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The recent worldwide pandemic of COVID-19 has had a detrimental worldwide impact on

people of all ages. Although data from China and the United States indicate that pediatric

cases often have a mild course and are less severe in comparison to adults, there have

been several cases of kidney failure and multisystem inflammatory syndrome reported.

As such, we believe that the world should be prepared if the severity of cases begins

to further increase within the pediatric population. Therefore, we provide here a position

paper centered on emergency preparation with resource allocation for critical COVID-19

cases within the pediatric population, specifically where renal conditions worsen due to

the onset of AKI.

Keywords: COVID-19, extracorporeal therapy, kidney replacement therapy, pediatrics, acute kidney injury

INTRODUCTION

The recent worldwide pandemic of COVID-19, also known as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has led CoVs to become one of the major pathogens of evolving
respiratory disease outbreaks (1). Overall, up to 26% of hospitalized adults have been reported to
require support in an intensive care unit (ICU) due to acute respiratory distress syndrome (ARDS)
and multiple organ dysfunction/failure (MOD/MOF) (2–4). More specifically, acute kidney injury
(AKI) has recently been reported by various epidemiological and clinical characteristics studies,
demonstrating the presence of AKI symptoms in 3–23% of COVID-19 patients (2, 4–11).

Currently, the exact mechanism of kidney involvement in COVID-19 patients is unclear;
although, various mechanisms have been postulated including virus-induced cytopathy of renal
tissue and sepsis due to cytokine storm syndrome (Figure 1). Similar to other CoVs, the spike (S)
glycoprotein of the COVID-19 virus binds angiotensin converting enzyme 2 (ACE2) receptors on
host cells (12, 13). Afterwards, the active S protein is cleaved by transmembrane serine proteases

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2020.00413
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2020.00413&domain=pdf&date_stamp=2020-07-03
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rraina@akronchildrens.org
mailto:raina@akronnephrology.com
https://orcid.org/0000-0003-3892-8376
https://orcid.org/0000-0002-1516-3393
https://doi.org/10.3389/fped.2020.00413
https://www.frontiersin.org/articles/10.3389/fped.2020.00413/full
http://loop.frontiersin.org/people/357864/overview
http://loop.frontiersin.org/people/1014093/overview
http://loop.frontiersin.org/people/358277/overview
http://loop.frontiersin.org/people/349854/overview


Raina et al. COVID-19: PCRRT Emergency Preparedness Plan

FIGURE 1 | Potential mechanism of COVID-19 and postulated treatments. ACE2, angiotensin-converting enzyme 2; ARDS, acute respiratory distress syndrome;

CKRT, continuous kidney replacement therapy; CVVH, continuous venovenous hemofiltration; CVVHD, continuous venovenous hemodialysis; CVVHDF, continuous

venovenous hemodiafiltration; GSCF, granulocyte-colony stimulating factor; IL, interleukin; IP-10, Interferon-inducing protein-10; KRT, kidney replacement therapy;

MCP, monocyte chemoattractant protein 1; RNA, ribonucleic acid; SLEDD-f, sustained low-efficiency daily diafiltration; TNF-α, tumor necrosis factor-alpha. Designed

and created by Joshua Colina, joshcolina@gmail.com.

(TMPRSSs) resulting in membrane fusion facilitated by fusion
peptides released by the virus. This mechanism implies that
ACE2 and TMPRSSs are key factors in the infection of host cells
(12, 13).

In relation to kidney involvement, a recent study by Xu et al.
reported that ACE2 and TMPRSS2 genes were co-expressed
significantly in podocytes and proximal convoluted tubules,
similar to that in the lung, small intestine, and colon (14). The
podocytes are highly specialized cells of the kidney glomerulus
and are quite susceptible to viral and bacterial infections. Injury
to the structure of podocytes can induce a massive leak of
proteins into the urine. In an ongoing case study by Li et al.,
the authors reported that 34% of COVID-19 infected adults
acquired heavy proteinuria on the first day of admission with
63% presenting with proteinuria during their hospital stay (15).
The authors suggested that renal impairment may have been a
result of the COVID-19 induced cytopathy of podocytes and
renal tubular cells (15).

Furthermore, cytokine storm syndrome has been postulated
as another mechanism in causing MOD, including renal function
impairment. Various studies have suggested the occurrence of
cytokine storm in critically ill COVID-19 patients due to higher
plasma circulating cytokine levels (interleukin [IL]-2, IL-7, IL-
10, interferon-inducing protein-10 [IP-10], granulocyte-colony
stimulating factor [GSCF], macrophage inflammatory protein-
1a [MIP1a], monocyte chemoattractant protein 1 [MCP1], and
tumor necrosis factor alpha [TNF-α]) in severe cases (2). The
cytokine storm can cause sepsis and lead the immune system to
target normal cells, such as podocytes in the lung and kidney,
in an effort to eradicate the virus (14). In addition, it has been
postulated that viral involvement and the hosts inflammatory
response leads to the induction of endothelial dysfunction,

causing organ dysfunction in a variety of organ systems (16)
(Figure 1).

However, the epidemiology and characteristics of COVID-
19 have been reported to be much different in the pediatric
population (<18 years). In comparison to adults, the incidence
of COVID-19 in the pediatric subset ranges from 0.8 to 2.7%
with 0.58–9.7% of patients being admitted to the ICU (17–20)
(Table 1). Additionally, data from China and the United States
show that pediatric cases often have a mild course and are less
severe than in adults (17, 20). In a study by Dong et al. of 2,143
COVID-19 pediatric patients, it was reported that 94.1% of cases
were either asymptomatic (4.4%), mild (50.9%), or moderate
(38.8%), suggesting that clinical manifestations in children were
less severe compared with adults (20).

Nevertheless, several cases of multisystem inflammatory

syndrome (MIS-C) have recently been reported in pediatric
COVID-19 patients (21–25). Patients with MIS-C presented

with various symptoms including a persistent fever, hypotension,
elevated inflammatory markers, and multiorgan involvement
(22). As of May 12, 2020, a 102 cases of MIS-C had been
reported in pediatric COVID-19 patients in the state of New
York (22). In the United Kingdom, eight cases of MIS-C were

reported during a period of 10 days in mid-April (Table 2)
(23, 24). One out of these eight pediatric patients required KRT
and ECMO and died (23, 24). Additionally, according to the
Virtual Pediatric Systems (VPS), a total of 218 cases of MIS-C
in pediatric patients (<18 years) with seven deaths have been
reported throughout pediatric ICUs in North America (21).
However, there is still currently limited information regarding
the pathogenesis, risk factors, and treatment for MIS-C and
it remains unknown whether this condition is specific to the
pediatric population.
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TABLE 1 | Epidemiology of COVID-19 pediatric patients.

Study Location Total cases Incidence (n, %) Admitted to ICU

CDC (17) United States 149,760 2,572 (1.7%) 15 (0.58%)

Livingston

and Bucher

(18)

Italy 22,512 270 (1.2%) N/A

Tagarro et

al. (19)

Spain (Madrid) 4,6,95 41 (0.8%) 4 (9.7%)

Dong et al.

(20)

China 80,174 2,143 (2.7%) 13 (0.6%)

VPS (21) North America 9,186 401 (4.4%) 401 (100%)*

ICU, intensive care unit. *This data is from pediatric ICUs so all patients were admitted to

the ICU.

Until now, this pandemic has not been as detrimental to the
pediatric population, however, the world should be prepared if
the situation worsens. Thus, we provide a position paper focusing
on creating an emergency preparedness plan with resource
allocation, specifically if renal conditions worsen in COVID-19
affected children due to the onset of AKI (Figure 2).

DISCUSSION

Currently, there are no effective pharmacological treatments
for COVID-19 patients, however, general, and supportive
management via mechanical ventilation and hemodynamic
support through extracorporeal therapies can potentially be used
to improve overall outcomes in severe pediatric cases.

A recently published editorial by Ronco and colleagues
postulated the use of hemofiltration or hemoperfusion
containing highly biocompatible sorbents and microporous
resins, such as HA330/HA380 cartridges, to potentially provide
support to various organs in COVID-19 patients (26). In an
animal study by Xu et al., the use of HA330 hemoadsorption
in an endotoxin induced ARDS model showed significant
improvement in oxygenation, partial improvement in barrier
permeability, and reduced inflammation and lung edema (27).
In addition, a prospective study of 23 sepsis patients were treated
with continuous venovenous hemodiafiltration (CVVHDF)
and HA330 hemoperfusion. The investigators reported that
all patients showed significant increase in pH and reduction
of inflammatory cytokines as indicated by improved levels
of C-reactive protein (CRP) (28). However, HA330/HA380
cartridges are not readily available in the United States (US).
As an alternate, the CytoSorb R© (CytoSorbents Corporation,
Monmouth Junction, NJ, USA) adsorber and the oXiris R©

(Baxter, IL, USA) blood purification set may be utilized to
enhance cytokine removal. CytoSorb R© is an extracorporeal
adsorber which was specifically designed to reduce cytokine
storm and various other inflammatory markers (29). CytoSorb
was recently approved on April 10, 2020 for emergency use to
treat COVID-19 patients (≥18 years of age) with imminent or
prominent respiratory failure (30). Similarly, oXiris is believed
to reduce endotoxin, cytokine and inflammatory mediator levels
associated with COVID-19 and was approved by the FDA on
April 23, 2020 for similar indications (patients ≥18 years of age)

(31). A comparison between the CytoSorb R© and oXiris R© filter
are shown in Table 3 (29).

Additionally, hemoperfusion cannot be performed in the US
due to lack of resources and thus, we must rely on continuous
kidney replacement therapies (CKRT) to provide supportive,
rather than replacement therapy in the setting of sepsis and
MODS. Since instantaneous monitoring of cytokine levels is
not available in COVID-19 patients, CKRT can be utilized to
non-selectively clear inflammatory mediators via convection,
adsorption, and dispersion. Additionally, CKRT may be able
to correct fluid overload, adjust immune stability, and manage
solute levels to provide hemodynamic stability in pediatric
patients experiencing excessive load and high catabolism (32). In
previous studies with ARDS patients, CKRT has demonstrated to
reduce extravascular fluid in the lungs, achieve acid-base balance,
reduce ventilation pressures, increase the lung oxygenation
number, and provide less invasive ventilation of CO2 (33, 34).
Furthermore, various studies have reported treatment of AKI
in COVID-19 patient with KRT (9, 35–37). In a retrospective
cohort study by Yang et al., COVID-19 patients requiring invasive
mechanical ventilation were treated with CKRT and showed
significant reduction in mortality rate in comparison to those
treated without CKRT (54.5 vs. 74.6%, p= 0.032) (35).

Therefore, we postulate that provision of immediate initiation
of preemptive CKRT in cases with progression in symptomatic
respiratory insufficiency should be considered. Various studies
have reported that, overall, up to 9% of COVID-19 infected
patients received CKRT (2, 4–6, 9). A concern, however, is that
the virus may be present in the effluent from CKRT according to
few studies (38, 39). Though overall, only one percent of infected
patients have showed the presence of the virus in the blood; thus,
making it unlikely that the effluent would be virulent (39).

In terms of CKRT modality, we propose the use of high
flow (HF) CVVHDF in critically ill COVID-19 pediatric patients
as HF-CVVHDF is able to boost the non-specific removal of
the circulatory cytokine peaks in both the pro- and the anti-
inflammatory side in accordance to the “peak concentration
hypothesis” (40). Furthermore, a study by Liu et al. demonstrated
that high-flow CKRTwas significantly more effective in clearance
of inflammatory cytokines (such as IL-4, IL-6, TNF-α) due to
the increased blood flow in comparison to conventional CKRT
(p < 0.05) (41). The authors recommended that use of HF-
CKRT increased the effective adsorption area of the synthetic
membrane leading to higher clearance (41). In a different
study, Ghani and colleagues evaluated the efficacy of high-
volume hemofiltration (HVHF) in comparison to continuous
venovenous hemofiltration (CVVH) in the clearance of excess
inflammatory mediators in septic patients (42). The investigators
reported that HVHF was significantly more effective in reducing
cytokine IL-6 levels (p = 0.025) and improving the day 7
Sequential Organ Failure Assessment score in comparison to the
CVVH group (42). It has also been demonstrated that convective
modalities (such as CVVH and CVVHDF) are superior to
diffusivemodalities (CVVHD) due to the increased ultrafiltration
rate and the higher sieving coefficient of the molecule in the
convective mode, which further enhances the effect of cytokine
removal (43).
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TABLE 2 | Patients exhibiting multisystem inflammatory syndrome.

Patient Characteristics Clinical

presentation

Support

modality

Treatment Lab results Microbiology

status

Outcome (PICU

LOS; status)

1 Male, 14 years,

Afro-Caribbean.

Fever: 4 d >40◦C.

Diarrhea;

abdominal

pain; headache

MV, KRT,

VA-ECMO

Dopamine,

noradrenaline,

argipressin, adrenaline,

milrinone,

hydrocortisone, IVIG,

ceftriaxone, lindamycin

Ferritin 4,220 µg/L; D-dimers

13·4 mg/L; troponin 675 ng/L;

proBNP >35,000;

CRP 556 mg/L;

procalcitonin>100 µg/L; albumin

20 g/L; platelets 123 × 109

SARS-CoV-2

positive

(post-mortem)

6 days; deceased

due to right MCA

and ACA ischemic

infarction.

2 Male, 8 years,

Afro-Caribbean.

Fever: 5 d >39◦C.

Diarrhea;

abdominal pain;

conjunctivitis; rash

MV Noradrenaline,

adrenaline, IVIG,

infliximab,

methylprednisolone,

ceftriaxone, lindamycin

Ferritin 277 µg/L; D-dimers

4·8 mg/L; troponin 25 ng/L;

CRP 295 mg/L; procalcitonin

8·4 µg/L; albumin 18 g/L;

Platelets 61 × 109

SARS-CoV-2

negative (likely

exposure from

mother)

4 days; alive

3 Male, 4 years,

Middle Eastern.

Fever: 4 d >39◦C.

Diarrhea; vomiting;

abdominal

pain; conjunctivitis

MV Noradrenaline,

adrenaline, IVIG

ceftriaxone,

clindamycin

Ferritin 574 µg/L; D-dimers

11·7 mg/L; troponin 45 ng/L;

CRP 322 mg/L; procalcitonin

10·3 µg/L; albumin 22 g/L;

Platelets 103 × 109

Adenovirus

positive; HERV

positive

4 days; alive

4 Female, 13

years,

Afro-Caribbean.

Fever: 5 d >39◦C.

Diarrhea;

abdominal

pain; conjunctivitis

HFNC Noradrenaline,

milrinone, IVIG,

ceftriaxone, lindamycin

Ferritin 631 µg/L; D-dimers

3·4 mg/L; troponin 250 ng/L;

proBNP 13,427 ng/L; CRP

307 mg/L; procalcitonin

12·1 µg/L; albumin 21 g/L;

Platelets 146 × 109

SARS-CoV-2

negative

5 days; alive

5 Male, 6 years,

Asian.

Fever: 4 d >39◦C.

Odynophagia;

conjunctivitis; rash

NIV Milrinone, IVIG,

methylprednisolone,

aspirin, ceftriaxone

Ferritin 550 µg/L; D-dimers

11·1 mg/L; troponin 47 ng/L;

NT-proBNP 7,004 ng/L; CRP

183 mg/L; albumin 24 g/L;

platelets 165 × 109

SARS-CoV-2

positive (likely

exposure from

father)

4 days; alive

6 Female, 6 years,

Afro-Caribbean.

Fever: 5 d >39◦C.

Diarrhea &

vomiting (3 d);

myalgia; conjunctivitis

NIV Dopamine,

noradrenaline,

milrinone, IVIG,

methylprednisolone,

aspirin, ceftriaxone,

clindamycin

Ferritin 1,023 µg/L; D-dimers

9·9 mg/L; troponin 45 ng/L;

NT-proBNP 9,376 ng/L; CRP

mg/L 169; procalcitonin

11·6 µg/L; albumin 25 g/L;

platelets 158

SARS-CoV-2

negative (likely

exposure from

grandfather)

3 days; alive

7 Male, 12 years,

Afro-Caribbean.

Fever: 4 d >39◦C.

Diarrhea &

vomiting (2 d);

abdominal pain;

headache;

rash; odynophagia

MV Noradrenaline,

adrenaline, milrinone,

IVIG,

methylprednisolone,

heparin, ceftriaxone,

clindamycin,

metronidazole

Ferritin 958 µg/L; D-dimer

24·5 mg/L; troponin 813 ng/L;

NT-proBNP >35 000 ng/L; CRP

251 mg/L; procalcitonin 71·5

µg/L;

Albumin 24 g/L; Platelets 273

× 109

SARS-CoV-2

negative

4 days; alive

8 Female, 8 years,

Afro-Caribbean.

Fever: 4 d >39◦C.

Diarrhea &

vomiting (2 d);

abdominal

pain; odynophagia

MV Dopamine,

noradrenaline,

milrinone, IVIG, aspirin,

ceftriaxone,

clindamycin

Ferritin 460 µg/L; D-dimers

4·3 mg/L; troponin 120 ng/L;

CRP 347 mg/L; procalcitonin

7·42 µg/L; albumin 22 g/L;

Platelets 296 × 109

SARS-CoV-2

negative (likely

exposure from

parent)

7 days; alive

Adapted from Riphagen et al. (23).

ACA, anterior cerebral artery; CRP, C-reactive protein; HERV, human endogenous retrovirus; HFNC, high-flow nasal canula; HR, heart rate; IVIG, human intravenous immunoglobulin;

LOS, length of stay; MCA, middle cerebral artery; MV, mechanical ventilation via endotracheal tube; NIV, non-invasive ventilation; PICU, pediatric intensive care unit; KRT, kidney

replacement therapy; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; VA-ECMO, veno-arterial extracorporeal membrane oxygenation.

Thus, the Pediatric Continuous Renal Replacement Therapy
(PCRRT) registry workgroup suggests high flow CVVHDF at
50 ml/kg/h for 12 h followed by step down CVVHDF at a dose
of 25–30 ml/kg/h (Table 4) (44). The provider may be able
to incorporate the CytoSorb adsorber or oXiris filter into the
CKRT circuit for higher clearance. However, the use of these
devices are not FDA approved for this population and thus,
the provider will need to obtain a compassionate use eIND

(exploratory Investigational New Drug) and take extra caution
with the use of these systems. If there is a surge of COVID-19 and
CVVHDF is not available, various other CKRT modalities such
as CVVH and CVVHD may be employed. If there is a situation
where resources are limited and CKRT modalities are not readily
available, sustained low-efficiency daily diafiltration (SLEDD-f)
or acute PD [specifically, continuous cycler assisted PD (CCPD)
or automated PD (APD)] may be utilized (Figure 2).
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CVVH

CVVHD

CVVHDF

FIGURE 2 | Nephrologist/Interventionist emergency preparedness plan with resource allocation. ALF, acute liver failure; CDC, Centers of Disease Control and

Prevention; CKRT, continuous kidney replacement therapy; CVVH, continuous venovenous hemofiltration; CVVHD, continuous venovenous hemodialysis; CVVHDF,

continuous venovenous hemodiafiltration; EPA, Environmental Protection Agency; ICU, intensive care unit; IJ, intrajugular vein; KRT, kidney replacement therapy; PD,

peritoneal dialysis; PPE, personal protective equipment; RA, right atrium; SLEDD-f, sustained low-efficiency daily diafiltration, UF, ultrafiltration rate.
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TABLE 3 | Comparison of various filters available for use in COVID-19 patients

requiring KRT.

Characteristics Filters

CytoSorb

(Cytosorbents)

oXiris

(Baxter)

Membrane

composition

Polystyrene divinylbenzene

co-polymer microporous

beads (coated with

polyvinylpyrrolidone)

AN69 copolymer covered

with polyethyleneimine and

unfractionated heparin

Sterilization type Gamma irradiation Ethylene oxide

Capability of

adsorption

Cytokines Endotoxin and cytokines

Adsorption mode Hydrophobic interactions Ionic interactions

-cytokines due to sulfonate

groups.

-endotoxins due to high PEI

concentration on inner part

of membrane.

Heparin-covered

inner surface

No Yes

Adapted from Karkar and Ronco (29).

AN69, acrylonitrile and methalylsulfonate.

TABLE 4 | Pediatric Continuous Renal Replacement Therapy (PCRRT) registry

group suggestions for critically ill, pediatric COVID-19 patients.

• CVVHDF is recommended as the preferred modality as both convection and

diffusion allows for removal of bigger molecules which may thus, help in

removing inflammatory markers (The rate at which the solute crosses through

a membrane is indicated by a number called the sieving. A larger size solute or

one with greater affinity to protein binding will have better clearance in CVVHDF

than any other CKRT modality).

• Preemptive CKRT is suggested if there is progression of respiratory insufficiency,

clinical indications of worsening pulmonary edema, and continuing systemic

inflammation (high ferritin/CRP and ESR).

• High flow CVVHDF is suggested to be performed at a rate of 50 ml/kg/h for

the first 12 h followed by step down CVVHDF at a rate of 25–30 ml/kg/h.

Alternatively, CVVH, CVVHD, SLEDD-f, or PD should be initiated if resources

are not available.

• The use of Normocarb bicarbonate-based solutions are recommended.

• Circuit clotting in COVID-19 is high due to an increase in procoagulant state

and thus, we recommend providing 1/3 of the total replacement fluid pre-filter,

another 1/3 should be provided post filter and the remaining replacement fluid

should be utilized as dialysate to dilute the circuit.

• A higher blood flow rate of 4–5 mL/kg/min is advised to enhance clearance

rates of cytokines and reduce the risk of clotting.

• The monitoring of electrolyte levels and complete blood count is recommended

to be performed every 2 h with high flow CVVHDF and then every 6 h in

stepdown CVVHDF.

• Nutritional supplementation through adjustment of the replacement fluids and

infusion rates are recommended in these patients.

• Earlier initiation of KRT is recommended to induce early cytokine clearance

and improvement of hemodynamic stability for better outcomes and

prevention of multiple organ failure.

CKRT, continuous kidney replacement therapy; CRP,C-reactive protein;CVVHDF,

continuous venovenous hemodiafiltration; ESR, erythrocyte sedimentation rate; PD,

peritoneal dialysis; SLEDD-f, sustained low-efficiency daily diafiltration.

The workgroup also recommends Normocarb bicarbonate-
based dialysate solution in pediatric COVID-19 patients.
Normocarb bicarbonate-based solutions are the standard of care
and are preferred over lactate-based solutions since lactate-based

solutions trigger an increase in plasma lactate levels leading to
false indications of worsening sepsis and perfusion rates (45–
47). In addition, there is a higher risk of circuit clotting in
COVID-19 patients due to presence of a hypercoagulable state.
Thus, it is recommended that a third of the replacement fluid
should be provided pre-filter, a third provided post filter, and
the remaining should be utilized as dialysate to dilute the circuit.
Anticoagulation should be provided in COVID-19 patients and
can be performed with citrate or heparin (48). Citrate allows
for localized circuit anticoagulation and is beneficial in patients
with active bleeding while unfractionated/low-molecular-weight
heparin is able to provide systematic anticoagulation (46–
48). However, it is crucial to consider the patient’s liver
function when deciding on an anticoagulant as COVID-19
patients often have MODS including liver dysfunction and are
in a procoagulable state (48). Furthermore, blood flow rate
(BFR) is also a crucial aspect of the CKRT prescription and
suggested to be maintained at 4–5 mL/kg/min. The higher
the BFR, the greater the clearance rate and lessen the risk of
clotting (45).

Critically ill patients also often suffer from a significant
loss of both macro and micronutrients. Thus, nutritional
supplementation during CKRT through the adjustment
of replacement fluid composition and infusion rates is
suggested to prevent further loss, optimize nutritional
status, and recover lean mass with a positive nitrogen
balance (49). The PCRRT group further advise the early
initiation of KRT in critically ill COVID-19 patients as it
has been shown to enhance cytokine clearance, improve
PaO2/FiO2 ratios, mitigate fluid overload, and establish
hemodynamic stability earlier, leading to better overall
outcomes (33, 50).

Some critically ill COVID-19 adult patients require
mechanical ventilation via extracorporeal membrane
oxygenation (ECMO). However, the use of ECMO comes
with a risk of potentially amplifying the cytokine activation.
Thus, in cases where pediatric patients may require ECMO,
we postulate that the CKRT machinery should be incorporated
with the ECMO circuit to provide supportive therapy via
prevention/reduction of fluid overload and cytokine clearance
while providing respiratory sustenance (51). A hemofilter
could be placed in line within the ECMO circuit while using
intravenous pumps to deliver replacement/dialysate fluid;
however, it is not recommended as it can lead to an inaccuracy
rate of up to 30% (51). Instead, the PCRRT registry group
suggests that the CVVHDF machine should be attached to
the ECMO circuit (Figure 3), which would lead to a more
efficient delivery of replacement/dialysate fluid dosage with
more precise ultrafiltration control (50). In addition, the BFR
in the CVVH machine should be independent from the ECMO
device and the CKRT machine’s venovenous access should
be adjusted to tolerate positive pressure since the arterial
access of the ECMO will allow for a very low-resistance circuit
(47, 51).

In conclusion, COVID-19 is another emerging respiratory
virus that has severely challenged the health care system
around the world. However, the adult cases have been
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FIGURE 3 | Pediatric ECMO 2.0 with CVVHDF circuit. CKRT, continuous kidney replacement therapy; ECMO, extracorporeal membrane oxygenation. Adapted from

Chen et al. (51).

reported to be more prevalent and severe in comparison to
pediatric cases.

Thus, in this position paper, we present an emergency
preparedness plan with resource allocation if conditions in
the pediatric population worsened dramatically. There is a
limitation as this is a position paper grounded on theory of
the pathogenesis and anecdotal publication by Ronco et al.
(26) and based primarily on adult data and the limited studies
available on COVID-19. However, there currently are no effective
treatments available and therefore, we suggest the use of high
volume CVVHDF in critically ill pediatric COVID-19 patients
in the setting of sepsis and MODS. If CVVHDF or the
resources required are not available, other KRT modalities, such
as CVVHD, SLEDD-f and PD can be utilized. Additionally,
incorporation of ECMO circuit with the CVVHDF machinery
may improve overall outcomes in COVID-19 patients requiring
ventilatory support.
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