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Herein, we show that the hexameric resorcinarene capsule C is able to catalyze

the formation of bis(heteroaryl)methanes by reaction between pyrroles or indoles and

carbonyl compounds (α-ketoesters or aldehydes) in excellent yields and selectivity. Our

results suggest that the capsule can play a double catalytic role as a H-bond catalyst,

for the initial activation of the carbonyl substrate, and as a Brønsted acid catalyst, for the

dehydration of the intermediate alcohol.

Keywords: supramolecular organocatalysis, resorcinarene hexameric capsule, bis(heteroaryl)methanes, self-

assembly, H-bond catalyst, Brønsted acid catalyst

INTRODUCTION

Supramolecular organocatalysis is an emerging area in supramolecular chemistry whose principal
aim is the design of novel systems able to perform catalytic functions mimicking the chemo-,
regio-, and stereoselectivity of the natural enzymes (Conn and Rebek, 1997). At this regard, much
attention has been focused on designing self-assembled molecular capsules (MCs) able to catalyze
organic reaction by confinement of the reactants in their internal cavity (Borsato and Scarso,
2016; Catti et al., 2016; Gaeta et al., 2019). MCs are self-assembled structures sealed by weak
non-covalent interactions between the single complementary units. Resembling to an enzyme
pocket, the nanoconfined space inside a self-assembled molecular capsule allows the formation
of a microenvironment with different physical and chemical features with respect to the external
medium. In fact, the nanoconfinement of the reactants inside a MC slows down their molecular
mobility determining a different stereo- and regiochemical outcome of the reaction with respect to
the bulk conditions. Analogously to the natural systems, when the reactants are hosted inside aMC,
the proximity effect between them and the stabilization of the intermediates and transition states
induces a reaction acceleration.

Interestingly, Atwood and MacGillivray reported an interesting example of self-assembled
capsule C (1)6·(H2O)8 (Figure 1; MacGillivray and Atwood, 1997), which is constituted by six
resorcin[4]arene units 1 sealed by eight water molecules, and shows an hydrophobic cavity with
an internal volume of 1,375 Å3. The six resorcinarene units and the eight water molecules are
located, respectively, on the sides and on the corners of a cube, and the aggregate is sealed by 60
(O-H....O) hydrogen bonding interactions. The 8 bridged-water molecules establish H-bonds with
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FIGURE 1 | Chemical drawing of the C-undecyl-resorcin[4]arene 1. Tube model of the hexameric capsule C, the undecyl chains have been omitted for clarity.

Chemical drawing of the model representing the hydrogen bond belt between the eight bridged water molecules and the six resorcinarene molecules, in blue the

bridging water molecule with one H-bond donating free valence.

the adjacent resorcinol OH groups and, in particular, four of
them act as double H-bonds donor (Figure 1, H2O drawing in
red) and single H-bond acceptor, saturating in this way their
H-bonding valence. The other four bridged-water molecules act
as single H-bond acceptor and single H-bond donor (Figure 1,
blu), remaining with one H-bond donating free valence. Cohen
et al. (Avram and Cohen, 2002b) demonstrated by NMR
diffusion experiments, that the capsuleC is self–assembled also in
solution when water-saturated chloroform or benzene is used as
a solvent.

The capsule C is able to accommodate eight benzene (or
chloroform) molecules inside its cavity (Avram and Cohen,
2002a,b, 2004; Shivanyuk and Rebek, 2003). Numerous studies
showed that C is also able to host in its π-electron rich
cavity, complementary guests by H-bonding and/or cation–π
interactions (Shivanyuk and Rebek, 2001; Avram and Cohen,
2002a; Yamanaka et al., 2004; Evan-Salem et al., 2006).
Tiefenbacher et al. demostrated that C behaves as a Brønsted
acid (Zhang and Tiefenbacher, 2013; Köster and Tiefenbacher,
2018). In particular, their studies revealed that the hexameric
aggregate has an estimated pKa value of about 5.5–6.0, a value
certainly not comparable with that of the single resorcinarene
unit. The acidic behavior of C is explained by the stabilization of
its conjugate-base due to the delocalization of its negative charge
over the phenolic groups and water molecules of the assembly.
QM calculations, recently reported by our group (La Manna
et al., 2018b) estimated a local pKa of≈2.5 for the bridged-water

molecules with one H-bond donating free valence (in blue in
Figure 1), while the mean pKa value of all OH groups of C is 6.1,
in agreement with the experimental datum.

Several reports clearly show that the mild Brønsted acidity
of C and its ability to stabilize cationic transition states, are
crucial factors for the catalytic activity of the capsule (Borsato
and Scarso, 2016; Catti et al., 2016; Gaeta et al., 2019). Thus,
amazing results have been reported in the last decade regarding
the catalysis of chemical reactions into the nanoconfined space
of the self-assembled capsule C, including the cyclization of
terpenes (Zhang and Tiefenbacher, 2015, 2019; Zhang et al., 2017,
2018, 2019; Pahima et al., 2019), the hydration of the alkynes (La
Sorella et al., 2016a), the carbonyl-olefin metathesis (Catti and
Tiefenbacher, 2018), the sulfoxidation of thioethers (La Sorella
et al., 2016b), the synthesis of substituted 1-H-tetrazoles (Giust
et al., 2015), the activation of C-F bonds (Köster et al., 2019), and
the iminium catalysis (Bräuer et al., 2017; LaManna et al., 2018a).
Recently, we showed that the capsule C acts as a nanoreactor
for a Friedel-Crafts alkylation of arenes and heteroarenes with
benzyl chloride (La Manna et al., 2018b) under mild metal-free
conditions. We showed that the bridged-water molecules with
one H-bond donating free valence exert a crucial role in the
activation of the C-Cl bond of benzyl chloride by H-bonding
interaction. Analogously, the H-bond donor abilities of the water
molecules of C have been exploited in the activation of β-
nitrostyrenes toward the Michael reaction using pyrroles and
indoles as nucleophiles (Gambaro et al., 2019).
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TABLE 1 | Optimization of reaction conditions for the synthesis of BHMs catalyzed by C.

Entrya Capsule T (◦C) 2a/3a Yield (%)b 4aa (%)c 5aa (%)c 6aa (%)c

1
No

30 1/1
— — — —

Yes 35 23 4 8

2
No

50 1/1
— — — —

Yes 43 30 4 9

3
No

10 1/1
— — — —

Yes 20 10 5 5

4
No

30 2/1
— — — —

Yes 60 40 5 15

5
No

30 4/1
— — — —

Yes 98 60 10 28

aReactions were performed on a 0.16 mmol scale using 2a (from 1 to 4 equiv.), 3a (1 equiv.), and capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h.
bOverall yield of all the isolated products. cYields of the isolated products by chromatography on column.

As a part of our research program focused on the extension of
the catalytic opportunities offered by the hexameric capsuleC, we
turned our attention to the synthesis of bis(heteroaryl)methanes
(BHM) (Palmieri et al., 2010; Shiri et al., 2010; Shiri, 2012).
BHM are fundamental building blocks in the synthesis of natural
and unnatural porphyrin derivatives (Cho and Lee, 1998; Burrell
et al., 2001; Laha et al., 2003). Moreover, they find applications
in several fields, ranging from medicine (Sivaprasad et al.,
2006; Awuah and You, 2012; Josefsen and Boyle, 2012) to
environment and industry (Kursunlu et al., 2012). In particular,
bis(indol)methanes (BIM) and bis(pyrrole)methanes, containing
two simple or two substituted heteroaryl moieties are molecules
with interesting biological properties (Sakemi and Sun, 1991;
Gunasekera et al., 1994; Fürstner, 2003; Bao et al., 2005). This
class of products is generally obtained by means of strategies
relying upon the use of Brønsted (Palmieri et al., 2010; Shiri
et al., 2010; Shiri, 2012) and Lewis acids (Ji et al., 2004; Guo
et al., 2009; Ling et al., 2019; Qiang et al., 2019; Wu et al., 2019),
strong Brønsted acids (Biaggi et al., 2006; Singh et al., 2011;
Lucarini et al., 2013; Norouzi et al., 2018; Tran et al., 2018), and
electrochemical methods (Du and Huang, 2018).

RESULTS AND DISCUSSION

Prompted by these considerations and considering our interest
in the development of novel organocatalytic strategies, we
attempted the synthesis of BHMs derivatives by reaction between

aromatic heterocycles and aldehydes and pyruvates in the
presence of capsule C as a Brønsted acid catalyst. At this regard,
as a model reaction for investigating the catalytic performance of
C, we chose the reaction between pyrrole 2a and ethyl pyruvate
3a in Table 1.

We started performing the reaction in Table 1 in the presence
of capsule C in water-saturated CDCl3 at 30◦C and with a 1/1
ratio of 2a/3a. It was found that the reaction proceeded smoothly
to afford preferentiallymeso-α,α-substituted dipyrromethane 4aa
in 23% yield, accompanied by a negligible amount of α,β-linked
dipyrromethane 5aa and monoalkylated adduct 6aa (entry 1,
Table 1). No evidence was detected of higher oligomers and
other side products. In contrast, when the reaction in Table 1

was carried out under the same reaction conditions but in the
absence of capsule C, no products could be evidenced (entry 1,
Table 1). This result encouraged us to carry out a study for the
optimisation of the reaction parameters in order to improve the
reaction efficiency.

Initially, the influence of the reaction temperature was
investigated (Table 1, entries 1–3). When the temperature was
decreased to 10◦C, both reaction efficiency and selectivity
dropped (entry 3, Table 1), while an increase in the temperature
had a little positive effect on the reaction outcome (entry 4,
Table 1). Next, we moved to examine the molar ratio of 2a/3a
on the yield of the reaction in Table 1. When an excess of
2a was used, an increase of the reaction efficiency in terms of
yield was observed while keeping the selectivity for the adducts
substantially unchanged, with the preferential formation of 4aa
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(entries 4–5, Table 1). These preliminary results indicated that
capsule C was capable to promote the reaction in selective and
efficient way and suggested that the reaction took place inside the
cavity of C.

In order to confirm this conclusion, and in accord to a
protocol previously reported by us and other groups (Bräuer
et al., 2017; La Manna et al., 2018a), we performed a series
of control experiments. In details, when the reaction between

TABLE 2 | Scope of the reaction between different pyrroles 2a–d and α-ketoesters 3a–f.

Entrya Capsule 2 3 Yield (%)b % (4xx)c % (5xx)c % (6xx)c % (7xx)c

1
No

2a 3a
— — — — —

Yes 98 60 (4aa) 10 (5aa) 28 (6aa) —

2d
No

2a 3b
— — — — —

Yes 99 90 (4ab) — — —

3
No

2a 3c
— — — — —

Yes 55 — — 55 (6ac) —

4
No

2a 3d
— — — — —

Yes 76 38 (4ad) 38 (5ad) — —

5e
No

2a 3e
— — — — —

Yes 64 — — — —

6
No

2a 3f
35 — — 35 (6af) —

Yes 99 — — 99 (6af) —

7
No

2b 3a
— — — — —

Yes 99 99 (4ba) — — —

8
No

2b 3f
38 — — 38 (6bf) —

Yes 98 — — 98 (6bf) —

9
No

2c 3a
— — — — —

Yes 50 — — — 50 (7ca)

10
No

2d 3a
— — — — —

Yes 65 — — 65 (6da) —

aReactions were performed on a 0.16 mmol scale using 2a–d (4 equiv.), 3a–e (1 equiv.), and capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h at 30
◦C.

bOverall yield of all the isolated products. cYields of the isolated products by chromatography on column. d9% of adduct of pyrrole with two molecules of pyruvate is present; see

Supporting Information. eDecarboxylated product is present, see Supporting Information.
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2a and 3a was conducted under the conditions reported in
Table 1 in the presence of C and of tetraethylammonium
tetrafluoroborate, which is a known competitive guest, no hint
of products were detected after 16 h at 50◦C. Under these
conditions, the ammonium guest occupying the cavity of capsule
C acts as an inhibitor. In addition, the 1H NMR spectrum of
the reaction mixture in the presence of tetraethylammonium
tetrafluoroborate in Figure S3 featured shielded signals at
negative chemical shifts values attributable to the cation inside
the cavity of C. Finally, no hint of products was observed when
the reaction reported in Table 1was performed in the presence of
DMSO (Figure S4), a hydrogen-bonding competitor solvent able
to disaggregate the capsule C.

With these results in hand, we next studied the generality of
the reaction with regard to both reactants (Table 2). Initially,
we evaluated the influence of the α-ketoester structure on the
reaction outcome. When α-ketoester 3c, bearing an isopropyl
group, was reacted with 2a in the presence of C (26 mol%),
the formation of the mono-alkylated adduct 6ac was observed
with a yield of 55% (entry 3, Table 2), while no hint of other
products was detected. Interestingly, under analogous conditions
the α-ketoester 3b (R = Me) reacted with 2a giving the
meso-dipyrromethane product 4ab (entry 2, Table 2) in 90%
yield. Probably, by increasing the steric encumbrance of the R
group of 3 from methyl (3b) to isopropyl (3c) the formation of
the di-pyrromethane was hindered. When 3d (entry 4, Table 2),
bearing a benzyloxy group, was used as substrate alongside 2a,
then the formation of the double alkylated adducts α,α and α,β
4ad and 5ad was observed in a 1/1 ratio and with a complete
loss of selectivity. Differently, using 3b (entry 2, Table 2) only
the α,α adduct 4ab was obtained. Interestingly, when 3f bearing
an electron-withdrawing trifluoromethyl group was used, the
reaction in Table 2was almost quantitative displaying a complete
selectivity for the mono-alkylated adduct 6af and no evidence of
bis-adduct or other side products (entry 6, Table 2). Finally, with
α-ketoacid 3e no reaction took place and a decarboxylate product
was recovered.

At this point, we examined effect of the substitution at
the pyrrole nitrogen atom on the reaction outcome. The
reaction between pyrrole 2b and 3a selectively delivered the
meso bis-adduct 4ba in high yield (entry 7, Table 2). Even
with pyrrole 2b, the reaction with 3f afforded to mono-adduct
6bf as the only reaction product (entry 8, Table 2), indicating
that the choice of the ketoester influenced the outcome of
the reaction.

When a more sterically demanding group was introduced
on the nitrogen atom of pyrrole, the yield of the reaction
in Table 2 decreased and the selectivity of the products was
influenced. In fact, when pyrrole 2c, bearing a N-benzyl group,
was used with 3a under the conditions reported in Table 2,
then the mono-adduct 6da was obtained selectively and in
good yield (entry 10, Table 2), whereas with N-phenyl pyrrole
2d we observed for the first time the selective formation of
a β, β-di-adduct (7ca) (entry 9, Table 2). When the reaction
was performed using indole derivatives (Table 3), only the
formation of di-pyrromethane β, β-9 was observed in high yield

TABLE 3 | Scope of the reaction with different indoles.

Entrya Capsule 8 3 Yield (%)b

1
No

8a 3b
—

Yes 86

2
No

8b 3b
—

Yes 90

3
No

8c 3b
—

Yes 88

4
No

8d 3b
—

Yes 85

5
No

8a 3d
—

Yes 80

aReactions were performed on a 0.16 mmol scale using 8 (4 equiv.), 3 (1 equiv.), and

capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h at 30
◦C.

b Isolated yield.

independently of the substituents present on the benzene and
pyrrole rings.

Themechanism proposed for the formation of α,α-substituted
dipyrromethane 4xx and monoalkylated adduct 6xx in the
nanoconfined space inside the capsuleC, is outlined in Scheme 1.
In detail, α-ketoester 3 is probably stabilized inside the capsule C
through the formation of a H-bonding interaction with a bridged
water molecule (Scheme 1).

Previously, we have already shown that pyrrole derivatives
are hosted inside the cavity of C (La Manna et al., 2018b).
At this point, an α-attack of pyrrole to the activated ketone
group of 3 occurs inside the capsule, leading to intermediate
I (Scheme 1) stabilized through H-bonding and cation···π
interactions, which is re-aromatizated to 6xx. On the basis of
the local acidity (pKa of ≈ 2.5) of the bridged water molecules
with H-bond donating free valence, the product 6xx can be
protonated inside the capsule C (II in Scheme 1) and converted
to carbocation III by losing a water molecule. III undergoes
an α-attack of a new pyrrole molecule to give the carbocation
IV which is stabilized by cation···π interactions. This latter is
rearomatizated to 4xx, by losing the β-proton and recovering
the electroneutrality of the capsule C. The mechanism proposed
in Scheme 1 is corroborated by the finding that α-ketoester
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SCHEME 1 | Mechanism proposed for the formation of the products 4xx and 6xx in the nano-confined space inside the cavity of C.

TABLE 4 | Optimization of reaction conditions for the reaction between 2a and

10a.

Entrya Capsule T (◦C) 2a/10a Yield

(%)b
11a (%)c 12a (%)c

1
No

50◦C 1/1
— — —

Yes 38 34 4d

2
No

50◦C 2/1
— — —

Yes 60 54 6

3
No

50◦C 4/1
— — —

Yes 97 87 10

4
No

25◦C 4/1
— — —

Yes 20 18 2d

aReactions were performed on a 0.16 mmol scale using 2a (from 1 to 4 equiv.), 3a

(1 equiv.), and capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring

for 16 h. bOverall yield of all the isolated products. cYields of the isolated products by

chromatography on column. dThe column gave an inseparable mixture with regioisomer

and the yield was calculated by integration of the respective 1H-NMR signals of the

regioisomers in the isolated fraction.

3f, bearing an electron-withdrawing trifluoromethyl moiety in
α-position to ketone group, in the presence of C and 2a or
2b gives the mono-alkylated adduct 6af and 6bf in almost
quantitative yields, while no evidence of di-adduct was detected.
Probably, under these conditions, the presence of the electron-
withdrawing trifluoromethyl group disfavours the formation
of carbocation IV, which would have a positive charge on
the carbon atom directly bonded to the electron-withdrawing
trifluoromethyl group.

On the basis of these results and in order to extend the
scope of the reaction between 2 and carbonyl compounds in
the presence of C, we studied the procedure with a different
carbonyl compound such as benzaldehyde 10a (Table 4). When
the substrates 2a and 10a were mixed in 1/1 ratio in the presence
ofC in water-saturated CDCl3 then α,α-dipyrromethane 11awas
obtained in 34% yield with a regioselectivity ratio of 8.5/1 (entry
1,Table 4) with respect to the α,β-isomer 12a. Interestingly, when
the 2a/10a molar ratio was progressively increased to 2/1 and
to 4/1 then the efficiency of the reaction was improved with a
54 and 87% yield of 11a, respectively (entries 2 and 3, Table 4).
Interestingly, no hint of product 11a and 12awere detected in the
reaction mixture in the absence of capsule C. The lowering of the
reaction temperature from 50 to 25◦C (entry 4 in Table 4) gives
rise to a drop in the yield of 11a. Once the reaction conditions
were optimized (Table 4), the substrate scope was then evaluated
in order to determine the generality of the reaction.
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TABLE 5 | Scope of the reaction with different pyrroles 2a–d and aldehydes

10a–j.

Entrya Capsule 2 10 Yield(%)b % (11)c % (12)c

1
No

2b 10a
— — —

Yes 70 70

(11ba)e
—

2
No

2c 10a
— — —

Yes — — —

3
No

2d 10a
— — —

Yes — — —

4
No

2a 10b
— — —

Yes 99 90

(11ab)

9 (12ab)

5
No

2a 10c
— — —

Yes 98 96

(11ac)

2 (12ac)d

6
No

2a 10d
— — —

Yes 98 88

(11ad)

10

(12ad)

7
No

2a 10e
— — —

Yes 95 93

(11ae)

2 (11ae)d

8f
No

2a 10f
— — —

Yes 98 96 (11af) 2 (12af)d

9f
No

2a 10g
— — —

Yes 98 96

(11ag)

2 (12ag)d

10
No

2a 10h
— — —

Yes 97 95

(11ah)

2 (12ah)d

(Continued)

TABLE 5 | Continued

Entrya Capsule 2 10 Yield(%)b % (11)c % (12)c

11
No

2a 10i
— — 6 (12ai)

Yes 97 91 (11ai)

12
No

2a 10j
— — —

Yes 85 76

(11aj)d
9 (12aj)d

aReactions were performed on a 0.16 mmol scale using 2a–d (4 equiv.), 10a–j (1 equiv.),

and capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h

at 50◦C. bOverall yield of all the isolated products. cYields of the isolated products

by chromatography on column. dThe column gave an inseparable mixture with the

regioisomer and the yield was calculated by integration of the respective 1H-NMR signals

of the regioisomers in the isolated fraction. e1H NMR spectrum on crude reaction mixture

showed presence of other species obtained after chromathography purification as a

complex and inseparable fraction not characterized. fThese reactions were performed

under stirring for 48 h at 50◦C.

TABLE 6 | Scope of the reaction between indole 8e and various aldehydes 10a,

b, d, e, j.

Entrya Capsule Yield (%)b

1
No

10a
—

Yes 97 (11ea)

2
No

10b
—

Yes 99 (11eb)

3
No

10d
—

Yes 98 (11ed)

4
No

10e
—

Yes 98 (11ee)

5
No

(10j)
—

Yes 98 (11ej)

aReactions were performed on a 0.16 mmol scale using 8e (4 equiv.), 10 (1 equiv.), and

capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h at 50
◦C.

b Isolated yield.
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As regards the effect of the substitution at the pyrrole nitrogen
atom, we found that the introduction of a more hindering
group, such as a phenyl or benzyl group, caused a complete loss
of reactivity (entries 2–3, Table 5). Instead, the reaction with
unsubstituted pyrrole 2b proceeded with a small decrease in yield
but preserving the selectivity for adduct 11a (entry 1, Table 5).
Interestingly, under the conditions reported in Table 5 no hint of
mono-adduct heteroaryl methane was observed. Successively, we
investigated the generality of the reaction between 2a and several
aromatic aldehydes bearing electron-donating or -withdrawing
groups (Table 5).

The protocol was found to be tolerant to a variety of aromatic
aldehydes 10a–j, independently by the electronic nature and
position of the substituents on the aryl group, affording α,α-
adducts 11 in high yields and excellent regioselectivities. In fact,
the double attack took place in a completely regioselective way to
give 11 as almost the only product with a negligible amount of the
corresponding isomer 12. No evidence of monoalkylated adduct
was observed. Additionally, when the protocol was extended
to the N-methyl indole 8e, the reaction proceeded smoothly
and the adduct 13 was obtained as the only product in high
yield (Table 6).

CONCLUSIONS

The resorcinarene hexameric capsule C is able to catalyze
the reaction between pyrroles or indoles and α-ketoesters or
aldehydes for the formation of bis(heteroaryl)methanes. The
reactions take place in the nanoconfined space inside the capsule
C. The observed results suggested its double catalytic function: C
can act as H-bond catalyst for the initial activation of the carbonyl
functions and as a Brønsted acid catalyst for the dehydration

of the intermediate alcohol. Generally, in the presence of C

the formation of the α,α-bis(heteroaryl)methanes occurs with
excellent yields and regioselectivity with respect to the α,β-
or β,β-regioisomers.
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