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Summary
Introduction: Artificial intelligence (AI) technologies continue 
to attract interest from a broad range of disciplines in recent 
years, including health. The increase in computer hardware and 
software applications in medicine, as well as digitization of 
health-related data together fuel progress in the development 
and use of AI in medicine. This progress provides new opportu-
nities and challenges, as well as directions for the future of AI 
in health.
Objective: The goals of this survey are to review the current state 
of AI in health, along with opportunities, challenges, and practi-
cal implications. This review highlights recent developments over 
the past five years and directions for the future. 
Methods: Publications over the past five years reporting the use 
of AI in health in clinical and biomedical informatics journals, as 
well as computer science conferences, were selected according to 
Google Scholar citations. Publications were then categorized into 
five different classes, according to the type of data analyzed. 
Results: The major data types identified were multi-omics, 
clinical, behavioral, environmental and pharmaceutical research 
and development (R&D) data. The current state of AI related to 
each data type is described, followed by associated challenges 
and practical implications that have emerged over the last 
several years. Opportunities and future directions based on these 
advances are discussed.
Conclusion: Technologies have enabled the development of 
AI-assisted approaches to healthcare. However, there remain 
challenges. Work is currently underway to address multi-modal 
data integration, balancing quantitative algorithm performance 
and qualitative model interpretability, protection of model secu-
rity, federated learning, and model bias.
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1   Introduction
Artificial Intelligence (AI) refers to a set 
of technologies that allow machines and 
computers to simulate human intelligence. 
AI technologies have been developed to ana-
lyze a diverse array of health data, including 
patient data from multi-omic approaches, as 
well as clinical, behavioral, environmental, 
and drug data, and data encompassed in the 
biomedical literature. 

Because of the potential to automate 
many tasks currently requiring human 
intervention, AI has attracted considerable 
interest from a variety of fields. AI metho-
dologies are now commonly used to aid 
in computer vision, speech recognition, 
and natural language processing (NLP). In 
healthcare, the rapid development of com-
puter hardware and software applications 
over recent years has facilitated digitization 
of health data, providing new opportunities 
[1] for the development of computational 
models and opportunities to use AI systems 
to extract insights from data. 

AI technologies can simulate human 
intelligence at a variety of levels. Both 
machine learning (ML) and deep learning 
(DL) are subsets of AI. ML allows systems 
to learn from data at the most basic level. DL 
is a type of ML which uses more complex 
structures to build models. Conventional 
AI approaches (such as expert systems), 
according to Obemeyer and Emanuel [2], 
can “take general principles about medicine 
and apply them to new patients” in a man-
ner similar to medical students in their first 
year of residency. ML abstracts rules from 
the data, similar to what a physician might 
experience during his residency [2]. 

One of the challenges associated with 
traditional ML methodologies, such as 
logistic regression or support vector machine 
(SVM) methods, is the need for intensive 
human effort for feature engineering. Feature 
engineering is the process of obtaining higher-
level feature representations from raw patient 
features. DL approaches [1, 3] address this 
problem by adopting an end-to-end learning 
architecture, using raw patient data as an 
input and mapping it to outcomes through 
multiple layers of nonlinear processing 
units (i.e., neurons). This process minimizes 
human contributions to high-level feature 
engineering. However, humans are still 
essential for designing appropriate DL model 
architectures and for fine-tuning optimal 
model parameters. The effort to minimize 
the amount of human intervention required to 
design these architectures remains an ongoing 
challenge for the field.

2   Materials and Methods
This review includes works published over 
the past 3 to 5 years, according to the num-
ber of citations on Google Scholar. From 
this pool, five major types of data used in 
AI for health were identified. These data 
types include multi-omics data, clinical data, 
behavioral/wellness data, environmental 
data, as well as research and development 
data. The current state of AI related to each 
data type is discussed, followed by associ-
ated challenges and practical implications 
that have emerged over the last two years. 
Opportunities and future directions based 
on these data types are discussed.
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3   AI for Common 
Biomedical Data Types 
3.1   Multi-omics Data
Multi-omics data [4] refers to the biological 
process where different “-omics” data, such 
as genomics, proteomics, transcriptomics, 
epigenomics, and microbiomics are jointly 
collected and analyzed. In comparison to 
conventional single omics approaches, 
multi-omics offer a comprehensive under-
standing of biological processes. Separate 
omics data sources can often characterize the 
same or closely related biological processes. 
In ML, this is referred to as a multi-view 
setting [5], where each omic is regarded as 
a separate view. To integrate these inputs, 
either data-based integration or model-based 
integration is required.

Data-based Integration. Concatenation of 
the data from all of views, with or with-
out transformation, can result in a single 
model. This integrative approach has been 
used successfully to combine data from 
single-nucleotide polymorphisms (SNPs) 
and messenger ribonucleic acid (mRNA) 
gene expression into a single matrix and 
explore the relationship between SNPs and 
mRNA to predict a quantitative phenotype 
(e.g., drug cytotoxicity) using a Bayesian 
integrative model [6]. 

Similarly, Mankoo et al. [7] developed an 
integrative approach using a multivariate Cox 
least absolute shrinkage and selection opera-
tor (LASSO) to predict remission rates and 
survival in ovarian cancer by integrating copy 
number alteration, methylation, microRNA 
(miRNA) and gene expression data. This 
group performed a survival analysis with a 
selected set of variables using Cox regression 
based on a variable selection via LASSO 
[7]. Shen et al. [8] proposed the iCluster 
framework for subtyping glioblastoma with 
three omics data types: copy number, mRNA 
expression, and DNA methylation data. The 
iCluster framework assumes all the omics data 
share a common set of latent variables during 
joint dimension reduction and data integration.

Model-based Integration. In this approach, 
a separate model based on each data view 
is built, followed by the aggregation of the 

model outputs. For example, the analysis 
tool for heritable and environmental network 
associations (ATHENA) [9-11] performed 
genomic analyses by integrating different 
omics data such as copy number alterations, 
methylation, miRNA and gene expression 
to identify associations with clinical out-
comes such as ovarian cancer survival. In 
the integration process, base models and 
neural networks were f irst constructed 
based on each type of omic data, followed 
by integrative model building [6]. Wang et 
al. [12] proposed a network fusion approach 
for cancer subtyping, which begins by con-
structing patient similarity matrices. These 
matrices are based on mRNA expression, 
DNA methylation, and miRNA expression 
data. Matrix building is followed by an iter-
ative nonlinear procedure to integrate the 
three base similarity matrices into a unified 
matrix, with the goal of identifying patient 
subtypes. Drăghici and Potter [13] proposed 
an ensemble approach to help predict drug 
resistance in HIV protease mutants. This 
approach builds a base of predictive mod-
els with structural features from an HIV 
protease–drug inhibitor complex and DNA 
sequence variants, and then performs major-
ity voting according to the predictions of the 
base models.

Challenges, opportunities, and practical 
implications of AI in using multi-omics data. 
Despite the promising results that have been 
achieved so far, there are still many chal-
lenges to developing effective AI approaches 
for multi-omic data analysis.
• Because multi-omic data are highly het-

erogeneous, simple concatenation of raw 
data or model outputs from each view will 
miss the opportunity to explore the poten-
tial connections and relationships across 
entities in different views. Network-based 
approaches, which treat entities as nodes 
and their relationships as edges in the 
network, hold great promise for integrative 
analysis of multi-omic data [14]. Conven-
tional network analysis algorithms, such as 
label propagation [15, 16], focus more on 
the edges/connections within the network. 
The recently proposed Graph Neural Net-
work (GNN) [17], which considers both 
the node features and edge connections, 
would be of great interest in this context.

• Different from conventional weighted 
networks, edges (e.g., gene regulations 
and protein interactions) are usually 
rich contexts associated in a network 
constructed from multi-omic data. The 
incorporation of such contexts may 
complicate the analysis on the networks. 
Some typical network properties, such 
as edge weight non-negativity or transi-
tivity, could be violated. Moreover, con-
ventional network analysis assumes the 
network is pairwise, i.e., each edge only 
connects a pair of nodes in the network. 
However, in many scenarios we are also 
interested in investigating higher order 
interactions among different entities, for 
which case pairwise network analysis is 
not enough [18]. Therefore, there is huge 
potential to develop novel AI methodolo-
gies for analyzing multi-omics networks. 

3.2   Clinical Data
AI technologies have also been used exten-
sively in analyzing clinical data, including 
medical images, electronic health records 
(EHRs), and physiological signals.

3.2.1   Medical Images
Conventional ML approaches for analyzing 
medical images are often based on feature 
engineering, where features or descriptors 
of the medical images are extracted and then 
fed into the learning models for different 
tasks such as segmentation or classification. 
Due to advances that have revolutionized DL 
methodologies, an ever-increasing number 
of DL models have been incorporated into 
the medical image analysis pipeline. For 
example, Gulshan et al. [19] trained the 
Inception-V3 model [20], which is a deep 
learning model for natural image analysis, on 
a set of 128,175 renal fundus photographs for 
the identification of diabetic retinopathy. The 
authors demonstrated that, in two validation 
sets of 9,963 images and 1,748 images, the 
algorithm had 90.3% and 87.0% sensitivity, 
and 98.1% and 98.5% specificity, respec-
tively. Esteva et al. [21] applied the same 
model to a set of skin images to enable dis-
crimination between benign and malignant 
lesions. They designed a transfer-learning 
mechanism which pretrains the convolu-
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tional layers of the Inception-V3 model with 
trained weights from ImageNet, and then 
retrains the final, softmax layer using a local 
skin image data set, fine-tuning the model 
parameters across all layers. Using 127,463 
training images and 1,942 testing images, 
they demonstrated that the model can dis-
criminate between benign and malignant 
lesions at a level of accuracy similar that of 
dermatologists. Interestingly, Kermany et al. 
[22] also adopted the same model and trans-
fer learning strategy on two-dimensional 
optical coherence tomography images by 
freezing the parameters on the convolution 
layers after pretraining, without any fine 
tuning. With 108,312 training images and 
1,000 testing images, the authors found 
that the model demonstrated an area under 
the receiving operating characteristic curve 
(AUC) of 99.9%. These three works demon-
strate the power of end-to-end deep learning 
models for medical image classification 
through superior quantitative performance. 
In clinical decision support, numbers are not 
enough, as clinicians also need to know how 
the decision is made and decisions must be 
supported by evidence.

Recently, De Fauw et al. [23] proposed 
a novel two-stage deep learning archi-
tecture for diagnosis and patient referral 
(e.g., urgent, semi-urgent, routine, and 
observation only) of retinal disease. In the 
first stage, a deep segmentation network 
(3D Unet [24]) was developed to create a 
“detailed device-independent tissue seg-
mentation map” from 3D Optical Coherence 
Tomography (OCT) images. Then a deep 
classification convolutional neural network 
(CNN) was constructed in the second stage 
to analyze the segmentation map and sug-
gestions on diagnosis and patient referrals. 
After training the systems on only 14,884 
scans, the approach was applied to patient 
triage and referral in an ophthalmology 
clinic. Compared with the conventional 
single-stage end-to-end framework, this 
two-stage approach derived a “device-inde-
pendent segmentation of OCT scans” which 
serves as “intermediate representations that 
are readily viewable by a clinical expert” [23] 
and thus provides evidence for the second 
stage of disease diagnosis or patient referral. 
This facilitates the integration of the system 
into clinical workflows.

Challenges, opportunities, and practical 
implications of AI in using medical images. 
According to a recent report in The Lancet, 
a dermatologist may review over 200,000 
images of skin lesions over decades of work, 
compared to mere days that it could take for 
a computer to analyze the same images using 
AI-assisted techniques [25]. ML approaches 
have also been used to successfully analyze 
raw images in cardiovascular imaging stud-
ies. By expanding the size and variety of 
cardiovascular imaging databases, new DL 
approaches can be developed, according to 
Heglin and colleagues [26]. 

Challenges remain regarding the use of 
AI in medical imaging. Analysis of medi-
cal images relies heavily on deep learning 
architectures that were designed and trained 
on natural images, such as the inception-V3 
model discussed above. Medical images 
are also used to further fine-tune models. 
This enhances the model’s ability to rec-
ognize  image patterns in the training data 
but may not be generalizable to new image 
patterns. Moreover, there are few dedicated 
DL model architectures for medical image 
analysis. An associated challenge is that 
training a brand-new model architecture 
typically needs a large number of images 
[26], which may not be easy to obtain in 
medical applications.

In addition to the model challenges, there 
are also data challenges. For example, differ-
ences in images from patients with different 
ethnicities (e.g., light vs. dark skins) may 
introduce disparities in the model’s decisions 
implicitly [27]. For example, if a skin lesion 
classification model is trained on a set of 
images composed of many more light skins 
than dark skins, it tends to perform better to 
classify light skins than dark ones.

3.2.2   Electronic Health Records
EHRs are systematic collections of lon-
gitudinal patient health information [28]. 
There are two types of information con-
tained in patient EHRs: 1) structured 
information, which refers to the fields that 
contain data using existing lexicons, such 
as demographics, diagnosis, laboratory 
tests, medications, and procedures; and 2) 
unstructured information, which is typically 
free text documents such as clinical notes 

from physicians and nurses. In recent years, 
efforts have been devoted to developing AI 
methodologies for EHR analysis. 

Conventional machine learning models 
for analyzing the structured information 
in EHRs are mostly vector based [29, 30], 
where patient records within a certain time 
window are collapsed into vectors composed 
of the summary statistics of the values of 
the features in different dimensions. One 
major limitation of this approach is that the 
temporality among the clinical events within 
EHRs is lost. To explore such temporality, 
Wang et al. [31] proposed to represent 
patient EHRs as longitudinal matrices with 
one dimension corresponding to the features 
and the other dimension corresponding to the 
time. Matrix factorization [31] or CNN type 
of approaches [32] were then developed to 
analyze such matrices. One big challenge for 
such matrix representation is the ultra-high 
sparsity. To handle such challenge, sequence 
modeling approaches, such as Recurrent 
Neural Networks (RNN) [33] have been 
used to analyze structured EHR data. Choi et 
al. [34] leveraged RNN to predict the onset 
risk of Congestive Heart Failure (CHF). To 
further enhance the model interpretability, 
they developed the REverse Time AttentIoN 
Model (RETAIN) [35] for modeling EHR 
sequences, so that the most recent clinical 
visits received the highest level of attention. 
Bekhet et al. [36] tested the generalizability 
of RETAIN on CHF onset risk prediction 
with a larger patient cohort. One limitation of 
RNN-based models is that they are not good 
at capturing long-term dependencies for the 
events in sequences. To solve this problem, 
Xiao et al. [37] leveraged TopicRNN [38], 
which combines RNN and global topic mod-
eling to predict CHF patient readmission risk 
using EHR sequences, where each global 
topic corresponds to a specific distribution 
of the events in the EHR sequence.

Analyzing the unstructured information 
in EHR has been a long-standing topic in 
medical informatics. The conventional NLP 
approaches have been mostly rule-based or 
regular-expression-based. These methods 
typically need rigorous definitions of rules 
or regular expressions before the analysis. 
One challenge of these approaches is that it 
is impossible to enumerate all possible rules/
regular expressions. In recent years, because 
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of the huge success of AI methods in NLP, 
more and more data-driven methodologies 
are developed for clinical NLP. For example, 
Kaur et al. [39] developed a  NLP algorithm 
that can automatically identify patients who 
meet asthma predictive index (API) criteria 
from patient EHRs. Luo et al. [40] proposed 
to represent high-order semantic features 
from clinical texts as graphs and developed a 
subgraph-augmented nonnegative tensor fac-
torization approach to analyze them. They also 
proposed segmented CNN [41] and RNN [42] 
to process short clinical notes and achieved 
state-of-the-art performance on relation classi-
fication. Filannino and Uzuner [43] performed 
a survey on the shared tasks for clinical NLP 
and identified data-driven approaches for tack-
ling those tasks. Soysal et al. [44] developed 
a clinical language annotation, modeling, and 
processing (CLAMP) toolkit for customized 
clinical NLP applications. 

Challenges, opportunities, and practical 
implications of AI in using EHRs. Despite 
promising initial results, many challenges 
still remain for developing AI algorithms for 
EHR analysis. We list some of them below.
• There are many different EHR systems all 

over the world. Different EHR systems may 
use different coding systems to encode the 
clinical events. The interoperability of AI 
algorithms across different EHR systems 
is critical but also challenging. There are 
several national/international efforts for 
addressing this challenge. As an example, 
Observational Health Data Sciences and 
Informatics (OHDSI, https://ohdsi.org/) 
is an international collaborative effort for 
standardizing the EHR with a common 
data model called Observational Medical 
Outcomes Partnership (OMOP). Currently 
it has already included 1.26 billion patient 
records from 17 participating countries.

• EHR data are heterogeneous, sparse, and 
noisy. Deriving robust AI algorithms that 
can reliably analyze EHR data is a chal-
lenging task. To address this challenge, 
interpreting or explaining how AI algo-
rithms work is crucial, as this can provide 
evidences on how the algorithms make 
decisions [45]. Another important route is 
to incorporate existing medical knowledge 
[30] which can guide the model learning 
process towards the right direction.

3.2.3   Physiologic Data
Physiologic data refer to the signals from 
processes such as electrocardiograms 
(EKGs) and electroencephalograms (EEGs). 
These signals are usually categorized as 
continuous, in terms of time and value. Con-
ventional signal processing methods usually 
transform those continuous-time signals into 
vectors through some transformations (e.g., 
Fourier or wavelet transform [46-48]), and 
then build analysis algorithms on top of 
these vectors. Recently, deep-learning based 
technologies have been used to analyze raw 
signals. For example, Hannun et al. [49]  
proposed a 34-layer CNN model to map 
EKG signals to a series of rhythm classes 
to detect heart arrhythmia. Schwab et al. 
[50] proposed to tackle the same problem 
with RNN techniques. Schirrmeister et al. 
[51] proposed to leverage CNN modeling 
to encode and visualize EEG signals. To 
leverage more available data, Liang et al. 
[52] developed a transfer learning strategy 
that leverages EEG data sources for seizure 
prediction using CNN models. 

Challenges, opportunities, and practical 
implications of AI in using physiological 
data. Different from EHR, physiologic 
data are continuous and dense. Therefore, 
the analysis of physiological signals is 
computationally much more expensive. 
Preprocessing steps, such as denoising and 
calibration, are usually necessary before 
the analysis starts. Moreover, measure-
ment errors from different devices may 
affect the accuracy and correctness of the 
analysis results. Developing approaches 
for modeling and reducing measurement 
errors is important for physiological data 
analysis [53].

On the other hand, the current research 
on analysis of physiological data typically 
occurs independently from analysis of other 
clinical data. In reality, different data may 
contain complementary information of the 
patient conditions. Therefore, performing 
integrative analysis of both physiological 
signals and other clinical data [54] would 
help us get a more comprehensive under-
standing of the patient condition, and devel-
oping effective computational approaches 
for such integrative analysis remains a great 
opportunity.

3.3   Behavioral Data
In addition to multi-omics and clinical data, 
behavioral data is also linked to health status. 
While the use of behavior data in health 
applications poses some specific challenges, 
due to the way such data is collected and 
housed, there are some research teams that 
investigate the relationship between behavior 
data and health.

Social Media. The use of social media, 
such as Facebook, Twitter, LinkedIn, and 
Instagram may differ according to health 
status. For example, Sinnenberg et al. [55] 
identif ied associations between Twitter 
posts and the risk of cardiovascular disease. 
From a set of 4.9 million tweets, this group 
found that users with cardiovascular disease 
can be characterized by the tone, style, 
and perspective of their tweets, as well as 
some basic demographics. Ra et al. [56] 
found “a significant association between 
higher frequency of modern digital media 
use and increase in symptoms of ADHD 
(attention-deficit/ hyperactivity disorder) 
over a 24-month period” in adolescents 
between the ages of 15 and 16, as compared 
to baseline. Researchers have examined 
social media analytics and mental health, 
and they identified markers in social media 
activity associated with worsening psychotic 
symptoms [57], schizophrenia [58], risk of 
suicidal ideation [59], and depression [60].

Video and Conversational Data. Use of 
video and conversational data has gained the 
attention of many, both inside and outside 
of fields such as healthcare. Tencent, the 
Chinese tech giant, claims to have developed 
a vision system that can spot Parkinson’s 
Disease in 3 minutes [61]. Recently, a 
clinical trial involving extensive interviews 
between patients and trained medical staff 
using linguistic markers as screening tools 
for mild cognitive impairment (MCI) detec-
tion has shown promise [62, 63]. Tang et al. 
[64] built a conversational agent based on 
transcripts from these clinical trials using 
reinforcement learning techniques [65]. This 
agent was trained to maximize the diagnosis 
accuracy of MCI with a minimum number 
of conversational events, and the agent per-
formed significantly better than supervised 
learning models.
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Mobile Sensor Data. Many research works 
in recent years tried to leverage data from 
mobile sensors in an effort to revolutionize 
healthcare [66]. The insights extracted from 
these mobile data could be very helpful in 
chronic conditions such as mental health 
problems, chronic pain, and movement dis-
orders. For example, Saeb et al. [67] studied 
the correlation between GPS location, phone 
usage data, and depressive symptom severity. 
Selter et al. [68]  developed an mHealth 
app for self-management of chronic lower 
back pain. Zhan et al. [69] developed an 
app from mobile sensor data to quantify the 
Parkinson’s disease severity with a machine 
learning approach. Turakhia and Kaiser [70] 
envisioned how mobile health can transform 
the care of atrial fibrillation. As evidence of 
the importance of mobile data analysis in 
health, the Mobile Sensor Data-to-Knowl-
edge (MD2K) Center was chosen as one of 
11 Big Data Centers of Excellence by the 
National Institutes of Health [71].

Challenges, opportunities, and practical 
Implications of AI in using behavioral data. 
From the above summary, we can see that 
behavioral data are heterogeneous. Differ-
ent types of behavioral data characterize 
a person from different aspects, thus the 
integrative analysis of behavioral data can 
provide us a more holistic view. Insel [72] 
proposed the concept of digital phenotyping, 
which “involves collecting sensor, keyboard 
and voice and speech data from smartphones 
to measure behavior, cognition and mood.” 
There will be many opportunities on this 
direction.

One challenge for analyzing behavioral 
data is the difficulty of obtaining the ground 
truth labels. For example, we can judge 
whether a person is likely to have depression 
from his/her posts on social media. However, 
we can only confirm the disease from the 
person’s EHR. Therefore, linking behavioral 
data with clinical data can provide a unique 
opportunity to impact health, from both an 
individual and a population standpoint.

In addition to patient behavior, it is also 
interesting to analyze clinician behavioral 
data for the purpose of better quality of 
care delivery. Yeung et al. [73] proposed 
the concept of “bedside computer vision,” 
which utilizes computer vision technol-

ogy to analyze clinician behaviors, such 
as hand-hygiene compliance, captured by 
video recording in hospital settings This 
can improve the compliance of clinicians’ 
behavior and the guidelines.

3.4   Environmental Data
Environmental factors are important in 
a number of diseases, including cardio-
vascular disease [74], chronic obstructive 
pulmonary disease (COPD) [75], Parkin-
son’s Disease [76], psychiatric disorders 
[77], and cancer [78]. AI technologies have 
been used to explore environmental data to 
better understand disease mechanisms and 
improve care quality. For example, Song et 
al. [79]  explored the effect of environment 
on hand, foot, and mouth disease through 
time-series analyses. Stingone et al. [80] 
studied the association between air pollution 
exposures and children’s cognitive skills in 
the United States using ML models. Park 
et al. [81] leveraged advanced ML models 
to construct environmental risk scores and 
applied them to metal mixtures, oxidative, 
and cardiovascular disease. Hahn et al. 
[82] developed multifactor dimensionality 
reduction software for detecting gene–gene 
and gene–environment interactions. 

Challenges, opportunities, and practical impli-
cations of AI in using environmental data. 
While the use of environmental data in AI in 
health holds much promise, it is not without 
challenges. One big challenge is to link envi-
ronmental data with individual patient EHRs, 
given the difficulties involved in tracking the 
trajectories of patients and obtaining environ-
mental information around them. Therefore, 
most of the studies involving environmental 
data are compiled at the population level. 
Practically, linking environmental data with 
other aspects of patient data may facilitate 
precision medicine at the patient level.

3.5   Pharmaceutical Research and 
Development Data
Medications play important roles in health-
care. Data collected in various stages of drug 
development often contain insights about 
disease mechanisms and treatments. AI 

methodologies have been adopted to extract 
insights from those data. Drug data are pre-
sented below according to the information 
source (i.e., PubChem, clinical trials, and 
spontaneous reports).

Chemical Compounds. PubChem [83] is 
a website which lists information related 
to small molecules and their bioactivities. 
Many researchers use the molecular struc-
tures contained in PubChem as a vocabulary 
and then adopt a footprint (zero-one) or 
bag-of-words representation for the anal-
ysis of specific compounds. For example, 
Zhang et al. [84, 85] used footprint-based 
representations to calculate drug similarities 
and combined them with patient or disease 
similarities to achieve personalized treat-
ment recommendations. Recently, graph 
convolutional networks (GCN) [86] have 
been applied in molecular structure design 
and analyses, where each molecule is treated 
as a graph, with the atoms as graph nodes. 
Duvenaud et al. [87]  designed a GCN 
structure to extract features (referred to as 
neural fingerprints) from the molecules, with 
good prediction capability, parsimony, and 
interpretability using this approach. Accord-
ing to Kearnes et al. [88], molecular graph 
convolutions “represent a new paradigm in 
ligand-based virtual screening.”

Clinical Trials. Clinical trials are a key step 
in drug development. The participants in 
clinical trials are usually selected with strict 
inclusion and exclusion criteria. Clinical 
trial data provide a wealth of information for 
each pharmaceutical company. Recently, AI 
approaches have been used in clinical trial 
design and data mining. For example, Chek-
roud et al. [89] adopted feedforward feature 
selection and gradient boosting in cross-trial 
prediction of treatment outcomes in depres-
sion. Kohannim et al. [90] investigated the 
usage of a support vector machine to boost 
the power of clinical trials and reduce the 
clinical trial sample size. 

Spontaneous Reports. The FDA Adverse 
Event Reporting System (FAERS) [91] col-
lects information on adverse events related 
to specific drugs. For the last decade, FAERS 
has been the major resource for conducting 
pharmacovigilance research. Sakaeda et 
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al. [92] measured the performance of four 
concrete data mining algorithms used for 
predicting adverse events for specific drugs 
using FAERS data. These algorithms include 
proportional reporting ratio (PRR), reporting 
odds ratio (ROR), information component 
(IC), and empirical Bayes geometric mean 
(EBGM) algorithms. Tatonetti et al. [93] 
developed a signal detection algorithm for 
the identification of novel drug-drug interac-
tions using FAERS. Zhang et al. [94] devel-
oped a label propagation algorithm to predict 
drug-drug interactions using drug similarity 
graphs obtained from side-effect profiles in 
FAERS. To further enhance the usability 
of FAERS, Banda et al. [95] mapped drug 
names and outcomes to standard vocabu-
laries found in RxNorm and SNOMED-CT.

Challenges, opportunities, and practical 
implications of AI in using pharmaceutical 
R&D data. Despite existing promising 
research, challenges still exist for analyzing 
pharmaceutical R&D data as summarized 
above. We list a few of them below.
• Although graph convolution approaches 

have shown great promise in de-novo 
drug design, their interpretability remains 
a challenge. Specifically, in addition to 
more efficient discovery of novel drug 
molecules, understanding associated 
mechanisms of action is important. To 
achieve this goal, we should incorporate 
the domain knowledge from biology 
and chemistry into the model building 
process.

• One limitation of clinical trials is that they 
have very rigorous inclusion and exclusion 
criteria for patient recruitment. The goal 
is to eliminate the potential effect of con-
founding factors. However, this will also 
make the recruted patients “ideal” because 
of the rigorous recruiting constraints, 
and different from real world patients. 
Similarly, FAERS data is composed of a 
set of adverse drug reaction reports with 
limited information. To make the insights 
mined from clinical trial and FAERS data 
more practical and useful, it is crucial to 
link them with real world patient data 
from EHRs or claims. FDA has released 
a new strategic framework to advance the 
use of real-world evidence to support the 
development of drugs and biologics [96]. 

This will bring in lots of opportunities to 
develop AI methodologies for the integra-
tive analysis of pharmaceutical R&D and 
real-world clinical data.  

3.6   Biomedical Literature Data
Published reports in the biomedical literature 
are another important source of data for AI 
in health applications. AI technologies and 
NLP can be used to extract useful infor-
mation from the literature to inform health 
research. Many studies focus on biomedical 
literature mining; for an early survey, refer 
to Cohen and Hersh [97]. Recently, due to 
the revolution of modern machine learning 
approaches, such as deep learning, especially 
in NLP, many advanced AI algorithms have 
been developed in biomedical literature 
mining and achieved state-of-the-art perfor-
mance. There are two fundamental problems 
on literature mining: (i) named entity recog-
nition and normalization, which is the prob-
lem of identifying interested named entities 
(e.g., diseases, genes, genetic variants) in 
the text and normalizing them (e.g., whether 
two different textual descriptions correspond 
to the same disease). For example, Leaman 
et al. [98] developed DNorm, which is a 
machine learning approach for disease name 
normalization based on pairwise learning-
to-rank. The authors showed that comparing 
with traditional lexical normalization and 
matching approaches such as MetaMap [99] 
and Lucene [100], DNorm can achieve an 
improvement of 0.121 on micro-averaged 
F measures. Recently researchers have also 
shown that doing joint named entity recog-
nition and normalization together can further 
boost the performance of both tasks [101, 
102]; (ii) relation classification, which is 
the problem of identifying the relationships 
among named entities once they have been 
located in the literature. To deal with this 
problem, Singhal et al. [103] developed a 
rank aggregation approach to mine gen-
otype-phenotype relationships from bio-
medical literatures, and they demonstrated 
a 28% performance improvement in terms 
of F1 measures on benchmarks. Peng and 
Lu [104] developed a multichannel depen-
dency-based CNN approach for extracting 
protein-protein interactions from biomedical 

literature searches and achieved a 24.4% 
relative improvement in F1 measures over 
the state-of-the-art methods. 

Challenges, opportunities, and practical 
implications of AI in using existing litera-
ture. In reality, a practical literature mining 
engine would involve both components 
we mentioned above, either explicitly or 
implicitly. As an example, Zhang et al. 
[105] developed a multi-view ensemble 
learning pipeline to integrate the textual 
features extracted from PubMed articles 
with models to classify clinically action-
able genetic mutations found in specific 
patients. However, because both tasks are 
challenging, and the developed algorithms 
are error-prone, the error could accumulate 
across different stages in the pipeline and 
may result in bad system performance. 
Therefore, there is great potential on inte-
grated end-to-end learning of the model 
parameters in different modules.

On the other hand, in contrast with the 
various biomedical data we introduced in 
previous sections, biomedical literature 
serves as the knowledge source derived from 
biological or clinical research. Injecting 
mined knowledge from such sources into 
the biomedical data modeling processes can 
make the developed models more reliable 
and generalizable. Tools such as PubMed 
Phrases [106], PubMed Labs [107], and 
LitVar [108] have recently been developed to 
facilitate research exploration of biomedical 
literature, which provides an unprecedented 
opportunity for the integration of knowledge 
and data driven insights from biomedical 
research.

4   AI in Health: Future 
Directions
4.1   Integrative Analysis
As Francis Collins envisioned in his vision 
about the precision medicine initiative 
[109], the next generation of scientists 
will “develop creative new approaches for 
detecting, measuring, and analyzing a wide 
range of biomedical information — includ-
ing molecular, genomic, cellular, clinical, 
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behavioral, physiological, and environmental 
parameters.” Data from different modalities 
can describe a health problem from different 
aspects, and by integrative mining of those 
heterogeneous data, holistic and compre-
hensive insights into health can be obtained. 

Recent years have seen an increase in 
research and initiatives related to AI in 
health, integrating different aspects of clin-
ical data [110], linking biorepositories with 
clinical data [111-113], and forging con-
nections between pharmaceutical research 
and development with clinical data [84]. 
More importantly, combining knowledge 
and data is the key to developing success-
ful AI algorithms for health. In contrast to 
other computer fields such as vision and 
speech analysis, where large data sets can 
be obtained, patient data is often limited 
and can vary widely. In addition, real-world 
health problems are typically complex. To 
help offset this problem, the expertise from 
clinicians and biologists is necessary to 
inform the model’s learning process so that 
the model does not overfit the data.

4.2   Model Transparency
Traditional AI technologies, such as rule-
based systems, are highly interpretable. 
Recent AI technologies, such as deep learn-
ing models, can achieve good quantitative 
performance, but are largely treated as black 
boxes. There are lots of debates recently on 
whether model interpretability is needed. 
For example, in a recent interview [114], 
Geoff Hinton, a pioneer in DL, argued that 
policymakers should not insist on ensuring 
people understand exactly how a given AI 
algorithm works, because “people can’t 
explain how they work, for most of the 
things they do.” Poursabzi-Sangdeh et al. 
[115] conducted a controlled randomized 
experiment to examine how important model 
interpretability is to users. Surprisingly, the 
results showed that there was no significant 
difference on users’ trust of black-box and 
transparent models. Moreover, “increased 
transparency hampered people's ability to 
detect when a model has made a sizeable 
mistake.” Holm [116] defended black-box 
models by drawing the analogy with human 
decision-making process, where decisions 

are largely subjective (“outcomes of their 
own ‘deep learning’”). That’s why today 
“neuroscience struggles with the same inter-
pretability challenge as computer science.”

According to the authors of the present 
article, there are certain areas where model 
interpretability may not be that import-
ant, especially in applications where AI 
algorithms have already demonstrated the 
capability to produce accurate results in a 
reliable and generalizable manner. However, 
this is not the case for health, at least in the 
current stage of the computational technol-
ogy for healthcare analytics. For example, it 
has been shown that deep learning models 
can only achieve similar performance as 
logistic regression in hospital readmission 
tasks using EHRs [117] or claims [118]. 
Even for medical image analysis where 
deep learning models have achieved state-
of-the-art performance, it is still difficult to 
justify the model generalization ability. That 
is, if the model works well on the medical 
image data set from one radiology center, it 
is not easy to justify it can still work well for 
another radiology center. Moreover, in most 
healthcare settings, final decision makers 
will still be human clinicians, and AI algo-
rithms are just assisting them. Therefore, it 
is important to provide specific rationales 
for the propositions of those AI algorithms, 
to make the clinician feel more comfortable. 
Moreover, to enhance the clinical utility of 
AI algorithms, they should be integrated into 
regular clinical workflows [119].

On the other hand, the state-of-the-art 
performance of AI algorithms in many health 
applications are far from perfect. We should 
still encourage the exploration of black-box 
models to see if better performance can be 
achieved. In this case, post-hoc explanation 
techniques [45] would be helpful to interpret 
how the model works. One example of such 
techniques is knowledge distillation [120], 
which employed a student-teacher scheme 
to learn a simpler/interpretable model 
whose performance can approximate the 
performance of the complicated black-box 
model, from which the dark knowledge is 
“distilled out.”

Another related issue about model 
transparency is ownership. As Shah et al. 
has envisioned in their perspective [121], 
there is a worrying trend towards propri-

etary algorithms which are opaque, and the 
developers are “reluctant to transparently 
report” model details. This may raise the 
potential risk of harm when these models 
are applied in clinical practice [122]. In this 
case “regulatory and professional bodies 
should ensure the advanced algorithms 
meet accepted standards of clinical benefit, 
just as they do for clinical therapeutics and 
predictive biomarkers”, as Parikh et al. said 
in their discussion about predictive analytics 
in medicine [123].

4.3   Model Security
Conventionally we usually talk about 
the importance of protecting the security 
and privacy of health data, especially the 
data related to individual patients. With 
an increase in the number of AI models 
in health, we should also be aware of the 
potential security risk of those models. One 
example is adversarial attack, which refers 
to the process of constructing data that can 
confuse machine learning models and results 
in suboptimal or even incorrect decisions. 
For example, Sitawarin et al. [124] demon-
strated that pollution on transportation signs 
can easily fool autonomous driving systems. 
Sun et al. [125] showed that slight modifi-
cations of lab values in a patient’s EHR can 
completely alter the mortality prediction 
made by what is otherwise a well-trained 
predictor. Finlayson et al. [126] provide a 
more detailed discussion on the potential 
concerns about the “incentives for more 
sophisticated adversarial attacks” in health-
care. From the authors of the present article’s 
perspective, it is important for (i) medical 
professionals to be aware of this potential 
risk; (ii) AI researchers to develop effective 
defense mechanisms in view of medical 
adversarial attacks; and (iii) policy makers 
to take into consideration the potential model 
security risk when they make new regulatory 
frameworks.

4.4   Federated Learning
Health data are widely distributed in and 
among health-related institutions, and each 
institution may be associated with a differ-
ent set of stakeholders. In many cases, these 
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data are sensitive and cannot be aggregated. 
From a model-training perspective, it is 
desirable to have more and diverse data to 
inform model training. 

Federated learning can assist with this 
challenge. According to Konečný et al. 
[127], “Federated Learning is a ML setting 
where the goal is to train a high-quality 
centralized model using training data distrib-
uted over a large number of clients”. These 
clients often have unreliable and relatively 
slow network connections. Developing 
federated health AI technologies is both 
important and highly demanding. Lee et al. 
[128] developed a privacy-preserving fed-
erated patient similarity learning approach 
and evaluated it on MIMIC III data [129]. 
They confirmed that in a federated setting, 
proper homomorphic encryption of patient 
information can indeed preserve the quality 
of patient similarity measures.

In addition to clinical data, there are more 
and more patient-generated data nowadays. 
For example, these data can be continuously 
generated from wearable devices or mobile 
phones. In this case, patients could be reluc-
tant to share their data on some public cloud 
to train a predictive model for their future 
health status. With federated learning, the 
model will be stored in the cloud. Each user 
can download the current version of the 
model and improve it locally with his/her 
data. The model changes will be summarized 
as a focused update which will be sent back 
to the cloud with encrypted communication. 
Then the focused updates from different 
users will be averaged to improve the model. 
During the entire process, all data will 
remain on local devices and no individual 
update is stored in the cloud. Therefore, 
the model will be continuously updated in 
a secure way.

4.5   Data Bias
All AI models need training data samples. 
Typically, the size of the training sample 
obtained from patients is not large enough 
to capture all variations across patients 
and complexities of their health problems. 
Frequently, the model trained from patients 
at one hospital does not apply to patients 
in another hospital. We usually refer to this 

challenge as the bias carried in the data, 
and such data bias remains one of the major 
challenges to AI in health. As pointed out 
by Khullar [130], such bias can also worsen 
health disparities.

One way to reduce bias is to collect large 
and diverse patient data sets. Examples of 
such efforts include the OHDSI project [131] 
we introduced in Section 2.2, as well as the 
national clinical research network PCORnet 
created by the Patient-Centered Outcomes 
Research Institute (PCORI) [132] which 
currently includes 13 clinical data research 
Networks (CDRNs) collecting longitudinal 
patient data from a range of health systems 
across the United States. These efforts 
serve as a foundation for collecting large-
scale, diverse data sets needed for robust, 
generalizable AI models. Researchers can 
also reduce bias during the model build-
ing process [133] using methods such as 
counterfactual Gaussian Process which is 
developed to perform both risk prediction 
and conduct “what-if ” reasoning for indi-
vidualized treatment planning.

5   Conclusion
The interest, applicability, and promise of 
AI in health is evidenced in recent litera-
ture. This review emphasizes some of the 
important aspects for future consideration 
and research. The work underway to over-
come challenges in AI in health shows 
promise, and this progress will facilitate the 
expanding role that AI is likely to continue to 
play in health, from both an individual and 
population standpoint. 
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