). In contrast to all other
FcγRs which are activating, FcγRIIb is the only inhibitory FcγR,
due to its unique inhibitory cytoplasmic signaling motif (13).
The FcγRIII family includes two receptors: FcγRIIIa, which is
expressed on monocytes, DCs, and macrophages; and FcγRIIIb,
which is expressed on neutrophils, mast cells, and eosinophils.
The various combinations of FcγRs play a significant role in
determining an antiviral cellular response in the context of virus-
specific IgG.

In humans, non-neutralizing antibody responses rely
on engagement of IgG with particular FcγRs. ADCC is
predominantly mediated by FcγRIIIα, FcγRI, FcγRII, FcγRIIIb,
and FcαRI (CD89) (14–16). ADCP regulation is multilayered and
can involve amyriad of factors, including FcR genetics, phagocyte
cell type, and receptor expression pattern, tissue environment,
and antibody immune complex, including specificity, isotype,
subclass, and glycoforms (17). Notably, antibodies that mediate
non-neutralizing functions may also mediate neutralization, and
there may be not only complementary but potentially synergistic
humoral effector functions for antiviral antibodies. Thus, the
relative contributions of neutralizing and non-neutralizing
antibody functions against HSV and HCMV for both protection
and viral clearance are likely very complex.

Uniquely, herpesviruses also encode their own viral FcRs
(FcRs), which recognize the Fc regions of host immunoglobulins.
These vFcRs mimic host FcRs, enabling herpesviruses to reduce
and evade antiviral immune responses. The elucidation of
the mechanisms by which vFcRs evade host antiviral immune
responses has exposed their potential as targets for novel
vaccine development.

This review will discuss non-neutralizing antibody functions
in HSV and HCMV, with a particular focus on functions
mediated by Fc-FcR binding, as well as the role of vFcRs to
mimic host FcR and to evade immune responses. An improved
understanding of the distinct humoral immune correlates of
protection will ultimately aid development of efficacious vaccines
against herpesvirus pathogens.

FCR-MEDIATED IMMUNITY AGAINST HSV

The hallmark of HSV is its ability to establish lifelong persistent
infection in sensory neurons and reactivate to cause recurrent
disease or viral shedding. In HSV-infected individuals, control
and clearance of the virus has been attributed to the generation
of cellular immunity (18), but HSV antibodies are known to
play a major role in prevention of HSV infection (19–23). In

congenital HSV, maternal antibodies against HSV are known to
reduce disease severity in infants (24). Women who are infected
with sufficient time to transmit HSV antibodies to their infants
are less likely to have infants with neonatal HSV-2 disease than
women with acute HSV-2 infection at the time of childbirth (24).
Thus, antibody-mediated immunity has been a central focus for
HSV vaccines.

Of particular interest for HSV vaccine development are the
HSV glycoproteins gD, gB, and gH/gL, which are essential for
cell entry and which have been targets for multiple vaccine trials
in humans (25–27). A vaccine trial of HSV-2 gD2 induced both
cellular and humoral immune responses in HSV-2-seronegative
patients, and despite inducing high-titer gD2-specific antibodies
at levels exceeding those induced by natural infection and
neutralizing antibodies, the vaccine failed to prevent HSV
genital infection after 1 year of follow-up. As compared to the
control group, the vaccinated demonstrated only 20% protection
against genital disease (27). Surprisingly, protection against viral
acquisition (with or without disease) against HSV-1 was 35%
whereas there was no vaccine efficacy against HSV-2 (27). Cross-
protection was expected in this trial given the high sequence
homology between gD1 and gD2, yet it remained unclear
what properties of the vaccine-elicited antibodies were partially
protective against HSV-1 infection. In a subsequent study of the
HSV-2 gD2-vaccinated women, antibody titers to HSV-2 gD2
correlated with protection against HSV-1 infection, with higher
antibody concentration associated with higher efficacy, but there
was no correlation between HSV-2-specific antibody titers in
serum with HSV-2 protection (21). Of note, follow-up studies
revealed that in sera drawn 1 month after the final dose of the
HSV-2 gD2 vaccine, mean neutralizing titers to HSV-1 were 3.5
times than to HSV-2, and the mean neutralization titer against
HSV-2 was 1:29, well-below that seen in natural infection (28).
The results of this follow-up study may partially explain the lack
of protection observed against HSV-2. Thus, although the vaccine
elicited high antibody and mixed neutralizing titers to HSV but
had poor efficacy against genital disease, it remains unclear if
neutralization is sufficient for protection.

In addition to neutralization, recent studies have aimed to
measure non-neutralizing functions of HSV-specific antibodies
(Table 1). Mouse studies have revealed that passively infused
intact HSV-specific IgG can protect against viral challenges
by footpad injection, whereas F(ab’)2 fragments, which can
only mediate neutralization, confer only moderate protection,
indicating the importance of Fc-mediated antibody functions
against HSV (30). In mice, passive transfer of non-neutralizing
monoclonal antibodies with in vitro ADCC activity protected
complement-deficient mice against lethal HSV-2 challenge (29).
Furthermore, in a murine challenge model of HSV-1 and HSV-
2, a single-cycle HSV deleted of glycoprotein D (1gD-2),
which is a major target of neutralizing antibodies, provided
complete protection against lethal intravaginal or skin challenge,
as well as rapid clearance and elimination of latent virus
(39). Yet, interestingly, the vaccine-elicited antibodies had
limited neutralization function and had enhanced FcR-mediated
functions, namely ADCP and ADCC, as measured by activation
of murine FcγRIII or FcγRIV, which of note is not expressed
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TABLE 1 | Studies implicating host FcR-mediated functions in protection against HSV and HCMV infections.

Virus Model Functions

implicated

Relevant observations References

HSV-2 Mice ADCC Passively transferred non-neutralizing monoclonal antibodies with known ADCC

function, measured by 51Cr release, protected complement-deficient mice from

HSV-2 challenge

(29)

HSV-1 Mice FcR-

mediated

functions

Passive immunization with IgG, as compared to F(ab’)2 treatment, reduced viral titer,

and viral spread in HSV-1 challenged mice

(30)

HSV-2 Humans ADCC High maternal or neonatal anti-HSV ADCC antibody levels, measured by infected cell

release of 51Cr label, or high neonatal antiviral neutralizing levels were independently

associated with an absence of disseminated HSV infection

(31)

HSV-1 Mice ADCC Antibodies against HSV gB or gD given with human mononuclear cells protected

against lethal challenge in neonatal mice with HSV-1, and protection was associated

with monoclonal ADCC activity

(32)

HSV-1 Mice ADCC Both neutralization and ADCC activity were independently associated with in vivo

protection against HSV-1 challenge

(33)

HSV-2 Humans ADCC Among HSV-2 gB-2 and gD-2-vaccinated subjects, low ADCC responses were

implicated in poor vaccine efficacy against HSV-2

(34)

HSV-2 Mice ADCC Antibody dependent protection against genital HSV-2 infection occurs in an

Fcγ-receptor dependent mechanism

(35)

HSV-1 Mice ADCC HSV-1 FcγR protected the virus by blocking IgG Fc-mediated complement activation

and NK cell-mediated ADCC in vivo.

(36)

HSV-2 Mice and

guinea pigs

Not specified Neutralization and IFNγ T cell responses did not correlate with vaccine efficacy for

HSV-2 subunit vaccines containing gD or gB alone or in combination, together with

CpG adjuvant

(37)

HSV-2 Mice ADCC The majority of sera collected from mice immunized with mature gG-2 plus CpG

adjuvant showed complement-mediated cytolysis and macrophage-mediated ADCC,

measured by infected cell release of 51Cr label, but not neutralization

(38)

HSV-1

and

HSV-2

Mice ADCC Single-cycle HSV 1gD-2 vaccine conferred protection against skin challenge with

clinical isolates, as well as rapid clearance and elimination of latent virus. Protection

was associated with target cell killing

(39)

HSV-1

and

HSV-2

Mice ADCC,

ADCP

Single-cycle HSV 1gD-2 vaccine conferred protection against skin challenge with

clinical isolates, and protection was associated with activation of HSV-specific murine

FcγRIII and FcγRIV

(40)

HSV-1 Human

mAbs

ADCC mAbs derived from humans vaccinated with the HVEM binding domain of HSV-1 gD

mediated neutralization and ADCC, measured by NK cell activation, and reduced

ocular disease in infected mice

(41)

HSV-1

and

HSV-2

Mice ADCC,

ADCP

Single-cycle HSV 1gD-2 vaccine conferred protection against skin challenge with

clinical isolates, and protection was associated with activation of HSV-specific murine

FcγRIV

(42)

HCMV Mice Not specified Prophylactic treatment with HCMV gB-specific neutralizing and non-neutralizing

antibodies protected equally against CMV challenge. In the setting of established

infection, neutralizing and non-neutralizing antibodies provided protection, with

neutralizing antibodies being superior

(43)

HCMV Humans ADCP An HCMV gB vaccine that afforded 50% protection in a clinical trial in post-partum

women elicited limited neutralization of autologous virus and negligible neutralization

of heterologous strains but robust ADCP

(10)

HCMV Humans ADCP An HCMV gB vaccine that afforded partial protection in a clinical trial in transplant

recipients elicited limited neutralization of autologous virus and negligible

neutralization of heterologous strains but robust ADCP

(11)

gB, glycoprotein B; gD, glycoprotein D; IFNγ, interferon-gamma; gG, glycoprotein G; HSV 1gD-2, HSV deleted of glycoprotein D.

in humans but in mice is expressed on macrophages and
neutrophils (39, 40, 44). Thus, both neutralizing antibodies
and ADCC appear to contribute to protection against HSV in
animal models.

In human studies, non-neutralizing antibody functions are
correlated with protection against infection. In follow-up studies
of the HSV-2 gB2 and gD2 combination vaccine, which failed

to confer protection against HSV-2 in HSV-2-seronegative
women, found that the vaccine induced neutralization but had
limited ADCC, as measured by target cells activation (34). A
neonatal herpes study evaluated both neutralizing antibodies and
ADCC titers in newborns and noted that each independently
correlated with protection against neonatal HSV infection (31).
These results were also recapitulated in mice (32). Previous
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vaccine studies also trialed a recombinant HIV glycoprotein
120 (gp120) construct fused to the HSV-1 gD herpesvirus entry
mediator binding domain (HVEM) (41), which is a cellular
receptor for HSV and is expressed on lymphocytes, fibroblasts,
and epithelial cells (45). Monoclonal antibodies isolated from
HVEM-vaccinated individuals had both neutralization and
ADCC function (45). In an in vivo challenge model, these
human monoclonal antibodies from HVEM-vaccinated subjects
protected mice from lethal infection and resulted in reduced
disease burden, namely reduced ocular disease and modestly
reduced virus shedding and latency after corneal inoculation
with HSV-1 (45). These studies indicate the importance of Fc-
mediated functions, namely ADCC, in protection against HSV
in both humans and murine models and are under current
investigation in HSV vaccine development.

Immunoglobulin G (IgG) genetic variations and FcγR
polymorphisms are known to exert effects on ADCC functions,
although this has not yet been explored extensively in the context
of HSV. Previous studies have demonstrated that homozygosity
for the higher-affinity allele CD16A-158V (which encodes
FcγR3α) protects against symptomatic HSV-1 infection, whereas
the CD32A-131H/R (which encodes FcγR2α-C) dimorphism
does not (46). In a follow-up study, NK cell degranulation
was consistently enhanced against opsonized HSV-1-infected
targets in specifically CD16A-158V/V carriers as compared with
CD16A-158F/F carriers (47). Other genetic polymorphisms for
IgG and FcγR in the context of non-neutralizing antibody
functions such as ADCC warrant future study.

FCR-MEDIATED IMMUNITY AGAINST
HCMV

Many current vaccine strategies against HCMV infection have
been designed to induce neutralizing antibody responses (48–
53). However, it remains unclear whether HCMV transmission
will be impacted by plasma neutralization, as reinfection
occurs routinely in individuals with pre-existing immunity. In
vivo HCMV is known to be largely cell-associated, spreading
intracellularly and via cell-to-cell without diffusing into
extracellular spaces as a cell-free virion (54), and clinical strains
in vitro recapitulate this feature (54, 55). Yet, in vitro studies of
HCMV have largely relied on laboratory strains that produce
high titers of cell-free virus (56), which may be more vulnerable
to neutralizing antibodies, IFN, and cellular restriction factors,
as compared with virus transmitted by cell-free entry. A
reconstructed wild-type HCMV strain that spread via direct
cell-cell contact demonstrated that high expression of the
pentameric gH/gL/gpUL128-131A complex enabled resistance
to neutralizing antibodies, providing insight into potential
mechanisms that facilitate the in vivo persistence of HCMV (57).

Although early studies had suggested that neutralizing
antibodies may be protective against congenital HCMV
transmission, recent randomized controlled trials in humans
have indicated that neutralizing antibodies are insufficient to
protect against congenital transmission, implicating a potentially
important role for FcR-mediated non-neutralizing antibody
responses. In a 2005, non-controlled study of HCMV congenital

transmission, administration of HCMV-specific hyperimmune
globulin to pregnant women with primary infection decreased
the rate of mother-to-fetus transmission from 40 to 16% (p =

0.04), and the risk of congenital disease decreased from 50 to 3%
(p < 0.001) (58). Subsequent non-randomized studies showed
a decrease in the number of congenitally infected infants born
to mothers who had been treated with hyperimmune globulin
or improved outcomes in HCMV-infected infants (59–62).
However, in a randomized clinical trial, the administration of
polyclonal human IgG containing high titers of neutralizing
antibodies failed to prevent congenital infection (63). Regarding
primary infection, the most efficacious HCMV vaccine to-date
was a protein subunit vaccine targeting HCMV glycoprotein B
(gB), which is essential for viral entry into all cell types (9), with
an MF59 adjuvant (gB/MF59), and although it achieved 50%
protection against primary acquisition in multiple phase two
clinical trials (64–66), sera from gB/MF59 vaccinees exhibited
poor neutralization of heterologous HCMV strains (10, 11).
Furthermore, a correlation between anti-gB antibody titers and
protection in vaccinated transplant recipients was found to
be independent of neutralization activity (11). These results
suggested that the partial protection conferred by the gB/MF59
vaccine was not due to neutralizing antibodies but perhaps due
to non-neutralizing antibody responses.

Follow-up studies have aimed to better characterize FcR-
mediated non-neutralizing responses protective against HCMV
(Table 1). Although the HCMV gB/MF59 vaccine did not elicit
neutralizing antibodies against heterologous HCMV strains in
populations of post-partum women and transplant recipients,
sera from post-partum vaccinees mediated robust ADCP of
both gB protein-coated beads and fluorescently-labeled whole
HCMV virions by human monocytes (10, 11). Interestingly,
the gB/MF59 vaccine preferentially induced high binding
magnitude gB-specific responses of the IgG3 isotype (10), which
is known to demonstrate high avidity for FcR on monocytes
and macrophages and which has been shown to coordinated
multiple antibody effector functions including ADCC and ADCP
(67, 68). Vaccine-elicited antibody enhancement of phagocytosis
is thought to have contributed to the partial efficacy of the
HCMV gB subunit vaccine, though it remains unclear if ADCP is
necessary or sufficient for protection against disease and warrants
further study.

In HCMV, ADCC appears to play a role in antiviral
immunity for naturally infected individuals, but its importance
in protection for vaccine-elicited responses remains to be
determined. Studies of pooled human IgG from naturally
seropositive individuals (Cytogam) can promote antibody-
mediated NK cell lysis (69), and ADCC is measurable in
naturally seropositive subjects (10). However, postnatal and
transplant subjects vaccinated with gB/MF59 demonstrated no
substantial ADCC-promoting antibody response in in vitro
assays with human NK cells (10, 11). In a murine model of CMV
infection, prophylactic administration of HCMV gB-specific
monoclonal antibodies before infection was also protective,
and both neutralizing and non-neutralizing mAbs were equally
effective in preventing lethal infection of immunodeficient mice
(43). Thus, FcR-mediated non-neutralizing antibody functions
such as ADCP and ADCC against HCMV appear to be involved
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in the antiviral immune response, but their separate and
overlapping contributions with neutralizing responses remain to
be determined.

HSV AND HCMV VIRAL FCR IN IMMUNE
EVASION

Uniquely, members of the α- and β-subfamily of herpesviridae
establish permanent, lifelong infections in their hosts. They
achieve this in part by encoding surface glycoproteins that bind
to the Fc region of host IgG and facilitate evasion from the
host immune response (70). HSV and HCMV encode a number
of immunomodulating proteins such as decoy receptors and
chemokines, which are theorized to protect against both innate
and adaptive immune responses (71).

HSV-1 encodes surface glycoproteins gE and gI, which can
form a complex on infected cells or on the virion surface that
binds to the Fc domain of host IgG (72, 73). This complex acts
as a vFcR and is associated with cell-to-cell spread of infection
(72, 73). The HSV gE-gI complex is required for the binding of
monomeric non-immune IgG, but HSV gE alone is sufficient
for binding polymeric IgG (74). The HSV gE-gI complex is
thought to facilitate degradation of antiviral host antibodies
through pH-specific binding. In this process, host anti-HSV IgG
antibodies participate in antibody bipolar bridging, whereby an
HSV-specific host antibody simultaneously binds to the HSV
gE-gI complex with its Fc region and to a specific HSV-antigen
(e.g., gC or gD) with its Fab arms (75–78). At the basic pH of
the cell surface, anti-HSV antibody can bind to both HSV gE-gI
complex and HSV antigen, but once this antibody is endocytosed
and trafficked into the late endosomes, the HSV gE-gI complex
dissociates from the antibody Fc region. The host antibody bound
to HSV antigen is then localized to the lysosome, where both
are degraded, whereas the HSV gE-gI complex can be recycled
back to the cell surface. This process of antibody bipolar bridging
protects virally infected cells from antibody- and complement-
dependent neutralization (78), ADCC (36), and granulocyte
attachment (79), and is thus an important mechanism of host
immune evasion from antibody-mediated clearance.

One novel strategy for vaccine development against HSV
infection aims to prevent these viral immune evasion activities
(Figure 1). In fact, a trivalent HSV vaccine composed of the
vFcγR HSV-2 glycoproteins C, D, and E has been tested
in animal challenge studies, in which the vaccine protected
seronegative rhesus macaques against intravaginal challenge and
seronegative guinea pigs against severe genital disease (80).
These glycoproteins were selected due to the involvement of
HSV-2 gC in complement cascade inhibition, thus contributing
to immune evasion (81); gD in virus entry (26); and gE in
blocking host IgG Fc thus also contributing to immune evasion
(82). Immunogenicity data revealed that the vaccine induced
plasma and mucosa neutralizing antibodies, antibodies that
block gC2 and gE2 immune evasion activities, and stimulated
CD4T cell responses (80). In guinea pigs previously infected
intravaginally with HSV-2, the vaccine reduced the frequency
of recurrent genital lesions and the frequency and duration of
vaginal shedding. These studies demonstrate the potential for

vaccine candidates aimed at preventing HSV evasion from host
defenses in the context of both primary infection and reactivation
and require further studies in humans.

Human HCMV encodes four glycoproteins that act as vFcγR
and interfere with IgG-mediated immunity against HCMV: gp68,
gp34 (toll-like receptor 11/TLR11), TLR12, and TLR13 (83–
85), each with a unique binding pattern to host IgG. Distinct
from host FcγR, HCMV vFcγR demonstrate glycan independent
binding (86), and all HCMV FcyR genes are transcribed with
relatively delayed kinetics during the protracted viral replication
cycle, reaching abundant protein amounts during the late phase
of infection (83). HCMV gp68 and gp34 are specific for binding
human IgG but do not discriminate among the IgG subclasses
(87). Recent studies reported formation of antibody bipolar
bridging complexes with gp68 and with gp34, and that HCMV
lacking gp34 or/and gp68 elicited much stronger activation
of host FcγRI, FcγRIIA, and FcγRIIIA by polyclonal HCMV-
immune IgG as compared to wildtype HCMV (71). These results
implicate HCMV gp34 and gp68 in evading the host FcR-
mediated immune response. Unlike the HSV-1 gE-gI complexes,
the gp68-Fc interaction is broadly stable across acidic and basic
pHs (86), resulting in degradation of the HCMV vFcγR gp68
with the host antibody and HCMV antigen. It is clear that
vFcRs are a unique viral immune evasion factor, and further
investigation will be required to understand the role of these
receptors in both viral pathogeneses, and as potential novel
targets for vaccine development.

CONCLUSION

Herpes simplex virus (HSV) and HCMV infections are a
serious cause of morbidity and mortality among infants and
immunocompromised patients worldwide. There is an urgent
need for efficacious vaccines against these pathogens, both to
prevent primary acquisition as well as reactivation of latent
virus. Historically, vaccine development has aimed to increase
the titer of neutralizing antibodies against HSV or HCMV to
confer protection, but recent clinical trial data and follow-up
immunogenicity studies have investigated the roles of antibody
Fc-mediated functions, namely ADCC and ADCP. Furthermore,
herpesviruses uniquely encode vFcRs that promote destruction
of antiviral host IgG and may enable immune evasion. An
improved understanding of non-neutralizing antiviral immune
responses and herpesvirus vFcRs may illuminate new pathways
for the development of more efficacious vaccines against HSV
and HCMV infections.
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