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Ford’s 𝛼-model is one of the most popular random parametric models of bifurcating phylogenetic tree growth, having as specific
instances both the uniform and the Yule models. Its general properties have been used to study the behavior of phylogenetic
tree shape indices under the probability distribution it defines. But the explicit formulas provided by Ford for the probabilities
of unlabeled trees and phylogenetic trees fail in some cases. In this paper we give correct explicit formulas for these probabilities.

1. Introduction

The study of random growth models of rooted phylogenetic
trees and the statistical properties of the shapes of the
phylogenetic trees they produce was initiated almost one
century ago by Yule [1] and it has gained momentum in the
last 20 years: see, for instance, [2–8]. The final goal of this
line of research is to understand the relationship between
the forces that drive evolution and the topological properties
of “real-life” phylogenetic trees [3, 9]; see also [10, Chapter
33]. One of the most popular such models is Ford’s 𝛼-model
for rooted bifurcating phylogenetic trees or cladograms [4].
It consists of a parametric model that generalizes both the
uniform model (where new leaves are added equiprobably
to any arc, giving rise to the uniform probability distribution
on the sets of cladograms with a fixed set of taxa) and Yule’s
model (where new leaves are added equiprobably only to
pendant arcs, i.e., to arcs ending in leaves) by allocating a
possibly different probability (that depends on a parameter𝛼 and hence its name, “𝛼-model”) to the addition of the new
leaves to pendant arcs or to internal arcs.

When models like Ford’s model are used to contrast
topological properties of phylogenetic trees contained in
databases like TreeBase (https://treebase.org), only
their general properties (moments, asymptotic behavior)
are employed. But, in the course of a research where we

have needed to compute the probabilities of several specific
cladograms under this model [11], we have noticed that
the explicit formulas that Ford gives in [4, §3.5] for the
probabilities of cladograms and of tree shapes (unlabeled
rooted bifurcating trees) are wrong, failing for some trees
with 𝑛 ⩾ 8 leaves; see Propositions 29 and 32 in [4], with the
definition of 𝑞 given in page 30 therein, for Ford’s formulas.

So, to help the future user of Ford’s model, in this
paper we give the correct explicit formulas for these prob-
abilities. This paper is accompanied by the GitHub page
https://github.com/biocom-uib/prob-alpha where
the interested reader can find a SageMath [12] module to
compute these probabilities and their explicit values on the
setsT𝑛 of cladograms with 𝑛 leaves labeled 1, . . . , 𝑛, for every𝑛 from 2 to 8.

2. Preliminaries

2.1. Definitions, Notations, and Conventions. Throughout this
paper, by a tree 𝑇, we mean a rooted bifurcating tree. As it
is customary, we understand 𝑇 as a directed graph, with its
arcs pointing away from the root, which we shall denote by𝑟𝑇. Then, all nodes in 𝑇 have out-degree either 0 (its leaves,
which form the set 𝐿(𝑇)) or 2 (its internal nodes, which form
the set 𝑉int(𝑇)). The children of an internal node V are those
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Figure 1: An example of images under the forgetful mappings between (ordered and unordered) cladograms and tree shapes. In the ordered
objects, the ordering is represented by the nodes’ colors: gray ≺ white.

nodes 𝑢 such that (V, 𝑢) is an arc in 𝑇, and they form the set
child(V). A node 𝑥 is a descendant of a node V when there
exists a directed path from V to 𝑥 in 𝑇. For every node V, the
subtree𝑇V of 𝑇 rooted at V is the subgraph of𝑇 induced on the
set of descendants of V.

A tree 𝑇 is ordered when it is endowed with an ordering≺V on every set child(V). A cladogram (resp., an ordered
cladogram) on a set of taxa Σ is a tree (resp., an ordered tree)
with its leaves bijectively labeled in Σ. Whenever we want to
stress the fact that a tree is not a cladogram, that is, it is an
unlabeled tree, we shall use the term tree shape.

It is important to point out that although ordered trees
have no practical interest from the phylogenetic point of view,
because the orderings on the sets of children of internal nodes
do not carry any phylogenetic information, they are useful
from the mathematical point of view, because the existence
of the orderings allows one to easily prove certain extra
properties that can later be translated to the unordered setting
(cf. Proposition 1).

An isomorphism of ordered trees is an isomorphism of
rooted trees that moreover preserves these orderings. An
isomorphism of cladograms (resp., of ordered cladograms)
is an isomorphism of trees (resp., of ordered trees) that
preserves the leaves’ labels. We shall always identify a tree
shape, an ordered tree shape, a cladogram, or an ordered
cladogram, with its isomorphism class, and in particular we
shall make henceforth the abuse of language of saying that
two of these objects, 𝑇, 𝑇󸀠, are the same, in symbols 𝑇 = 𝑇󸀠,
when they are (only) isomorphic. We shall denote byT∗𝑛 and
OT∗𝑛 , respectively, the sets of tree shapes and of ordered tree
shapes with 𝑛 leaves. Given any finite set of taxa Σ, we shall
denote by TΣ and OTΣ, respectively, the sets of cladograms
and of ordered cladograms on Σ. When the specific set Σ is
unrelevant and only its cardinal matters, we shall write T𝑛
and OT𝑛 (with 𝑛 = |Σ|) instead of TΣ and OTΣ, and then
we shall understand that Σ is [𝑛] = {1, 2, . . . , 𝑛}.

There exist natural isomorphism-preserving forgetful
mappings
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that “forget” the orderings or the labels of the trees. In
particular, we shall call the image of a cladogram under 𝜋
its shape. Figure 1 depicts an example of images under these
forgetful mappings.

Let us introduce some more notations. For every node
V in a tree 𝑇, 𝜅𝑇(V) is its number of descendant leaves. For
every internal node V in an ordered tree 𝑇, with children
V1≺VV2, its numerical split is the ordered pair NS𝑇(V) =(𝜅𝑇(V1), 𝜅𝑇(V2)). If, instead, 𝑇 is unordered and if child(V) ={V1, V2} with 𝜅𝑇(V1) ⩽ 𝜅𝑇(V2), then NS𝑇(V) = (𝜅𝑇(V1), 𝜅𝑇(V2)).
In both cases, themultiset of numerical splits of 𝑇 is NS(𝑇) ={NS𝑇(V) | V ∈ 𝑉int(𝑇)}. For instance, if 𝑇 is the cladogram
depicted in Figure 2, then

NS (𝑇) = {(1, 1) , (1, 1) , (1, 1) , (2, 2) , (1, 4) , (2, 5)} . (1)

A symmetric branch point in a tree 𝑇 is an internal node
V such that if V1 and V2 are its children, then the subtrees 𝑇V1
and𝑇V2 of𝑇 rooted at themhave the same shape. For instance,
the symmetric branch points in the cladogram depicted in
Figure 2 are those filled in black.

Given two cladograms 𝑇 and𝑇󸀠 on Σ and Σ󸀠, respectively,
with Σ ∩ Σ󸀠 = 0, their root join is the cladogram 𝑇 ⋆ 𝑇󸀠 onΣ∪Σ󸀠 obtained by connecting the roots of𝑇 and𝑇󸀠 to a (new)
common root 𝑟; see Figure 3. If 𝑇, 𝑇󸀠 are ordered cladograms,𝑇⋆𝑇󸀠 is ordered by inheriting the orderings on 𝑇 and 𝑇󸀠 and
ordering the children of the new root 𝑟 as 𝑟𝑇≺𝑟𝑟𝑇󸀠 . If 𝑇 and𝑇󸀠 are tree shapes, a similar construction yields a tree shape
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𝑇⋆𝑇󸀠; if they are moreover ordered, then 𝑇⋆𝑇󸀠 becomes an
ordered tree shape as explained above.

2.2.The 𝛼-Model. Ford’s 𝛼-model [4] defines, for every 𝑛 ⩾ 1,
a family of probability density functions 𝑃(∗)𝛼,𝑛 on T∗𝑛 that
depends on one parameter 𝛼 ∈ [0, 1], and then it translates
this family into three other families of probability density
functions 𝑃𝛼,𝑛 on T𝑛, 𝑃(𝑜,∗)𝛼,𝑛 on OT∗𝑛 , and 𝑃(𝑜)𝛼,𝑛 on OT𝑛,
by imposing that the probability of a tree shape is equally
distributed among its preimages under 𝜋, 𝜋𝑜,∗, and 𝜋 ∘ 𝜋𝑜 =𝜋𝑜,∗ ∘ 𝜋∗, respectively.

It is well known [13] that every𝑇 ∈ T𝑛 can be obtained in
a unique way by adding recurrently to a single node labeled 1

new leaves labeled 2, . . . , 𝑛 to arcs (i.e., splitting an arc (𝑢, V)
into two arcs (𝑢, 𝑤) and (𝑤, V) and then adding a new arc from
the inserted node𝑤 to a new leaf) or to a new root (i.e., adding
a new root 𝑤 and new arcs from 𝑤 to the old root and to a
new leaf). The value of 𝑃(∗)𝛼,𝑛 (𝑇∗) for 𝑇∗ ∈ T∗𝑛 is determined
through all possible ways of constructing cladograms with
shape 𝑇∗ in this way. More specifically,

(1) if 𝑇1 and 𝑇2 denote, respectively, the only cladograms
inT1 andT2, let 𝑃󸀠𝛼,1(𝑇1) = 𝑃󸀠𝛼,2(𝑇2) = 1;

(2) for every 𝑚 = 3, . . . , 𝑛, let 𝑇𝑚 ∈ T𝑚 be obtained by
adding a new leaf labeled𝑚 to 𝑇𝑚−1. Then

𝑃󸀠𝛼,𝑚 (𝑇𝑚) = {{{{{
𝛼𝑚 − 1 − 𝛼 ⋅ 𝑃󸀠𝛼,𝑚−1 (𝑇𝑚−1) if the new leaf is added to an internal arc or to a new root1 − 𝛼𝑚 − 1 − 𝛼 ⋅ 𝑃󸀠𝛼,𝑚−1 (𝑇𝑚−1) if the new leaf is added to a pendant arc;

(2)

(3) When the desired number 𝑛 of leaves is reached, the
probability of every tree shape 𝑇∗𝑛 ∈ T∗𝑛 is defined as

𝑃(∗)𝛼,𝑛 (𝑇∗𝑛 ) = ∑
𝜋(𝑇𝑛)=𝑇

∗

𝑛

𝑃󸀠𝛼,𝑛 (𝑇𝑛) . (3)

For instance, Figure 4 shows the construction of two
cladograms in T5 with the same shape and how their
probability 𝑃󸀠𝛼,5 is built using the recursion in Step (2).
If we generate all cladograms in T5 with this shape, we
compute their probabilities 𝑃󸀠𝛼,5, and then we add up all these
probabilities, we obtain the probability 𝑃(∗)𝛼,5 of this shape,
which turns out to be 2(1 − 𝛼)/(4 − 𝛼); cf. [4, Figure 23].

Once𝑃(∗)𝛼,𝑛 is defined onT∗𝑛 , it is transported toT𝑛,OT∗𝑛 ,
and OT𝑛 by defining the probability of an object in one of
these sets as the probability of its image inT∗𝑛 divided by the
number of preimages of this image:

(i) For every 𝑇 ∈ T𝑛, if 𝜋(𝑇) = 𝑇∗ ∈ T∗𝑛 and it has 𝑘
symmetric branch points, then

𝑃𝛼,𝑛 (𝑇) = 2𝑘𝑛! ⋅ 𝑃(∗)𝛼,𝑛 (𝑇∗) , (4)

because |𝜋−1(𝑇∗)| = 𝑛!/2𝑘 (see, e.g., [4, Lemma 31]).
(ii) For every 𝑇𝑜 ∈ OT𝑛, if 𝜋𝑜(𝑇𝑜) = 𝑇 ∈ T𝑛, then

𝑃(𝑜)𝛼,𝑛 (𝑇𝑜) = 12𝑛−1 ⋅ 𝑃𝛼,𝑛 (𝑇) , (5)

because |𝜋−1𝑜 (𝑇)| = 2𝑛−1 (𝑇 has 2𝑛−1 different
preimages under 𝜋𝑜, obtained by taking all possible
different combinations of orderings on the 𝑛 − 1 sets
child(V), V ∈ 𝑉int(𝑇∗)).

(iii) For every 𝑇∗𝑜 ∈ OT∗𝑛 , if 𝜋𝑜,∗(𝑇∗𝑜 ) = 𝑇∗ ∈ T∗𝑛 and it
has 𝑘 symmetric branch points, then

𝑃(𝑜,∗)𝛼,𝑛 (𝑇∗𝑜 ) = 12𝑛−𝑘−1 ⋅ 𝑃(∗)𝛼,𝑛 (𝑇∗) , (6)

because |𝜋−1𝑜,∗(𝑇∗)| = 2𝑛−1−𝑘 (from the 2𝑛−1 possible
preimages of 𝑇∗ under 𝜋𝑜,∗, defined by all possible
different combinations of orderings on the 𝑛 − 1 sets
child(V), V ∈ 𝑉int(𝑇∗), those differing only on the
orderings on the children of the 𝑘 symmetric branch
points are actually the same ordered tree shape).

The family (𝑃(𝑜,∗)𝛼,𝑛 )𝑛 of probabilities of ordered tree shapes
satisfies the usefulMarkov branching recurrence (in the sense
of [2, §4]) given by the following proposition. In it and in the
sequel, let, for every 𝑎, 𝑏 ∈ Z+,

𝑞𝛼 (𝑎, 𝑏) = Γ𝛼 (𝑎) Γ𝛼 (𝑏)Γ𝛼 (𝑎 + 𝑏) ⋅ 𝜑𝛼 (𝑎, 𝑏) , (7)

where

𝜑𝛼 (𝑎, 𝑏) = 𝛼2 (𝑎 + 𝑏𝑎 ) + (1 − 2𝛼)(𝑎 + 𝑏 − 2𝑎 − 1 ) (8)

and Γ𝛼 : Z+ → R is the mapping defined by Γ𝛼(1) = 1 and,
for every 𝑛 ⩾ 2, Γ𝛼(𝑛) = (𝑛 − 1 − 𝛼) ⋅ Γ𝛼(𝑛 − 1).
Proposition 1. For every 0 < 𝑚 < 𝑛 and for every 𝑇∗𝑚 ∈ OT∗𝑚
and 𝑇∗𝑛−𝑚 ∈ OT∗𝑛−𝑚,

𝑃(𝑜,∗)𝛼,𝑛 (𝑇∗𝑚 ⋆ 𝑇∗𝑛−𝑚)
= 𝑞𝛼 (𝑚, 𝑛 − 𝑚)𝑃(𝑜,∗)𝛼,𝑚 (𝑇∗𝑚) 𝑃(𝑜,∗)𝛼,𝑛−𝑚 (𝑇∗𝑛−𝑚) . (9)

This recurrence, together with the fact that 𝑃(𝑜,∗)𝛼,1 of a
single node is 1, implies that, for every 𝑇∗𝑜 ∈ OT∗𝑛 ,

𝑃(𝑜,∗)𝛼,𝑛 (𝑇∗𝑜 ) = ∏
(𝑎,𝑏)∈NS(𝑇∗

𝑜
)

𝑞𝛼 (𝑎, 𝑏) . (10)

For proofs of Proposition 1 and (10), see Lemma 27 and
Proposition 28 in [4], respectively.
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Figure 3: The root join 𝑇 ⋆ 𝑇󸀠.
3. Main Results

Our first result is an explicit formula for 𝑃𝛼,𝑛(𝑇), for every𝑛 ⩾ 1 and 𝑇 ∈ T𝑛.
Proposition 2. For every 𝑇 ∈ T𝑛, its probability under the𝛼-model is

𝑃𝛼,𝑛 (𝑇) = 2𝑛−1𝑛! ⋅ Γ𝛼 (𝑛) ∏
(𝑎,𝑏)∈NS(𝑇)

𝜑𝛼 (𝑎, 𝑏) . (11)

Proof. Given 𝑇 ∈ T𝑛, let 𝑇𝑜 be any ordered cladogram such
that 𝜋𝑜(𝑇𝑜) = 𝑇, and let 𝑇∗𝑜 = 𝜋∗(𝑇𝑜) ∈ OT∗𝑛 and 𝑇∗ =𝜋(𝑇) = 𝜋𝑜,∗(𝑇∗𝑜 ). If 𝑇∗ has 𝑘 symmetric branch points, then,
by (4), (6), and (10),

𝑃𝛼,𝑛 (𝑇) = 2𝑘𝑛! ⋅ 𝑃(∗)𝛼,𝑛 (𝑇∗) = 2
𝑘

𝑛! ⋅ 2𝑛−𝑘−1 ⋅ 𝑃(𝑜,∗)𝛼,𝑛 (𝑇∗𝑜 )
= 2𝑛−1𝑛! ∏

(𝑎,𝑏)∈NS(𝑇∗
𝑜
)

𝑞𝛼 (𝑎, 𝑏) . (12)

Now, on the one hand, it is easy to check that

NS (𝑇)= {(min {𝑎, 𝑏} ,max {𝑎, 𝑏}) | (𝑎, 𝑏) ∈ NS (𝑇∗0 )} , (13)

and therefore, since 𝑞𝛼 is symmetric,

𝑃𝛼,𝑛 (𝑇) = 2𝑛−1𝑛! ∏
(𝑎,𝑏)∈NS(𝑇)

𝑞𝛼 (𝑎, 𝑏) . (14)

It remains to simplify this product. If, for every V ∈ 𝑉int(𝑇),
we denote its children by V1 and V2, then

∏
(𝑎,𝑏)∈NS(𝑇)

𝑞𝛼 (𝑎, 𝑏)
= ∏

V∈𝑉int(𝑇)

Γ𝛼 (𝜅𝑇 (V1)) Γ𝛼 (𝜅𝑇 (V2))Γ𝛼 (𝜅𝑇 (V)) 𝜑𝛼 (NS (V)) . (15)

For every V ∈ 𝑉int(𝑇) \ {𝑟𝑇}, the term Γ𝛼(𝜅𝑇(V)) appears
twice in this product: in the denominator of the factor
corresponding to V itself and in the numerator of the factor

corresponding to its parent. Therefore, all terms Γ𝛼(𝜅𝑇(V)) in
this product vanish except Γ𝛼(𝜅𝑇(𝑟𝑇)) = Γ𝛼(𝑛) (that appears in
the denominator of its factor) and every Γ𝛼(𝜅𝑇(V)) = Γ𝛼(1) =1 with V, a leaf. Thus,

𝑃𝛼,𝑛 (𝑇) = 2𝑛−1𝑛! ⋅ 1Γ𝛼 (𝑛) ⋅ ∏V∈𝑉int(𝑇)
𝜑𝛼 (NS (V)) (16)

as we claimed.

Remark 3. Ford states (see [4, Proposition 32 and page 30])
that if 𝑇 ∈ T𝑛, then

𝑃𝛼,𝑛 (𝑇) = 2𝑘𝑛! ∏
(𝑎,𝑏)∈NS(𝑇)

𝑞𝛼 (𝑎, 𝑏) , (17)

where 𝑘 is the number of symmetric branching points in 𝑇
and

𝑞𝛼 (𝑎, 𝑏) = {{{
2𝑞𝛼 (𝑎, 𝑏) if 𝑎 ̸= 𝑏
𝑞𝛼 (𝑎, 𝑏) if 𝑎 = 𝑏. (18)

If we simplify∏(𝑎,𝑏)∈NS(𝑇)𝑞𝛼(𝑎, 𝑏) as in the proof of Proposi-
tion 2, this formula for 𝑃𝛼,𝑛(𝑇) becomes

𝑃𝛼,𝑛 (𝑇) = 2𝑘+𝑚𝑛! ⋅ Γ𝛼 (𝑛) ⋅ ∏
(𝑎,𝑏)∈NS(𝑇)

𝜑𝛼 (𝑎, 𝑏) , (19)

where𝑚 is the number of internal nodes whose children have
different numbers of descendant leaves. This formula does
not agree with the one given in Proposition 2 above, because

𝑘 + 𝑚 = 𝑛 − 1 − 󵄨󵄨󵄨󵄨󵄨{V ∈ 𝑉int (𝑇) | child (V)
= {V1, V2} , 𝜅𝑇 (V1) = 𝜅𝑇 (V2) but 𝜋 (𝑇V1)
̸= 𝜋 (𝑇V2)}󵄨󵄨󵄨󵄨󵄨

(20)

and, hence, it may happen that 𝑘 + 𝑚 < 𝑛 − 1. The
first example of a cladogram with this property (and the
only one, up to relabeling, with at most 8 leaves) is the
cladogram 𝑇̃ ∈ T8 depicted in Figure 5. For it, our formula
gives (see (8.22) in the document ProblsAlpha.pdf in
https://github.com/biocom-uib/prob-alpha)

𝑃𝛼,8 (𝑇̃) = (1 − 𝛼)2 (2 − 𝛼)126 (7 − 𝛼) (6 − 𝛼) (5 − 𝛼) (3 − 𝛼) (21)

while expression (19) assigns to 𝑇̃ a probability of half this
value:

(1 − 𝛼)2 (2 − 𝛼)252 (7 − 𝛼) (6 − 𝛼) (5 − 𝛼) (3 − 𝛼) . (22)

This last value cannot be right, for several reasons. Firstly, by
[4, §3.12], when 𝛼 = 1/2, Ford’s model is equivalent to the
uniform model, where every cladogram in T𝑛 has the same
probability

1󵄨󵄨󵄨󵄨𝐵𝑇𝑛󵄨󵄨󵄨󵄨 = 1(2𝑛 − 3)!! (23)

https://github.com/biocom-uib/prob-alpha
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Figure 4: Two examples of computations of the probability 𝑃󸀠𝛼,𝑛 of a cladogram through its construction in Step (2) of the definition of the𝛼-model.

1 2 3 4 5 6 7 8

Figure 5: The cladogram 𝑇̃ ∈ T8 used in Remark 3.

and when 𝛼 = 0, Ford’s model gives rise to the Yule model
[1, 14], where the probability of every 𝑇 ∈ T𝑛 is

𝑃𝑌 (𝑇) = 2𝑛−1𝑛! ∏
V∈𝑉int(𝑇)

1𝜅𝑇 (V) − 1 . (24)

In particular, 𝑃1/2,8(𝑇̃) should be equal to 1/135135 and𝑃0,8(𝑇̃) should be equal to 1/19845. Both values are consistent
with our formula, while expression (22) yields half these
values.

As a second reason, which can be checked using a
symbolic computation program, let us mention that if we
take expression (22) as the probability of 𝑇̃ and hence of
all other cladograms with its shape, and we assign to all
other cladograms in T8 the probabilities computed with
Proposition 2, which agree on them with the values given by
(19) (they are also provided in the aforementioned document
ProblsAlpha.pdf), these probabilities do not add up 1.

Combining Proposition 2 and (4) we obtain the following
result.

Corollary 4. For every 𝑇∗ ∈ T∗𝑛 with 𝑘 symmetric branch
points,

𝑃(∗)𝛼,𝑛 (𝑇∗) = 2𝑛−𝑘−1Γ𝛼 (𝑛) ∏
(𝑎,𝑏)∈NS(𝑇∗)

𝜑𝛼 (𝑎, 𝑏) . (25)

This formula does not agree, either, with the one given in
[4, Proposition 29]: the difference lies again in the same factor

of 2 to the power of the number of internal nodes that are not
symmetric branch points but whose children have the same
number of descendant leaves.

The family of densitymappings (𝑃𝛼,𝑛)𝑛 satisfies the follow-
ing Markov branching recurrence.

Corollary 5. For every 0 < 𝑚 < 𝑛 and for every 𝑇𝑚 ∈ T𝑚
and 𝑇𝑛−𝑚 ∈ T𝑛−𝑚,𝑃𝛼,𝑛 (𝑇𝑚 ⋆ 𝑇𝑛−𝑚)

= 2𝑞𝛼 (𝑚, 𝑛 − 𝑚)( 𝑛𝑚 ) 𝑃𝛼,𝑚 (𝑇𝑚) 𝑃𝛼,𝑛−𝑚 (𝑇𝑛−𝑚) . (26)

Proof. If 𝑇𝑚 ∈ T𝑚 and 𝑇𝑛−𝑚 ∈ T𝑛−𝑚, then
𝑃𝛼,𝑚 (𝑇𝑚) = 2𝑚−1𝑚!Γ𝛼 (𝑚) ∏

(𝑎,𝑏)∈NS(𝑇𝑚)
𝜑𝛼 (𝑎, 𝑏)

𝑃𝛼,𝑛−𝑚 (𝑇𝑛−𝑚) = 2𝑛−𝑚−1(𝑛 − 𝑚)!Γ𝛼 (𝑛 − 𝑚)⋅ ∏
(𝑎,𝑏)∈NS(𝑇𝑛−𝑚)

𝜑𝛼 (𝑎, 𝑏) ,
𝑃𝛼,𝑛 (𝑇𝑚 ⋆ 𝑇𝑛−𝑚) = 2𝑛−1𝑛!Γ𝛼 (𝑛) ∏

(𝑎,𝑏)∈NS(𝑇𝑚⋆𝑇𝑛−𝑚)
𝜑𝛼 (𝑎, 𝑏)

= 2𝑛−1𝑛!Γ𝛼 (𝑛)𝜑𝛼 (𝑚, 𝑛 − 𝑚)( ∏
(𝑎,𝑏)∈NS(𝑇𝑚)

𝜑𝛼 (𝑎, 𝑏))
⋅ ( ∏
(𝑎,𝑏)∈NS(𝑇𝑛−𝑚)

𝜑𝛼 (𝑎, 𝑏)) = 2𝑛−1𝑛!Γ𝛼 (𝑛)𝜑𝛼 (𝑚, 𝑛 − 𝑚)
⋅ 𝑚!Γ𝛼 (𝑚)2𝑚−1 𝑃𝛼,𝑚 (𝑇𝑚) ⋅ (𝑛 − 𝑚)!Γ𝛼 (𝑛 − 𝑚)2𝑛−𝑚−1
⋅ 𝑃𝛼,𝑛−𝑚 (𝑇𝑛−𝑚) = 2𝑞𝛼 (𝑚, 𝑛 − 𝑚)( 𝑛𝑚 ) 𝑃𝛼,𝑚 (𝑇𝑚)
⋅ 𝑃𝛼,𝑛−𝑚 (𝑇𝑛−𝑚)

(27)

as we claimed.
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Figure 6: The tree shapes inT∗6 mentioned in Remark 6.

Remark 6. Against what is stated in [4], (𝑃(∗)𝛼,𝑛 )𝑛 does not
satisfy any Markov branching recurrence; that is, there does
not exist any symmetric mapping 𝑄 : Z+ × Z+ → R such
that, for every 𝑘, 𝑙 ⩾ 1 and for every 𝑇𝑘 ∈ T∗𝑘 and 𝑇𝑙 ∈ T∗𝑙 ,

𝑃(∗)
𝛼,𝑘+𝑙

(𝑇𝑘 ⋆ 𝑇𝑙) = 𝑄 (𝑘, 𝑙) ⋅ 𝑃(∗)𝛼,𝑘 (𝑇𝑘) ⋅ 𝑃(∗)𝛼,𝑙 (𝑇𝑙) . (28)

Indeed, let 𝑇∗𝑚, 𝑇̂∗𝑚 ∈ T∗𝑚 be any two different tree shapes,
both with 𝑚 leaves and 𝑘 symmetric branch points, for
instance, the tree shapes inT∗6 depicted in Figure 6. Then,

𝑃(∗)𝛼,𝑚 (𝑇∗𝑚) = 2𝑚−𝑘−1Γ𝛼 (𝑚) ∏
(𝑎,𝑏)∈NS(𝑇∗

𝑚
)

𝜑𝛼 (𝑎, 𝑏) ,
𝑃(∗)𝛼,𝑚 (𝑇̂∗𝑚) = 2𝑚−𝑘−1Γ𝛼 (𝑚) ∏

(𝑎,𝑏)∈NS(𝑇̂∗
𝑚
)

𝜑𝛼 (𝑎, 𝑏) .
(29)

In this case, 𝑇∗𝑚 ⋆ 𝑇∗𝑚 ∈ T∗2𝑚 has 2𝑘 + 1 symmetric branch
points and therefore

𝑃(∗)𝛼,2𝑚 (𝑇∗𝑚 ⋆ 𝑇∗𝑚) = 22𝑚−2𝑘−2Γ𝛼 (2𝑚) ∏
(𝑎,𝑏)∈NS(𝑇∗

𝑚
⋆𝑇∗
𝑚
)

𝜑𝛼 (𝑎, 𝑏)

= 22𝑚−2𝑘−2Γ𝛼 (2𝑚) 𝜑𝛼 (𝑚,𝑚)( ∏
(𝑎,𝑏)∈NS(𝑇∗

𝑚
)

𝜑𝛼 (𝑎, 𝑏))
2

= 22𝑚−2𝑘−2Γ𝛼 (2𝑚) 𝜑𝛼 (𝑚,𝑚) ( Γ𝛼 (𝑚)2𝑚−𝑘−1𝑃(∗)𝛼,𝑚 (𝑇∗𝑚))
2

= 𝑞𝛼 (𝑚,𝑚) 𝑃(∗)𝛼,𝑚 (𝑇∗𝑚) 𝑃(∗)𝛼,𝑚 (𝑇∗𝑚)

(30)

while 𝑇∗𝑚 ⋆ 𝑇̂∗𝑚 ∈ T∗2𝑚 has 2𝑘 symmetric branch points and
therefore

𝑃(∗)𝛼,2𝑚 (𝑇∗𝑚 ⋆ 𝑇̂∗𝑚) = 22𝑚−2𝑘−1Γ𝛼 (2𝑚) ∏
(𝑎,𝑏)∈NS(𝑇∗

𝑚
⋆𝑇̂∗
𝑚
)

𝜑𝛼 (𝑎, 𝑏)

= 22𝑚−2𝑘−1Γ𝛼 (2𝑚) 𝜑𝛼 (𝑚,𝑚)( ∏
(𝑎,𝑏)∈NS(𝑇∗

𝑚
)

𝜑𝛼 (𝑎, 𝑏))

⋅ ( ∏
(𝑎,𝑏)∈NS(𝑇̂∗

𝑚
)

𝜑𝛼 (𝑎, 𝑏)) = 22𝑚−2𝑘−1Γ𝛼 (2𝑚) 𝜑𝛼 (𝑚,𝑚)
⋅ Γ𝛼 (𝑚)2𝑚−𝑘−1𝑃(∗)𝛼,𝑚 (𝑇∗𝑚) ⋅ Γ𝛼 (𝑚)2𝑚−𝑘−1𝑃(∗)𝛼,𝑚 (𝑇̂∗𝑚)
= 2𝑞𝛼 (𝑚,𝑚) 𝑃(∗)𝛼,𝑚 (𝑇∗𝑚) 𝑃(∗)𝛼,𝑚 (𝑇̂∗𝑚)

(31)

and 𝑞𝛼(𝑚,𝑚) ̸= 2𝑞𝛼(𝑚,𝑚). This shows that there does not
exist any well-defined, single real number 𝑄(𝑚,𝑚) such that

𝑃(∗)𝛼,2𝑚 (𝑇∗1,𝑚 ⋆ 𝑇∗2,𝑚) = 𝑄 (𝑚,𝑚) ⋅ 𝑃(∗)𝛼,𝑚 (𝑇∗1,𝑚)
⋅ 𝑃(∗)𝛼,𝑚 (𝑇∗2,𝑚) (32)

for every 𝑇∗1,𝑚, 𝑇∗2,𝑚 ∈ T∗𝑚.
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