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Abstract

Stochastic models of biomolecular reaction networks are commonly employed in systems

and synthetic biology to study the effects of stochastic fluctuations emanating from reactions

involving species with low copy-numbers. For such models, the Kolmogorov’s forward equa-

tion is called the chemical master equation (CME), and it is a fundamental system of linear

ordinary differential equations (ODEs) that describes the evolution of the probability distribu-

tion of the random state-vector representing the copy-numbers of all the reacting species.

The size of this system is given by the number of states that are accessible by the chemical

system, and for most examples of interest this number is either very large or infinite. More-

over, approximations that reduce the size of the system by retaining only a finite number of

important chemical states (e.g. those with non-negligible probability) result in high-dimen-

sional ODE systems, even when the number of reacting species is small. Consequently,

accurate numerical solution of the CME is very challenging, despite the linear nature of the

underlying ODEs. One often resorts to estimating the solutions via computationally intensive

stochastic simulations. The goal of the present paper is to develop a novel deep-learning

approach for computing solution statistics of high-dimensional CMEs by reformulating the

stochastic dynamics using Kolmogorov’s backward equation. The proposed method lever-

ages superior approximation properties of Deep Neural Networks (DNNs) to reliably esti-

mate expectations under the CME solution for several user-defined functions of the state-

vector. This method is algorithmically based on reinforcement learning and it only requires a

moderate number of stochastic simulations (in comparison to typical simulation-based

approaches) to train the “policy function”. This allows not just the numerical approximation

of various expectations for the CME solution but also of its sensitivities with respect to all the

reaction network parameters (e.g. rate constants). We provide four examples to illustrate

our methodology and provide several directions for future research.
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Author summary

We develop a deep learning framework for estimating solutions of the chemical master

equation (CME) that is fundamental to stochastic analysis of reaction networks. The CME

is a system of ordinary differential equations that describes the time-evolution of the prob-

ability density of the random state-vector, and owing to an inherent curse of dimensional-

ity, directly solving the CME is generally impractical with existing approaches. Moreover,

the commonly employed simulation-based approaches for estimating CME solutions

often require an exorbitant amount of computational time, even for moderately-sized net-

works. To counter these issues, we develop a deep reinforcement learning based method,

called DeepCME, in this paper. DeepCME not only estimates function expectations based

on the CME solution, but it also solves the more challenging problem of estimating their

sensitivities with respect to all the model parameters. We illustrate our approach with four

carefully chosen reaction network examples with varying sizes. Our results demonstrate

that DeepCME reliably estimates the expectations of interest, along with all the parametric

sensitivities, at a fraction of the computational cost of simulation-based estimators. We

present many directions for future research and suggest further improvements to

DeepCME that can greatly enhance its accuracy and applicability.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Stochastic modelling in systems and synthetic biology has become an indispensable tool to

quantitatively understand the intrinsically noisy dynamics within living cells [1]. Intracellular

reaction networks typically involve low copy-number species in reactions that fire intermit-

tently at random times, as opposed to continuously. Hence, deterministic models of such net-

works based on Ordinary Differential Equations (ODEs) fail to capture the essential properties

of the system, and stochastic models become necessary [2].

Among the most widely used stochastic models are continuous-time Markov chains

(CTMCs) whose states represent the copy-numbers of all species involved in the Chemical

Reaction Network (CRN) [3]. If the number of species in the CRN is n, the Markov chain

evolves over a discrete, possibly infinite, state-space X � Nn
0

comprising all accessible states. In

most applications, the key object of interest is the probability distribution p(t) of the random

state XðtÞ 2 X at time t. This probability distribution evolves in time t according to Kolmogor-

ov’s forward equation that is more famously known in the chemical literature as the Chemical

Master Equation (CME) (see, e.g., [4], and (8)). The CME is a system of coupled, deterministic

ODEs describing the rates of inflow and outflow of probability at each state in the state-space

X. For even very small examples of CRNs, X can be very large or infinite, and hence the CME

cannot be solved directly despite the linear nature of its constituent ODEs. Hence, one typi-

cally estimates CME solutions numerically either by simulating the CTMC trajectories with

numerical methods like the Stochastic Simulation Algorithm (SSA) [5] or the modified Next

Reaction Method (mNRM) [6], or one models (parts of) the CME asymptotically in various

parameter regimes, such as the large copy-number limit, or the large systems limit (see, e.g., [3,

7] and the references therein). Then, Fokker-Planck PDEs govern the evolution of the limiting
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densities. Solutions of these PDEs are known to admit DNN approximations which are free

from the “Curse of Dimensionality” (CoD), see e.g. [8] and the references there.

The main drawback of simulation-based solvers is that obtaining statistically precise esti-

mates of the CME solution can be very cumbersome, due to the high cost of CTMC trajectory

simulation. This led to the development of the Finite State Projection (FSP) method [9] that

approximately solves the CME by truncating the state-space to a finite, tractable size. The FSP

has been successfully used in many important biological studies with stochastic reaction net-

work models. Over time, numerous algorithmic improvements to the original FSP method

have been made, using advanced techniques such as Krylov Subspace approximations [10] or

Tensor-Train representations [11]. Despite these advances, the scope of FSP’s applicability is

still fairly limited because of the CoD inherent to the CME for complex CRNs: the dimension

of the copy-number space of a large number of species involved in the CRN can be potentially

prohibitive. With the algorithmic complexity of deterministic solution methods of the CME

scaling exponentially with the number of species n, the CoD obviates the efficient numerical

treatment of the CME for complex CRNs. In spite of these drawbacks, simulation schemes like

the SSA or mNRM combined with FSP and its variants have emerged as the methodology of

choice during the past decades for the computational exploration of complex CRNs in systems

biology. This is mainly due to the lack of computational schemes that can effectively deal with

CoD.

In the past decade, with the ubiquitous emergence of possibly massive, noisy data from nat-

ural biological CRNs, and the possibility of engineering synthetic biological CRNs, the question

of efficient numerical analysis of CRNs has become pivotal. Indeed several tasks in computa-

tional biology strongly depend on the availability of scalable, efficient computational tools to
analyse large CRNs. These include structure and parameter identification in large CRNs,

assimilation of observable data into CRN models, Bayesian estimation of non-observable

quantities of interest conditional on CRNs, among many others.

Recently, in the context of high-dimensional partial differential equations (PDEs), deep-
learning based numerical approaches have been found highly effective in dealing with the CoD

in these settings and appear efficient in numerical approximation of PDE solutions with high-

dimensional state and parameter spaces [12–14]. We refer to the survey [8] and the references

therein. Importantly, several types of PDEs considered in these studies also arise from various

asymptotic scalings (large copy-numbers, large systems limits) of large CRNs. (e.g. [4, 7, 15,

16]). Furthermore, DNNs have been shown to be at least as expressive as certain tensor-struc-

tured formats from numerical multi-linear algebra, which were developed for the CME in [11]

(see also [17]).

Motivated by these advances and observations, in this paper we develop and explore corre-

sponding deep-learning approaches for the efficient numerical solution of CMEs and for the

related tasks of parameter estimation, and inference.

Before detailing our approach, we remark that leveraging Machine Learning (ML) based

approaches for the numerical treatment of complex CRNs is, in our view, natural and critical:

CRNs being themselves networks, any viable computational approach should, in some sense,

mimic this structure in order to accommodate the complexity of CRNs. This is in line with our

previous work on tensor network based computational methods (e.g. [11, 18]). On the other

hand, ML-based computational methodologies for data assimilation and quantitative predic-

tion of complex systems is currently undergoing intense development. We therefore expect

that corresponding advances in computational ML, such as progress in interpretability and

training methods for DNNs, will entail corresponding methodological advances in the explo-

ration of large, complex CRNs in biological systems engineering.
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Next we briefly describe our ML approach to solving the CME. Instead of estimating the

probability p(t, x) for each state x 2 X, one is often interested in learning the expectation of

suitable real-valued functions g, referred to as the output function, under this probability dis-

tribution. Therefore, one is interested in the input-output map that associates an initial density

fpð0; x0Þ : x0 2 Xg to

EðgðXðtÞÞÞ ¼
X

x2X

gðxÞpðt; xÞ: ð1Þ

In the case #ðXÞ ¼ 1 this sum is formal for now. We later will indicate some sufficient condi-

tions for this sum to be well-defined—applying state-space truncation schemes e.g. [9], we

may assume that #ðXÞ <1 holds with a small error in the estimated expectation,

which renders the summation finite. For example, if gðx1; . . . ; xnÞ ¼ xm
i , for some m 2 N0 and

i 2 {1, . . ., n}, then the output to be estimated is the m-th moment of the random copy-number

of the i-th species at time t, i.e.

EðgðXðtÞÞÞ ¼ EðXm
i ðtÞÞ:

Another relevant example is when gðxÞ ¼ 1lAðxÞ, the indicator function for some subset A � X
defined as

1lAðxÞ ¼
1 if x 2 A

0 otherwise:

(

Then the output is the probability of the state X(t) being in set A at time t

EðgðXðtÞÞÞ ¼ PðXðtÞ 2 AÞ:

One method of choice to numerically approximate the map pð0; �Þ 7!EðgðXðtÞÞÞ is by sto-

chastic simulations generated with the SSA and its variants (e.g. [5, 19–21] and the references

therein) combined with ensemble averaging. Generally, this approach mandates a large num-

ber of sample paths, to achieve Monte Carlo convergence to reasonable accuracy for

EðgðXðtÞÞÞ at fixed t> 0. In the present paper, we propose DeepCME, a deep neural network
based methodology to emulate the above-mentioned map. Also in the present approach path

simulation is required, during the DNN training phase. However, we find that the number of

paths to achieve DNN training generally is lower than by direct use of Monte Carlo estimator

combined with stochastic simulations; accuracy is achieved through the generalization proper-

ties of DNNs rather than through approximation of admissible sets of initial densities.

As is by now well-known in ML, an essential ingredient in DNN based approaches to emu-

late high-dimensional maps is the mathematical setup of suitable loss-functions which deter-

mine the training process. In DeepCME, we propose a particular loss function which is

inspired by other, recent approaches in computational finance (e.g. [12] and the references

therein). Specifically, using Kolmogorov’s backward equation, Kurtz’s random time change

formulation [22] and Ito’s formula for jump processes, we identify an equation that the output

quantity of interest EðgðXðtÞÞÞ along with some “policy map” Vðt;XðtÞÞmust uniquely satisfy

for each stochastic trajectory (X(t))t�0 almost surely. Minimising a “loss” function that mea-

sures the error in this equation, allows us to train a deep neural network to learn the policy

map and the quantity of interest EðgðXðtÞÞÞ in a reinforcement learning framework. Remark-

ably, this approach also yields the sensitivities of the quantity of interest EðgðXðtÞÞÞ w.r.t. all

model parameters. Estimating these parametric sensitivities is important for many applica-

tions, but it is considered a difficult problem towards which a lot of research effort has recently

been directed [23–31].
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This paper is organised as follows. In Section 2 we provide some background on the CTMC

model of a reaction network. In Section 3 we present our main results that allow us to cast the

problem of solving a CME into the reinforcement learning framework. In Section 4 we

describe our deep-learning approach and its implementation in TensorFlow. In Section 5

we illustrate this approach with four examples. Finally, in Section 6 we conclude and present

directions for future research.

2 Preliminaries

2.1 The stochastic model

We start by describing the continuous-time Markov chain (CTMC) model of a reaction net-

work. Consider a network with n species, denoted by X1, . . ., Xn, that participate in K reactions

of the form

Xn

i¼1

nkiXi� !
Xn

i¼1

n0kiXi ; k ¼ 1; . . . ;K; ð2Þ

where νki (resp. n0ki) is the number of molecules of species Xi consumed (resp. produced) by

reaction k. The system’s state x ¼ ðx1; . . . ; xnÞ 2 N
n
0

at any time is the vector of copy-numbers

of the n species. As time advances, this state gets displaced by the stoichiometric vector zk ¼

ðn0k1
� nk1; . . . ; n0kn � nknÞ when reaction k fires, and this event occurs at rate λk(x) where lk :

Nn
0
! ½0;1Þ is the propensity function for reaction k. Commonly λk is given by mass-action

kinetics [3]

lkðx1; . . . ; xnÞ ¼ ck

Yn

i¼1

xi

nki

 !

; ð3Þ

with ck > 0 being the associated rate constant.

There are many ways to formally specify the CTMC representing a reaction network. One

way is through its generator, which is an operator that captures the rate of change of the proba-

bility distribution of the process (see Chapter 4 in [22]). It is given by

Af ðxÞ ¼
XK

k¼1

lkðxÞðf ðxþ zkÞ � f ðxÞÞ; ð4Þ

for any f that is a bounded real-valued function on the state-space X � Nn
0

of the Markov

chain. The state-space X is assumed to be nonempty and closed under the reaction dynamics,

i.e. if x 2 X and λk(x) > 0 then (x + zk) is also in X.

Another way to specify the CTMC is via Kurtz’s random time change representation (see

Chapter 6 in [22])

XðtÞ ¼ Xð0Þ þ
XK

k¼1

RkðtÞzk; ð5Þ

where Rk(t) is a counting process that counts the number of firings of reaction k in the time-

period [0, t]. As is customary in trajectory-simulation (e.g. [3, 19]) which will also be required

by us for DNN training, we express it in terms of an independent unit rate Poisson process Yk
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as e.g. [21]

RkðtÞ ¼ Yk

 Z t

0

lkðXðsÞÞds

!

: ð6Þ

With this representation in place, we consider the CTMC (X(t))t�0 on the canonical proba-

bility space generated by the independent unit-rate Poisson processes Y1, . . ., YK.

2.2 Kolmogorov’s forward and backward equations

Let (X(t))t�0 be the CTMC representing reaction dynamics with some initial state Xð0Þ 2 X.

For any state x 2 X 2 Nn
0
, let

pðt; xÞ ¼ PðXðtÞ ¼ xÞ ð7Þ

be the probability that the CTMC is in state x at time t. These probabilities evolve deterministi-

cally in time according to Kolmogorov’s forward equation, more widely known as the Chemi-
cal Master Equation (CME) [3, 4]. The CME is the following system of deterministic linear

ODEs

dpðt; xÞ
dt

¼
XK

k¼1

pðt; x � zkÞlkðx � zkÞ � pðt; xÞ
XK

k¼1

lkðxÞ; ð8Þ

for each x 2 X. Note that the number of ODEs in this CME system is equal to #ðXÞ, the num-

ber of elements in X, which is typically exorbitantly large or even infinite.

Consider an output function g : X! R such that

EðjgðXðTÞÞjÞ <1 ð9Þ

for some finite time horizon T> 0. The Kolmogorov’s backward equation [32] describes the

evolution of the martingale (w.r.t. the filtration generated by (X(t))t�0)

Vgðt; xÞ ¼ EðgðXðTÞÞjXðtÞ ¼ xÞ ð10Þ

in the time interval [0, T], and it is given by

@

@t
Vgðt; xÞ ¼ � AVgðt; xÞ ¼ �

XK

k¼1

lkðxÞðVgðt; xþ zkÞ � Vgðt; xÞÞ; ð11Þ

with the terminal condition Vg(T, x) = g(x), x 2 X. The backward Eq (10) will play a key role

in our development of a deep learning approach for estimating quantities of the form

EðgðXðTÞÞÞ.
In the case where the state-space X is finite, i.e. #ðXÞ ¼ m <1, we can enumerate it as

X ¼ fxð1Þ; . . . ; xðmÞg. Then the CTMC generator A in (11) can be expressed as the m × m tran-

sition rate matrix Q = [Qij] given by

Qij ¼

�
PK

k¼1
lkðxðiÞÞ if i ¼ j

lkðxðiÞÞ if xðjÞ ¼ xðiÞ þ zk for some k

0 otherwise:

8
><

>:
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Here we assume for convenience that all stoichiometry vectors (zk-s) are distinct. Viewing p(t)
as the vector pðtÞ ¼ ðpðt; xð1ÞÞ; . . . ; pðt; xðmÞÞÞ 2 ½0; 1� #ðXÞ, we can express the CME (8) as

dp
dt
¼ Q>pðtÞ; t � 0 : ð12Þ

Here, Q>ij ≔ Qji, i, j 2 1: m. CME (12) admits the closed-form solution

pðtÞ ¼ expðtQ>Þpð0Þ for any t � 0: ð13Þ

Similarly, viewing Vg(t) as the vector ðVgðt; xð1ÞÞ; . . . ;Vgðt; xðmÞÞÞ 2 R
#ðXÞ

, the backward Eq

(11) can be solved as

VgðtÞ ¼ expðQðT � tÞÞg for any t 2 ½0;T� ð14Þ

where g denotes the vector g ¼ ðgðxð1ÞÞ; . . . ; gðxðmÞÞÞ 2 R #X
. We are interested in networks

where m ¼ #ðXÞ is extremely large or infinite. Then, numerically computing the matrix expo-

nential in (13) or in (14) is not an option.

2.3 Parametric sensitivity analysis

Now consider the situation where the propensity functions depend on a scalar parameter θ
(like reaction rate constant for mass-action kinetics, temperature etc.). Denoting the θ-depen-

dent CTMC as (Xθ(t))t�0, it is often of interest to compute the parametric sensitivity

Syðg;TÞ ¼
@

@y
E g XyðTÞð Þð Þ; ð15Þ

of the observed output EðgðXyðTÞÞÞ at time T. Such sensitivity values are important for many

applications and their direct calculation is generally impossible but a number of simulation-

based approaches have recently been developed to provide efficient numerical estimation of

these sensitivity values; we mention only [23–31].

Theorem 3.3 in [29] proves that

Syðg;TÞ ¼
XK

k¼1

E
Z T

0

@lkðXyðtÞ; yÞ
@y

Vgðt;XyðtÞ þ zkÞ � Vgðt;XyðtÞÞ
� �

dt
� �

; ð16Þ

where Vg(t, x) is defined by (10) with X(�) replaced by Xθ(�). The main difficulty in using this

formula for computing sensitivities is that the function

DkVgðt; xÞ ≔ Vgðt; xþ zkÞ � Vgðt; xÞ ð17Þ

is unknown and hence it must be estimated “on the fly” by numerically generating auxiliary

paths [29]. In the method we develop in this paper we shall “learn” (i.e., emulate by ML tech-

niques) this function using deep neural networks. This would provide a simple direct way to

estimate the parameter sensitivity via formula (16). This approach would in fact yield sensitivi-

ties w.r.t. all the model parameters in one shot, unlike what is afforded by existing sensitivity

estimation approaches. In other words once the function x 7! Δk Vg(t, x) is available for each k
2 1: K, we can use a common set of simulated trajectories to evaluate Monte Carlo estimators

for sensitivities w.r.t. all parameters, based on expression (16), without any extra simulation

effort. This is unlike most simulation-based approaches where estimation of each parameter

sensitivity requires an additional set of distinct trajectories.
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3 Main results

In this section we state and prove the key result on which our deep learning approach depends.

Recall that our goal is to estimate EðgðXðtÞÞÞ (see (1)) which is the same as Vg(0, x0) (see (10))

if the initial state of the CTMC is X(0) = x0. Also recall the random time-change representation

(5) and the definition of the reaction counting process Rk from (6). Henceforth we shall denote

the centred version of this process as

~RkðtÞ ≔ Yk

Z t

0

lkðXðsÞÞds
� �

�

Z t

0

lkðXðsÞÞds ; k ¼ 1; . . . ;K: ð18Þ

This centred process is a local martingale w.r.t. the filtration FXðtÞ generated by (X(t))t�0

(see Chapter 1 in [33]).

We now state an assumption that we require for our approach.

Assumption 3.1 (Non-explosivity of the CTMC) Let (X(t))t�0 be the CTMC given by (5)

with deterministic initial condition X(0) = x0. LetX � Nn
0

denote the state-space of this CTMC
and let FXðtÞ be the filtration it generates. If τM is the FXðtÞ-stopping time defined by

tM ¼ infft � 0 :k XðtÞ k� Mg;

then τM!1 almost surely as M!1.

Remark 3.2 There are a number of works in the literature that provide sufficient conditions
for this non-explosivity condition to hold, subject to the form of the propensity functions (see for
example in [34–36] and the references therein). Under the no-explosion assumption a probability
distribution p(t) satisfying the CME exists uniquely (see e.g. Lemma 1.23 in [33]).

Next we present the main result on which our deep learning approach is based.

Theorem 3.3 (Expected output and policy map characterization) Suppose Assumption 3.1
holds for the CTMC (X(t))t�0 and the output function g : X! R satisfies (9). Let Y be a real
number and let Vðt; xÞ ¼ ðV1ðt; xÞ; . . . ;VKðt; xÞÞ be a measurableRK

-valued function on
½0;T� � X such that the following relation holds almost surely

gðXðTÞÞ ¼ Y þ
XK

k¼1

Z T

0

Vkðt;XðtÞÞd~RkðtÞ: ð19Þ

Then Y and Vðt; xÞ exist uniquely and they can be identified as

Y ¼ EðgðXðTÞÞÞ and Vðt; xÞ ¼ ðD1Vgðt; xÞ; � � � ;DKVgðt; xÞÞ ð20Þ

where Vg(t, x) is given by (10) and the difference operator Δk is as in (17).

Remark 3.4 (Connection to our deep learning approach) Before we prove this theorem, we
briefly describe how this result translates into our deep learning approach, details of which will be
provided in Section 4. We can view x 7!Vðt; xÞ as the “policy map” (in the parlance of reinforce-
ment learning) that decides actions based on the current time-state pair (t, x), and depending on
these actions the constant initial value Y is evolved in the time-interval [0, T] according to the r.
h.s. of (19) for any CTMC trajectory (X(t))t�0. Theorem 3.3 shows that the only way the final
outcome of this evolution matches g(X(T)) at time T, is when Y is exactly the expected output
EðgðXðTÞÞÞ, and the policy map Vðt; xÞ is exactly (Δ1 Vg(t, x), . . ., ΔK Vg(t, x)) where Δk Vg(t, x)

is the difference in the expected output EðgðXðTÞÞÞ at time T, due to a single firing of reaction k
at time t with system’s state at x = X(t).

Using the modified next reaction method [6], one can easily generate trajectories of the
CTMC (X(t))t�0 along with the associated centred reaction counting processes
ð~R1ðtÞ; . . . ; ~RKðtÞÞt�0

. For each such trajectory, relation (19) can be interpreted in terms of
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known and unknown quantities as

gðXðTÞÞ
|fflfflfflffl{zfflfflfflffl}

known

¼ Y
|{z}
unknown

þ
XK

k¼1

Z T

0

Vkðt;XðtÞÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
unknown

d~RkðtÞ|fflfflffl{zfflfflffl}
known

: ð21Þ

We represent the unknown map ðt; xÞ 7!Vðt; xÞ by a DNN and consider unknown Y as an
optimisation variable. Then by minimising a “loss” function LðY;VÞ that measures the discrep-
ancy in relation (21) we try to recover the optimal values of Y and V that are given by (20). This
allows us to estimate the output of interest EðgðXðTÞÞÞ (as Y) and also its parametric sensitivi-
ties by substituting Vkðt; xÞ for Δk Vg(t, x) in (16).

Observe that in traditional simulation-based estimation approaches, each simulated trajec-
tory contributes with a small weight (viz. reciprocal of the sample size) to the Monte Carlo esti-
mator for the output or one of its parameter sensitivities. This is quite unlike the proposed deep
learning approach where each trajectory specifies an almost sure relationship between the
unknown quantities that determine both the output and all its parameter sensitivities. Hence the
deep learning approach is able to extract more information out of a small number of simulated
trajectories as our examples in Section 5 illustrate.

Proof.[Proof of Theorem 3.3] We prove this result in two steps. We first show that Y and

Vðt; xÞ given by (20) satisfy (19) almost surely. Then, we prove that if another such pair

ðŶ ; V̂ðt; xÞÞ satisfying (19) exists then we must necessarily have Ŷ ¼ Y and V̂ðt; xÞ ¼ Vðt; xÞ.
Applying Ito’s formula for jump Markov processes to Vg(t, X(t)) we obtain

VgðT;XðTÞÞ ¼ Vgð0; x0Þ þ

Z T

0

@

@t
Vgðt;XðtÞÞdt þ

XK

k¼1

Z T

0

DkVgðt;XðtÞÞdRkðtÞ:

Using Kolmogorov’s backward Eq (11) and simplifying we get

VgðT;XðTÞÞ ¼ Vgð0;Xð0ÞÞ þ
XK

k¼1

Z T

0

DkVgðt;XðtÞÞd~RkðtÞ: ð22Þ

Noting that Vg(T, X(T)) = g(X(T)) and Vgð0;Xð0ÞÞ ¼ EðgðXðTÞÞÞ we see that (19) holds

with Y and Vðt; xÞ given by (20).

Now let ðŶ ; V̂ðt; xÞÞ be another pair satisfying (19), i.e.

gðXðTÞÞ ¼ Ŷ þ
XK

k¼1

Z T

0

V̂ kðt;XðtÞÞd~RkðtÞ:

We subtract (22) from this equation to obtain

DŶ þ
XK

k¼1

Z T

0

DV̂ kðt;XðtÞÞd~RkðtÞ ¼ 0 ð23Þ

where

DŶ ¼ Ŷ � EðgðXðTÞÞÞ and DV̂ kðt;XðtÞÞ ¼ V̂ kðt;XðtÞÞ � DkVgðt;XðtÞÞ:

Note that

mðtÞ ≔ DŶ þ
XK

k¼1

Z t

0

DV̂ kðs;XðsÞÞd~RkðsÞ
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is a local martingale w.r.t. the filtration FXðtÞ generated by (X(t))t�0 as it is defined as a sum of

stochastic integrals whose integrands are adapted to FXðtÞ and whose integrators are local

martingales w.r.t. FXðtÞ (see Appendix A.3 in [33]).

If τM is the stopping time defined in Assumption 3.1, then the stopped process m(t ^ τM) is

a martingale, where a ^ b ≔ min{a, b}. Applying Doob’s maximal inequality [22] on the sub-

martingale |m(t ^ τM)| we obtain

E

 

sup
0�t�T^tM

jmðtÞj

!2" #

� 4EðmðT ^ tMÞ
2
Þ: ð24Þ

Note that terms on both sides of the inequality are monotonically increasing in M. This mono-

tonicity is obvious for the term on the l.h.s. and for the term on the r.h.s. it follows from the

conditional Jensen’s inequality and from the martingale property

EðmðT ^ tMþ1Þ
2
Þ ¼ E½EðmðT ^ tMþ1Þ

2
jFXðT ^ tMÞÞ�

� E½ðEðmðT ^ tMþ1ÞjFXðT ^ tMÞÞÞ
2
�

¼ EðmðT ^ tMÞ
2
Þ:

Letting M!1 and using the monotone convergence theorem on both sides of (24) we

obtain

E sup
0�t�T
jmðtÞj

� �2
" #

� 4EðmðTÞ2Þ

where we have used the fact that τM!1 as M!1 due to Assumption 3.1. Relation (23)

informs us that m(T) = 0 almost surely and hence

E sup
0�t�T
jmðtÞj

� �2
" #

¼ 0:

This is sufficient to conclude that DŶ ¼ 0 and DV̂ kðt;XðtÞÞ ¼ 0 for any t 2 [0, T].

As this holds for any CTMC trajectory (X(t))t�0, we must have DV̂ kðt; xÞ ¼ 0 for any

ðt; xÞ 2 ½0;T� � X. This completes the proof of this theorem.

4 DeepCME: Deep learning formulation for CME

In this section we detail our deep learning method for solving CME, referred to as DeepCME.

We have computationally implemented this method using the machine learning library

TensorFlow [37]. Our source code for generating the ensuing numerical experiments is

available at GitHub: https://github.com/ankitgupta83/DeepCME.

As outlined in Remark 3.4, our approach is based on the almost sure relationship estab-

lished in Theorem 3.3. Even though this result was presented for a single output function g(x),

it can be easily extended for a vector-valued function g(x) = (g1(x), . . ., gR(x)) by considering

the unknown variable Y as a R-dimensional vector and the unknown map Vðt; xÞ that takes a

time-state pair (t, x) as input and produces an output in the space of R × K matrices. Such an

extension is useful because in most applications one is interested in estimating multiple statis-

tical properties (like means, variances, covariances etc.) of the CME solution p(T, �).

We now define the “loss” function LðY;VÞ that measures the discrepancies in the R almost

sure relations given by (21). Let L : RR
! ½0;1Þ be the following continuously differentiable
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function

Lðx1; . . . ; xRÞ ¼
XR

i¼1

�
xi

Di

� �

where Δ = (Δ1, . . ., ΔR) is a vector of positive threshold values and

�ðxÞ ¼

( x2 if jxj < 1

2jxj � 1 otherwise:

We define the loss function as

LðY;VÞ ¼ E L gðXðTÞÞ � Y �
XK

k¼1

Z T

0

Vkðt;XðtÞÞd~RkðtÞ

 !" #

; ð25Þ

where the expectation is estimated by computing the sample mean over a finite batch of “train-

ing” trajectories. During the training process this loss function is minimised in order to learn

the optimal Y, which estimates our expectations of interest

EðgðXðTÞÞÞ ¼ ðEðg1ðXðTÞÞÞ; � � � ;EðgRðXðTÞÞÞÞ;

and the optimal matrix-valued policy map Vðt; xÞ (see Remark 3.4). This policy map will

enable us to estimate sensitivities of the quantities of interest w.r.t. all the model parameters as

discussed in Section 2.3. The threshold values Δ = (Δ1, . . ., ΔR) help in neutralising the dispari-

ties in the relative magnitudes of the estimated quantities and the discrepancies in the corre-

sponding almost sure relations. The loss function minimisation is performed with the

stochastic gradient descent (SGD) algorithm that makes use of the automatic differentiation

routines that are built in TensorFlow. Differentiability properties of the function L which

defines the loss function are important for convergence of the SGD iterations. Our choice of ϕ
(x) makes L(x1, . . ., xR) a differentiable combination of L1 norm (for components with abso-

lute values greater than 1) and L2 norm squared (for components with absolute values strictly

less than 1). Having such a combination makes the training more robust and promotes

sparsity.

In DeepCME we first encode the matrix-valued policy map ðt; xÞ 7!Vðt; xÞ by a DNN and

we include Y as a vector of trainable variables. Then a batch of training trajectories is gener-

ated, and based on Y and the DNN-encoded policy map Vðt; xÞ, the loss function is evaluated

for this training data by measuring the discrepancy (according to (25)) in the almost sure rela-

tionship presented in Theorem 3.3. Keeping the training data fixed, this loss function is then

minimised by adjusting Y and the DNN with SGD for a given number of iterations. Once

these iterations are complete, Y provides estimates for the expectations of interest and their

parametric sensitivities can be estimated by evaluating Monte Carlo estimators based on

expression (16), using the DNN-encoded policy map and the training trajectories.

In the next two subsections we elaborate more on the DNN encoding of the policy map and

the loss function computation based on simulated trajectories.

4.1 DNN encoding of the policy map

Recall from Section 2.2 that if the state-space is finite then Vg(t, x) can in principle be found by

exponentiating the transition rate matrix Q multiplied with (T − t) (see (14)). Hence, if λ = λ1

+ iλ2 is an eigenvalue of Q, then on the associated eigenspace we would expect that the depen-

dence of Vg(t, x) on time t is given by elðT� tÞ ¼ el1ðT� tÞðcosðl2ðT � tÞÞ þ i sinðl2ðT � tÞÞÞ.

PLOS COMPUTATIONAL BIOLOGY DeepCME: A deep learning framework for computing solution statistics of the CME

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009623 December 8, 2021 11 / 23

https://doi.org/10.1371/journal.pcbi.1009623


Motivated by this rationale, rather than passing the time-values t directly as inputs to the DNN

that encodes Vðt; xÞ, we shall pass temporal features of the form

T ðtÞ ¼ ðel11ðT� tÞ; . . . ; elr1ðT� tÞ; sinðl12ðT � tÞ þ c1Þ; . . . ; sinðlr2ðT � tÞ þ crÞÞ; ð26Þ

where λ11, . . ., λr1, λ12, . . ., λr2 are 2r trainable variables that represent the r dominant eigenval-

ues of the generator of the CTMC. Additionally, r trainable variables ψ1, . . ., ψr are included to

represent ‘phase shifts’. Problem-specific temporal features, like the ones we consider, have

been successfully employed in existing deep learning methods for ODE-based reaction net-

work models (see, e.g., [38] and the references therein). Note that the mapping between time t
and the temporal features T ðtÞ is one-to-one and hence no information is lost by substituting

time inputs with temporal features.

We encode the policy map ðt; xÞ 7!Vðt; xÞ as a fully connected feedforward deep neural net-

work whose architecture is schematically shown in Fig 1. This neural network consists of an

input layer, L hidden layers and an output layer. Mathematically, DNNs F considered here are

determined by a tuple

F ¼ ððT̂ 1; r1Þ; . . . ; ðT̂ Lþ1; rLþ1ÞÞ; ð27Þ

where in layer ℓ = 1, . . ., L + 1, the map T̂ ‘ : RN‘� 1 ! RN‘ is an affine transformation i.e.

T̂ ‘ðxÞ ¼W‘xþ b‘, with weight matrix W‘ 2 R
N‘�N‘� 1 , and bias vector b‘ 2 R

N‘ . As mentioned,

in the presently considered DNNs, the input layer takes the temporal features T ðtÞ and the

state vector x = (x1, . . ., xn).

The nonlinearities r‘ : RN‘ ! RN‘ in (27) act on vectors inRN‘ component-wise, with

possibly different activations at each layer. The number L + 1 denotes the number of layers
(sometimes referred to as depth) of the DNN F, and L denotes the number of hidden layers of

DNN F.

With the DNN F, we associate a realization, i.e., a map

RðFÞ : RN0 ! RNLþ1 ; where RðFÞ ≔ rLþ1 � T̂ Lþ1 � . . . : � r1 � T̂ 1 :

Fig 1. Architecture of the neural network. DNN architecture to encode the matrix-valued map ðt; xÞ 7!Vðt; xÞ. The inputs (t, x) are passed to an input

layer, which leaves the state values x unchanged but activates a dictionary of temporal features (26). The resulting output is propagated through a DNN

with L fully connected hidden layers, and an additional output layer with each layer having NH nodes. For simplicity, we assume no sparsity in the

weight matrices and the bias vectors of these layers. In the final step, the output from the output layer is cast into the policy-map matrix Vðt; xÞ
corresponding to inputs (t, x). In Section 4.2 we describe how the loss function can be computed using this matrix-valued map for a batch of stochastic

trajectories.

https://doi.org/10.1371/journal.pcbi.1009623.g001
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The relation between the DNN parameters F and its realisation RðFÞ : RN0 ! RNLþ1 as a

map is not one-to-one: for several choices of F, realizations R(F) may give rise to the same

map RðFÞ : RN0 ! RNLþ1 . This over-parametrization of DNNs is well-known to cause multiple

minima in loss functions of DNN parameters, and to obstruct use of efficient optimisation

algorithms in numerical DNN training.

The goal of DNN approximations is to provide a parsimonious surrogate map R(F) for

many-parametric, input-output maps which are not explicitly known and are accessible com-

putationally only through possibly noisy evaluations.

The input layer transforms the time-value t into temporal features (26) but leaves the state

vector x = (x1, . . ., xn) unchanged. For the layers, we assume fixed width, i.e., that each layer

consists of NH nodes (including the output layer). We also assume that no activation is applied

at the output layer, i.e. ρL+1 is the identity function, and all activations in the hidden layers are

equal, i.e. for ℓ = 1, . . ., L and for i = 1, . . ., NH, % ¼ ðr‘Þi : R! R. In the ensuing numerical

examples, we employ the so-called ReLU-activation for the hidden layers, which is given by

%ðxÞ ≔ ReLUðxÞ ¼ maxfx; 0g; x 2 R : ð28Þ

Remark 4.1 More generally, for k 2 N, we may choose the activations %kðxÞ, observing that
increasing the value of k increases differentiability of realizations of the DNN F. This may be of
relevance in cases where the diffusion limits for large copy number counts of particular species
imply higher smoothness of the map x 7! p(T, x).

4.2 Loss function computation based on the training data

To numerically evaluate the loss function, we require simulated training trajectories of the

form ðXðtÞ; ~RðtÞÞt�0
where X denotes the CTMC and each ~R ¼ ð~R1; . . . ; ~RKÞ is the vector of

centred reaction counting processes defined by (18). Such trajectories can be easily generated

with Anderson’s modified next reaction (mNRM) method [6]. We discretise the time-interval

[0, T] as

0 ¼ t0 < t1 < � � � < tJ ¼ T :

Based on this partition, each simulated trajectory can be viewed as a collection of J + 1 triplets

ðtj;XðtjÞ;
~RðtjÞÞ; j ¼ 0; . . . ; J:

For each j we pass the time-state pair (tj, X(tj)) as input to the DNN-encoded matrix valued

policy map to obtain Vðtj;XðtjÞÞ. This allows us to compute Yj iteratively as

Yj ¼ Yj� 1 þ Vðtj� 1;Xðtj� 1ÞÞð
~RðtjÞ �

~Rðtj� 1ÞÞ for j ¼ 1; . . . ; J;

with Y0 ¼ Y. Here each Yj is a R × 1 vector, Vðtj� 1;Xðtj� 1ÞÞ is a R × K matrix and ð~RðtjÞ �

~Rðtj� 1Þ is a K × 1 vector. Following this scheme we can compute YðqÞJ for the q-th simulated tra-

jectory ðXðqÞðtÞ; ~RðqÞðtÞÞt�0
. With M such i.i.d. trajectories, the loss function (25) can be esti-

mated as

L̂ ðY;VÞ ≔
1

M

XM

q¼1

L gðXðqÞðTÞÞ � YðqÞJ

� �
: ð29Þ

Here, we made use of (23).
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Remark 4.2 In the loss function (25) and its MC estimate (29), one could add a sparsity-

promoting regularization term, in which case (25) would become

L̂ ðY;VÞ ≔
1

M

XM

q¼1

L gðXðqÞðTÞÞ � YðqÞJ

� �
þ mPðFÞ : ð30Þ

Here, μ� 0 is a penalty parameter and PðFÞ promotes sparsity in weights Wℓ and biases bℓ

comprising F. In the numerical experiments we report we did not use this device.

Remark 4.3 When the time-interval [0, T] is large, instead of using a single DNN to approxi-
mate the policy map ðt; xÞ 7!Vðt; xÞ, it may beneficial to employ multiple temporal DNNs that
are uniformly distributed in the time-interval [0, T]. All these DNNs have the same structure, as
shown in Fig 1. If NT such DNNs are employed, then we use the m-th DNN to represent the policy
map ðt; xÞ 7!Vðt; xÞ for t 2 [(m − 1)δ, mδ) where m = 1, . . ., NT and δ = T/NT. Distributing
DNNs across time would reduce the complexity of the policy map (as a function of time t) that is
needed to be learned. This is helpful in scenarios where the stochastic dynamics has intricate tem-
poral features, such as oscillations.

5 Examples

We now present four examples to illustrate our DeepCME method. All these examples are reac-

tion networks with n species, denoted by X1, . . ., Xn, and 2n reactions. By varying n, we shall

investigate how the DeepCME method performs as the network gets larger and compare its

performance with simulation based methods.

In all the examples, we assume that all the species have zero copy-numbers initially, and we

consider two output functions g1(x) = xn and g2ðxÞ ¼ x2
n whose expectation is to be estimated

under the probability distribution given by the CME solution at time T = 1. In other words, we

shall use DeepCME to estimate the first two moments of the copy-number of species Xn at

time T, viz.

Eðg1ðXðTÞÞÞ ¼ EðXnðTÞÞ and Eðg2ðXðTÞÞÞ ¼ EðX2
nðTÞÞ: ð31Þ

We shall compare these estimates to those obtained by simulating 1000 CTMC trajectories

with mNRM [6]. Our method DeepCME also yields estimates of the sensitivities of the esti-

mated moments (31) w.r.t. all model parameters. We plot these estimates and compare them

with the estimates obtained via the simulation-based Bernoulli Path Algorithm (BPA) [29].

These latter estimates are based on a sample of size 1000 and for each sample BPA requires

generation of a certain number of auxiliary paths (see Section 2.3) which we set to be 10 in our

examples.

In all the examples, we encode the policy map ðt; xÞ 7!Vðt; xÞ as a DNN with L = 2 hidden

layers and NH = 4 nodes per layer (see Fig 1), irrespective of the number of species n. The acti-

vation function for all hidden layer nodes is ReLU(x) (see (28)) and we choose r = 1 for the

temporal features (26) to transform the time-values. For loss function computation, we parti-

tion the time-interval [0, T] into J = 50 equal size time-increments.

The neural network is trained with a training batch of M = 100 trajectories generated a pri-

ori with mNRM (see Section 4), and another such batch of M = 100 trajectories is used for vali-

dation. We display the loss function for the validation trajectories to track the training process.

To facilitate comparison across network sizes, we normalise all the loss function trajectories to

be one at the start of training. Note that the definition of our loss function (25) depends on cer-

tain threshold values Δ = (Δ1, Δ2). We choose these values as

Dj ¼ 1þ jm̂ jj þ 2ŝ j
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where m̂ j (resp. ŝ j) denotes the sample mean (resp. standard deviation) of the values of the out-

put function gj for the trajectories in the training batch. Finally, to gauge the computational

efficiency of DeepCME we compare the total central processing unit (CPU) time it requires

(including the time to generate training and validation trajectories) to the total CPU time

required by simulation-based approaches (mNRM and BPA) to estimate the expectations (31)

and all its parameter sensitivities. All the computations were performed on the Euler comput-

ing cluster of ETH Zurich [39].

5.1 Independent birth death network

As our first example (see Fig 2A), we consider a network of n species that are all undergoing

independent birth-death reactions

; � !
k Xj � !

g
; for j ¼ 1; . . . ; n:

We set k = 10 and γ = 1. The propensity functions obey mass-action kinetics and are hence

affine functions of the state variable x.

For n = 5, 10, 20 species, we apply DeepCME to this reaction network by training the neural

network for 100000 SGD iterations. Based on the trained neural network, we compute esti-

mates of the first two moments (31) and their sensitivities to both the model parameters k and

γ. We also estimate these quantities with simulation-based methods (mNRM and BPA) with

1000 samples, and since the propensity functions are linear we can compute these quantities

exactly as well. In plots shown in Fig 2D, 2E and 2F, we compare the estimates from all these

approaches for various values of n. Observe that DeepCME is in general quite accurate in

Fig 2. Independent birth death network. (A) Depicts the network with n species and 2n reactions with mass-action kinetics. (B) The CPU times are

shown for DeepCME for different values of n (denoted as # species), and for comparison the time needed by simulation based methods (mNRM for

function estimates and BPA for parameter sensitivities) with 1000 trajectories is also indicated. (C) Plots the validation loss function w.r.t. training steps

for various n values. Panels (D-F) show estimates for the function values (EðXnðTÞÞ and EðX2
nðTÞÞ) at T = 1 and the parameter sensitivities. The

estimates with simulation based methods are shown as 95% confidence intervals with 1000 samples.

https://doi.org/10.1371/journal.pcbi.1009623.g002

PLOS COMPUTATIONAL BIOLOGY DeepCME: A deep learning framework for computing solution statistics of the CME

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009623 December 8, 2021 15 / 23

https://doi.org/10.1371/journal.pcbi.1009623.g002
https://doi.org/10.1371/journal.pcbi.1009623


estimating both the moments and their parametric sensitivities, but there are a few cases where

the error is significant (e.g. sensitivity w.r.t. γ for EðX2
nðTÞÞ and n = 20). These errors can in

principle be reduced by employing a different neural network to encode the policy map. In

our experience, these errors were also reduced in some cases by including a sparsity promoting

term in the loss function (see Remark 4.2) but the result was highly sensitive to the relative

weight (i.e. parameter μ in (30)) of this term.

The CPU time required by DeepCME and simulation-based methods for obtaining

moment and sensitivity estimates are plotted in Fig 2B. Note that the CPU time for simula-

tion-based methods grows linearly with the network size n, but for DeepCME this growth is

sub-linear owing to the fixed structure of the underlying neural network. Despite this fixed

structure, the validation loss function trajectories for DeepCME are similar for all n (see

Fig 2C), indicating that the training process has low dependence on the number of species,

probably because the species are evolving independently.

5.2 Linear signalling cascade

Our second example is a linear cascade with n-species (see Fig 3A), where species Xi catalyses

the production of species Xi+1. The 2n reactions are given by

; � !
b0 X1; Xi � !

k Xiþ1 for i ¼ 1; . . . ; n � 1 and Xj � !
g
; for j ¼ 1; . . . ; n:

We set β0 = 10, k = 5 and γ = 1. As in the previous example, all the propensity functions obey

mass-action kinetics and are hence affine functions of the state.

Fig 3. Linear signalling cascade. (A) Depicts the network with n species and 2n reactions with mass-action kinetics. (B) The CPU times are shown for

DeepCME for different values of n (denoted as # species), and for comparison the time needed by simulation based methods (mNRM for function

estimates and BPA for parameter sensitivities) with 1000 trajectories is also indicated. (C) Plots the validation loss function w.r.t. training steps for

various n values. Panels (D-F) show estimates for the function values (EðXnðTÞÞ and EðX2
nðTÞÞ) at T = 1 and the parameter sensitivities. The estimates

with simulation based methods are shown as 95% confidence intervals with 1000 samples.

https://doi.org/10.1371/journal.pcbi.1009623.g003
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For number of species n = 2, 5, 10, we apply DeepCME to this reaction network by training

the neural network for 100000 SGD iterations. Then we compute the moment estimates (31)

and their sensitivities to all the model parameters. These quantities are also estimated with

simulation-based methods (mNRM and BPA) with 1000 samples, and as with the previous

example, the linearity of the propensity functions enables us to compute these quantities

exactly as well. In the plots shown in Fig 3D, 3E and 3F, we compare the estimates from all

these approaches for various values of n. Observe that DeepCME is accurate in estimating the

moments but some of the parameter sensitivity estimates are not very accurate (e.g. sensitivity

w.r.t. k for EðX2
nðTÞÞ and n = 10). This is because the training process is not successful, as indi-

cated by the validation loss function trajectories shown in Fig 3C. The CPU times for

DeepCME and simulation-based methods are plotted in Fig 3B, and as expected they show

sub-linear growth w.r.t. n for the former but linear growth for the latter.

It is natural to ask if the accuracy of the estimates provided by DeepCME for n = 10 can be

improved by making the DNN “deeper” (by increasing the number of hidden layers L) or

“wider” (by increasing the number of nodes per layer NH). We tested this by doubling each of

these shape parameters, while keeping the other the same, and rerunning the DeepCME train-

ing procedure. As results in Fig 4A and 4B indicate, changing the DNN shape parameters did

not improve the accuracy of the estimates. However we found that when we increase the num-

ber of training trajectories (see Fig 4C), the accuracy of the estimates does improve and this

improvement is quite substantial in some cases (e.g. sensitivity w.r.t. γ for EðXnðTÞÞ and

n = 10).

Fig 4. Linear signalling cascade (continued). In panels (A) and (B) we illustrate that the accuracy of the DeepCME estimates remains unaltered when

the DNN shape parameters—NH (number of nodes per layer) and L (number of hidden layers)—are doubled from their default values of NH = 4 and

L = 2. In panel (C) we illustrate that the accuracy of these estimates improves when the number of training trajectories is increased from M = 100 to

M = 500.

https://doi.org/10.1371/journal.pcbi.1009623.g004
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5.3 Nonlinear signalling cascade

We now consider a variant of the network in the previous example where the catalytic produc-

tion of species Xi+1 by species Xi is non-linear (see Fig 5A) and is given by a activating Hill pro-

pensity with a basal rate

HðxÞ ¼ bþ
kmxH

i

k0 þ xH
i

ð32Þ

where b = 1, km = 100, k0 = 10 and H = 1. Other reactions have mass-action kinetics as in the

previous example, with the same rate constants β0 = 10 and γ = 1.

For number of species n = 2, 5, 10, we apply DeepCME to this reaction network by training

the neural network for 100000 SGD iterations. Then we compute the moment estimates (31)

and their sensitivities to all the model parameters. These quantities are also estimated with

simulation-based methods (mNRM and BPA) with 1000 samples, and unlike previous exam-

ples we cannot compute these quantities exactly due to nonlinear propensities. In the plots

shown in Fig 5D, 5E and 5F, we compare the estimates from DeepCME and simulation-based

approaches for various values of n. Observe that DeepCME is reasonably accurate in estimat-

ing the moments and their parametric sensitivities for all values of n. The success of the train-

ing process is shown by the validation loss function profiles in Fig 5C. Note that these loss

functions increase monotonically with n and this is consistent with the observation that errors

in DeepCME-estimated quantities increase with n (see Fig 5D, 5E and 5F). The CPU times for

DeepCME and simulation-based methods are displayed in Fig 5B, and as in the previous

examples they show sub-linear growth w.r.t. n for the former but linear growth for the latter.

Fig 5. Nonlinear signalling cascade. (A) Depicts the network with n species and 2n reactions. The reactions shown with red dashed-arrow have

propensities given by a nonlinear activating Hill function (32). Other reactions have mass-action kinetics. (B) The CPU times are shown for DeepCME

for different values of n (denoted as # species), and for comparison the time needed by simulation based methods (mNRM for function estimates and

BPA for parameter sensitivities) with 1000 trajectories is also indicated. (C) Plots the validation loss function w.r.t. training steps for various n values.

Panels (D-F) show estimates for the function values (EðXnðTÞÞ and EðX2
nðTÞÞ) at T = 1 and the parameter sensitivities (only the significant sensitivities

are shown). The estimates with simulation based methods are shown as 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009623.g005
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5.4 Linear signalling cascade with feedback

Lastly we consider another variant of the network in the second example where there is nega-

tive feedback in the production of X1 from species Xn (see Fig 6A) which is given by a repress-

ing Hill function with a basal rate

HðxÞ ¼ bþ
km

k0 þ xH
n

; ð33Þ

where b = 1, km = 100, k0 = 10 and H = 1. Other reactions have mass-action kinetics as in the

second example, with the same rate constants k = 5 and γ = 1. Due to the presence of feedback,

oscillations can arise in the dynamics and to better represent this temporal dependence of the

policy map we encode it with NT = 5 identical DNNs (see Remark 4.3).

For number of species n = 2, 5, 10, we apply DeepCME to this reaction network by training

the neural network for 100000 SGD iterations. Then we compute the moment estimates (31)

and their sensitivities to all the model parameters, and we also estimate these quantities with

simulation-based methods (mNRM and BPA) using 1000 samples. In the plots shown in Fig

6D, 6E and 6F), we compare the estimates from both these approaches for various values of n.

Observe that DeepCME is quite accurate in estimating the moments for n = 2, 5 and the

parametric sensitivities for only n = 2. For n = 5, 10 only the sensitivities for EðXnðTÞÞ are

accurate but the sensitivities for EðX2
nðTÞÞ are not accurate with our neural network architec-

ture. The validation loss function trajectories are shown in Fig 6C. The CPU times for

DeepCME and simulation-based methods are plotted in Fig 6B, and they show a similar

growth pattern as our earlier examples.

Fig 6. Linear signalling cascade with feedback. (A) Depicts the network with n species and 2n reactions. The reaction shown with red dashed-arrow

has propensity given by a nonlinear repressing Hill function (33). All other reactions have mass-action kinetics. (B) The CPU times are shown for

DeepCME for different values of n (denoted as # species), and for comparison the time needed by simulation based methods (mNRM for function

estimates and BPA for parameter sensitivities) with 1000 trajectories is also indicated. (C) Plots the validation loss function w.r.t. training steps for

various n values. Panels (D-F) show estimates for the function values (EðXnðTÞÞ and EðX2
nðTÞÞ) at T = 1 and the parameter sensitivities (only the

significant sensitivities are shown). The estimates with simulation based methods are shown as 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1009623.g006
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6 Conclusion

Over the past couple of decades, stochastic reaction network models have become increasingly

popular as a modelling paradigm for noisy intracellular processes. Many consequential biolog-

ical studies have experimentally highlighted the random dynamical fluctuations within living

cells, and have employed such stochastic models to quantify the effects of this randomness in

shaping the phenotype at both the population and the single-cell levels [40]. As experimental

technologies continue to improve at a rapid pace, it is urgent to develop computational tools

that are able to bring larger and more realistic systems within the scope of stochastic modelling

and analysis.

The central object of interest in stochastic reaction network models is a high-dimensional

system of linear ODEs, called the Chemical Master Equation (CME). Numerical solutions to

the CME are difficult to obtain and commonly used simulation-based schemes to estimate the

solutions often require an inordinate amount of computational time, even for moderately-

sized networks. Inspired by the recent success of machine learning approaches in solving high-

dimensional PDEs [13], our goal in this paper is to devise a similar strategy, based on deep

reinforcement learning to numerically estimate solutions to CMEs. We develop such a

method, called DeepCME, and we illustrate it with a number of examples. The neural network

we train in DeepCME provides estimates for expectations based on the CME solution and in

principle it also provides estimates for the sensitivities of these expectations w.r.t. all the model

parameters without any extra effort. Such parametric sensitivities are important for many

applications, such as evaluating a network’s robustness properties [41] or identifying its critical

components [42], but they are even more difficult to estimate than solutions to the CME [23–

31].

Our work opens up several directions for future research. The machine-learning based

computational framework and the mathematical formulation which we provide allows one to

deploy and transfer strong ML methodologies to the quantitative analysis and to data assimila-

tion into complex CRNs. The present, basic approach can be improved/extended in a number

of ways.

Firstly, it needs to be investigated how the architecture of the neural network can be opti-

mally selected, for improved convergence of the training process, based on the CRN model.

Overparametrized neural network architectures may be regularised by adding suitable weight-

bias penalties in the loss-function. The resulting improved convergence will increase the accu-

racy of the estimates provided by DeepCME, especially for the parameter sensitivities, and

reduce the number of trajectories needed for the neural network training.

Secondly, although the presently proposed framework requires relatively few ‘exact’ sto-

chastic simulations of the dynamics, it could nevertheless be computationally prohibitive for

many large biological networks, especially if they are multiscale in nature [43, 44]. It might be

possible to improve efficiency by replacing exact simulations with τ-leaping simulations [20],

multi-level schemes [21] or with simulations based on reduced models for multiscale networks

[16, 43–45]. Incorporating such approaches for generating training trajectories would make

our approach computationally feasible for much larger networks than those considered here.

In particular, multi-level simulation schemes which are based on coupling techniques [21]

would allow one to construct a lower variance estimator for the loss function (29). This could

in turn benefit the accuracy and the convergence of the training process (see, e.g. [46] for the

development of multilevel DNN training algorithms, albeit in another class of applications). In

the context of multiscale networks, identifying the appropriate copy-number scalings that give

rise to reduced models with simpler dynamics is a highly specialised task requiring careful the-

oretical analysis [16]. However our approach can be extended to “learn” these scaling factors
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during the training process by including them as trainable subnetworks into the ML feature

space and employing them to scale the state-vectors in the input layer of the DNNs (see Fig 1).

It is quite possible that incorporating these scaling factors would enhance the expressivity of

the DNN.

Thirdly, the parameter sensitivities that we compute in our method could be employed in

an ‘outer’ gradient descent method with the purpose of inferring model parameters by match-

ing the computed statistics of CME solution with experimental data [47].

On the theoretical front, greater mathematical effort is required to understand how deep

reinforcement-learning approaches can help in circumventing the curse of dimensionality

inherent to CMEs. Alternative training approaches, such as Generative Adversarial Nets
(GANs), may also be suitable for acceleration of the training process (see, e.g., [48]).

Finally, the architecture of the DNNs may include feature spaces comprising parametric
dictionaries of motifs, which are adjusted during training to the reaction rates and to the kinet-

ics of the CRN under consideration.

Author Contributions

Conceptualization: Ankit Gupta, Christoph Schwab, Mustafa Khammash.

Formal analysis: Ankit Gupta.

Funding acquisition: Mustafa Khammash.

Methodology: Ankit Gupta, Christoph Schwab.

Resources: Mustafa Khammash.

Software: Ankit Gupta.

Validation: Ankit Gupta.

Visualization: Ankit Gupta.

Writing – original draft: Ankit Gupta.

Writing – review & editing: Ankit Gupta, Christoph Schwab, Mustafa Khammash.

References
1. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic Gene Expression in a Single Cell. Science.

2002; 297(5584):1183–1186. https://doi.org/10.1126/science.1070919 PMID: 12183631

2. McAdams HH, Arkin A. Stochastic mechanisms in gene expression. Proc Natl Acad Sci, Biochemistry.

1997; 94:814–819. https://doi.org/10.1073/pnas.94.3.814 PMID: 9023339

3. Anderson DA, Kurtz TG. Continuous time Markov chain models for chemical reaction networks. In:

Koeppl H, Setti G, di Bernardo M, Densmore D, editors. Design and Analysis of Biomolecular Circuits.

Springer-Verlag; 2011.

4. van Kampen NG. A power series expansion of the master equation. Canadian Journal of Physics.

1961; 39(4):551–567. https://doi.org/10.1139/p61-056

5. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chem-

istry. 1977; 81(25):2340–2361. https://doi.org/10.1021/j100540a008

6. Anderson DF. A modified next reaction method for simulating chemical systems with time dependent

propensities and delays. The Journal of chemical physics. 2007; 127(21):214107. https://doi.org/10.

1063/1.2799998 PMID: 18067349

7. Altı ntan D, Koeppl H. Hybrid master equation for jump-diffusion approximation of biomolecular reaction

networks. BIT. 2020; 60(2):261–294. https://doi.org/10.1007/s10543-019-00781-4

8. Hornung F, Jentzen A, Salimova D. Space-time deep neural network approximations for high-dimen-

sional partial differential equations. Switzerland: Seminar for Applied Mathematics, ETH Zürich; 2020.
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