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Abstract: Trans-resveratrol, the most well-known polyphenolic stilbenoid, is found in grapes and
accordingly in wine and it is considered to be beneficial for human health, especially towards
the aging-linked cell alterations by providing numerous biological activities, such as anti-oxidant,
antitumoral, antiviral, anti-inflammatory, neuroprotective, and platelet anti-aggregation properties.
Although trans-resveratrol is a promising molecule, it cannot be considered as a drug, due to its
weak bio-availability and fast metabolism. To overcome these weaknesses, several research teams
have undertaken the synthesis of innovative trans-resveratrol derivatives, with the aim to increase
its solubility in water and pharmacological activities towards cell targets. The aim of this review is
to show the chronological evolution over the last 25 years of different strategies to develop more
efficient trans-resveratrol derivatives towards organism physiology and, therefore, to enhance various
pharmacological activities. While the literature on the development of new synthetic derivatives is
impressive, this review will focus on selected strategies regarding the substitution of trans-resveratrol
phenyl rings, first with hydroxy, methoxy, and halogen groups, and next with functionalized
substituents. The effects on cell functions and dysfunctions of interesting resveratrol analogs will be
addressed in this review.

Keywords: resveratrol derivatives; synthesis strategies; substituents phenyl rings; biological targets;
efficacy towards diseases

1. Introduction

Polyphenolic compounds produced by vine belong essentially to flavonoids, stilbenoids, and
anthocyanins, and are distributed in leaves, berries (seeds and skin), and lignified tissues. In the
plant, they either play the role of phytoalexins (flavonoids and stilbenoids) [1,2] or are responsible
for the color in leaves, flowers, and berries (anthocyanins) [3]. In addition, in each series, at least one
polyphenolic compound provides health-promoting effects on humans. [4–6]. We were interested
in trans-resveratrol (1, Figure 1), the leader in the polyphenolic stilbenoid series, present not only in
vine, grapes, and, accordingly, in wine [7], but also in numerous other plants, including the Asiatic
plant, Polygonum cuspidatum [8]; edible plants, such as peanuts [9]; and red fruit [10]. Accordingly,
trans-resveratrol is part of our daily diet and this is a precious chance for our health because
this molecule provides numerous biological activities, such as anti-oxidant [11], antitumoral [12],
antiviral [13], and anti-inflammatory activities [14]. In addition, trans-resveratrol extents longevity [15],
induces cell pro-differentiation [16,17], is a neuroprotective agent [18], and acts against platelet
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aggregation [19]. Cell targets have already been identified, such as membrane receptors, tyrosine
kinases, phosphatases, sirtuins, and p53 anti-oncogene [20]. In addition, the interaction of resveratrol
with tyrosyl transfer-RNA (tRNA) synthetase (TyrRS) may induce poly(ADP-ribose) polymerase 1
(PARP1) activation in cell nuclei in mice [21]. These various biological activities are often related to the
anti-oxidant nature of resveratrol, itself explained in part by the ease of transfer of hydrogen atoms
from the three phenolic groups to cellular species to act on adverse effects [22].
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resveratrol derivatives that has been synthesized over the last 25 years is quite impressive. Over time, 

Figure 1. Structure of trans-resveratrol (1).

Since its discovery in 1940 [23], trans-resveratrol has been the subject of more than 20,000
publications that describe the different methods to obtain it (extraction from plants [24], synthetic
ways [25], enzymatic syntheses [26]) and its numerous biological activities [27]. So, the regular
consumption of food and moderated wine containing this health-beneficial molecule may be an
effective way to prevent some diseases. In contrast, trans-resveratrol cannot be considered directly
usable as a drug because of its weak bio-availability due to its low water solubility [28]. To overcome
these difficulties, several research teams have undertaken the synthesis of new trans-resveratrol
derivatives in the aim to enhance bio-availability and pharmacological activities. Previously, several
reviews have stated a part of these studies by insisting either on synthetic schemes and biochemical
activities [29] or on the pharmacological activities of new stilbene derivatives only [30–33]. Hence,
this review will specifically focus on the chronological evolution for the last 25 years of different
strategies followed by researchers to develop very efficient trans-resveratrol derivatives exhibiting
various pharmacological activities. As in the case of trans-resveratrol, the numerous publications
regarding synthetic trans-resveratrol derivatives are impressive. Indeed, a large panel of structural
modifications could be achieved on the parent molecule, such as addressing the nature, the number,
and the position of the phenyl rings’ substituents, the nature of the aryl ring, i.e., phenyl vs replacement
of a phenyl ring by another aromatic one, the replacement of the C=C double bond by a diazo or
imine bond, or an isosteric heterocyclic ring. It turns out that it is difficult to list all the derivatives
and their diverse biochemical activities in a single review. Hence, this review will specifically focus
on pharmacological improvements resulting from structural modifications performed at the phenyl
ring substituents.

2. Which Strategies to Modify trans-Resveratrol

The molecular structure of trans-resveratrol (1, Figure 1) is a stilbene core made of two phenyl
rings linked by a double bond. Three hydroxy groups are present in both phenyl rings in position
3, 4′, and 5 (Figure 1). Their pKa values in aqueous medium are 9.8, 8.8, and 11.4, respectively [34].
The sensitive point of the molecule is the double bond separating the two phenyl rings that can
be easily isomerized under light, knowing that isomer E of resveratrol is the biological active
form [35]. Apart from this, trans-resveratrol is a non-toxic and air stable molecule, in the form
of a white powder it has a melting at 261 ◦C; is soluble in ethanol, acetone, and tetrahydrofuran;
and poorly soluble in water [36]. So, the chemical transformations of trans-resveratrol can be easily
considered; they essentially take place at the phenolic functions that are transformed into ether
or ester functions [37]. However, the access to new derivatives from trans-resveratrol itself sets
limits to create innovative bio-active polyphenolic analogs. Fortunately, the essential stilbene core of
resveratrol is easily accessible by different chemical methods, including Perkin [38], Wittig [39,40],
Horner-Wittig-Emmons [41], Heck [39], and Suzuki [42] reactions (Figure 2). Each approach starts
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from different starting materials, which are usually commercially available and most of them are cheap.
So, the library of trans-resveratrol derivatives that has been synthesized over the last 25 years is quite
impressive. Over time, some new derivative structures have become more complex in order to move
towards more selective and effective biological activities.
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3. Phenyl Rings Substitution of trans-Resveratrol by Hydroxy, Methoxy, and Halogen Groups

The biological activities of natural trans-resveratrol derivatives in vines, such as pterostilbene (2),
piceatannol (3), and resveratrol oligomeric analogs as trans-ε-viniferin (4, Figure 3), are comparable to
that of resveratrol (1) [43–47]. Thus, several research groups have used such bio-active molecules as
an inspiration to synthesize numerous hydroxylated or/and methoxylated stilbenes [48–50].
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Since the early 2000s, most research works have focused more specifically on non-natural
resveratrol derivatives bearing hydroxy and/or methoxy groups and/or halogen atoms as substituents.
Lately, a review summarized the manifold therapeutic activities of some of these polyphenolic
derivatives [32]. In the conclusion, the authors of this review pointed out the fact that a
structure-activity relationship study was missing. Indeed, it is difficult to predict pharmacological
activities of this series of derivatives because changing one substituent may affect the biochemical
property. In addition, as in the case of trans-resveratrol, one derivative may provide several biochemical
properties. Thus, in this part, we will focus our discussion on a few examples of this type of resveratrol
derivatives to illustrate the fact that it is often necessary to synthesize a large number of hydroxylated,
methoxylated, and/or halogenated stilbenes to find good candidates for a particular therapy disease.
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Increasing the number of hydroxy groups on the resveratrol phenyl rings is already a good
starting point to enhance pharmacological activities [48]. Thus, the two pyrogallol groups in
3,4,5,3′,4′,5′-hexahydroxystilbene (5, Figure 4) synthesized by Murias’s group appear to provide
various activities for this resveratrol derivative, such as COX-2 inhibition correlated with a docking
approach [51]; anti-oxidant activity through ortho semi-quinones formation [52], which triggers
cytotoxic activity against breast cancer cells mediated by induction of p53 and downregulation of
mitochondrial superoxide dismutase [53]; and oxidative stress in cancer cells [54]. Furthermore,
resveratrol derivative 5 is a potent Human Immunodeficiency Virus (HIV-1) inhibitor at micromolar
range [55].
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In contrast, 3,4,5,4′-tetramethoxystilbene or DMU-212 (6, Figure 5) is only substituted by methoxy
groups and may provide antitumoral activities, as described by different research groups. By selectively
targeting the mitochondria of transformed lung fibroblasts, W138VA, DMU-212 (6) inhibited the cell
growth (IC50 = 0.5 µM) compared with resveratrol (IC50 = 50 µM) [56]. Apoptotic induction and
metastatic inhibition in melanoma cells by DMU-212 was highlighted too [57]. In in vivo experiments,
injection of DMU-212 in male Wistar rats (rat hepatocarcinogenesis) allowed Murias’s group to prove
that compound 6 may modulate the activation of NF-κB, AP-1, and STAT3 transcription factors [58].
Given the absence of hydroxy groups, an antioxidative activity cannot be invoked and the cell signaling
pathway should be highlighted. By this way, it was found that another derivative bearing only methoxy
groups, the trans-3,4′,5-trimethoxyresveratrol (7a, Figure 5), inhibited cancer cell growth (HeLa cells) by
inhibiting tubulin polymerization [59]. In addition, the cis-3,4′,5-trimethoxyresveratrol (7b, Figure 5)
was a very potent cell proliferation inhibitor and acted at the tubulin cholchicin binding site [60].
From these three last derivatives, 6, 7a, and 7b, the presence of an additional methoxy group can
modify the inhibition potencies, while the configuration of the double bond did not change it.
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These two opposite examples of trans-resveratrol derivatives 5 and 6 show that hydroxy and
methoxy groups may afford specific chemical properties, such as an improvement of the lipohilicity
and bio-availability, promotion of interactions with amino acids in the receptor pocket [61,62], and
induction of semi-quinones formation [52], which may induce specific pharmacological properties.
Therefore, the combination of these two oxygenated groups, to which halogen atoms are possibly
added, widens even more the field of pharmacological properties of these stilbenes. For example,
Csuk’s team reported the biological activities of more than 100 stilbenes substituted with hydroxy
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and/or methoxy groups and/or fluorine atom only [63–67]. Throughout Csuk’s five publications,
it appears that compounds 8–12 (Figure 6) provided antitumoral activity [64], acetylcholinesterase
and butyrylcholinesterase inhibitions [65], anti-oxidant activity [66], and oxidant stress decrease in
Caenorhabditis elegans [67].Diseases 2018, 6, x 5 of 14 
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Generally, synthetic trans-resveratrol derivatives are tested for their potential therapeutic
properties and rarely for their antimicrobial activities. However, among the library of stilbenoids
of Csuk’s team, 25 compounds were evaluated for their antibacterial and antifungal activities [63].
They were divided in three series 13a, 13b, and 13c in which the R substituent is a fluorine atom,
or/and a hydroxy or a methoxy group (Figure 7). It turned out that position 4 with respect to the
hydroxy group in compounds 13a was more favorable than position 2 or 3 of the same group in
compounds 13b and 13c.
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In another study, 4-hydroxy-4′-methoxystilbene (14a, Figure 7) provided no antimicrobial activity
towards two grapevine pathogens (Botrytis cinerea and Plasmopara viticola), while compounds 14b
and 14c (Figure 7), both isomers of 14a, showed an activity superior to those of trans-resveratrol and
pterostilbene [68]. In contrast, in the case of antitumoral tests, the results are reversed: On the one
hand, stilbene 14a appeared to be a better candidate than trans-resveratrol for the inhibition of human
colorectal tumor cells SW480, and on the other hand, isomer 14b showed a weaker activity than the
parent molecule [69].
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4. Phenyl Rings Substitution of trans-Resveratrol by Functionalized Groups or
Bioactive Moieties

The selected examples mentioned in the previous part show too many possibilities to dream up
new trans-resveratrol derivatives as well as difficulties to predict their pharmacological activities.
Since the late 2000s, several studies have shown that, while keeping the basic structure of
trans-resveratrol, it remains possible to develop interesting derivatives starting from resveratrol
(bioactivities of which are well defined) and adding judicious moieties, enabling enhancement of the
bio-availability or to increase a particular biochemical property. As a result, therapeutic activities of
these trans-resveratrol derivatives are better targeted.

Few examples of trans-resveratrol derivatives directly substituted on one of the aromatic carbon
atoms have been described. Indeed, these substitution reactions cannot be carried out directly
on trans-resveratrol itself and their syntheses require several chemical steps. However, a hybrid
compound 15 named resveratrol fatty alcohol or RFAs (Figure 8) reported in 2007 results from
the combination of a fatty alcohol and trans-resveratrol, which have neuroregenerative activity
and neuroprotective features, respectively [70]. Cumulative effects at both parts in conjugate 15
provided a higher bio-activity than its parent moieties, polyphenol and fatty alcohol. In an inventive
study [71], the trans-resveratrol structure was preserved and both ortho positions of 4-hydroxy group
(responsible of anti-oxidant activity) were substituted with bulky electron donating groups in 16a and
16b (Figure 8). Adding two bulky substituents to the trans-resveratrol structure allowed enhancement
of the anti-oxidant activity while strongly reducing interferences with estrogen and ArH receptors [71].
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The presence of chemical functions, such as ethers, carboxylic acids, esters, and amides, on
the trans-resveratrol core may modify its lipophilic character and induce mechanisms in the cellular
environment, which leads to the provision of better biological activities. The addition of various
functions or alkyl chains could be carried out directly by O-acylation or O-alkylation reactions of
commercially available trans-resveratrol. Therefore, the simple resveratrol aliphatic acid 17 (Figure 9) is
more soluble in water than the parent molecule and inhibits the expression of TLR-2 [72]. Pterostilbene
aliphatic amine 18 (Figure 9) was considered as a multitarget-directed agent for the therapy of the
Alzheimer’s disease because it induced inhibition, although at a micromolar range of Aβ aggregation,
and displayed moderate cholinesterase inhibition activity and acceptable inhibitory activity towards
MonoAmine Oxidase (MAO) [73].
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The bio-availability of trans-resveratrol was enhanced upon its transformation into tri-esters
19a and tri-ethers 19b (Figure 10) [74]. Improvement of this feature in these compounds led to
a therapeutic interest (melanogenesis inhibition) and cosmetics application. Mono and diesters
resveratrol derivatives 20a and 20b (Figure 10) were recently evaluated for their anti-oxidant activity
and their possible use in food and biochemical systems [75]. While referencing to Biasutto’s work [76],
the authors suggested that upon crossing the cell membrane barrier, the esters were hydrolyzed thus
releasing resveratrol, which acts as an antioxidant agent.
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In the past ten years, the multi-targeted designed drugs (MTD’s) paradigm (that emerged
especially in the fields of neurodegenerative diseases and cancers [77]) has consisted in designing
hybrid compounds from at least two molecules providing complementary therapeutic activities.
Hybridization of a rich bio-active molecule, such as trans-resveratrol, with a known pharmacophore
has allowed researchers to better target biological activities. Given the good reactivity of phenolic
functions, this concept has been easily applied to synthesize hybrid compounds. O-alkylation of one or
two phenolic functions with a PPARα agonist, such as fenofibric acid (21, Figure 11), led to compounds
22a and 22b (Figure 11), lowering triglycerides in hyperlipidemic mice and blood glucose levels in
KKAy mice, respectively [78].
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1,3,4-Oxadiazole is a heterocyclic moiety with potential antitumoral activity if this one is part of
a molecular bioactive structure. Therefore, hybridization of 1,3,4-oxadiazole and trans-resveratrol by an
amide or an ester bond allowed Murty’s group to develop an inventive series of drug-like molecules,
including 23a and 23b (Figure 12), that provided a dual therapeutic effect towards human cancer cell
lines, SiHa, MDA-MB-231, and PANC-1, which turned out to be higher than that of polyphenol [79].Diseases 2018, 6, x 8 of 14 
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The presence of a carboxylic group in nonsteroidal anti-inflammatory drugs, such as ibuprofen (24,
Figure 13), is responsible for gastrointestinal toxicities. In contrast, trans-resveratrol has a protective
effect against gastric mucosa damage. Therefore, linking this polyphenol and ibuprofen together
by esterification reaction led to a hybrid compound 25 (Figure 13), which may solve gastrointestinal
problems while keeping the anti-inflammatory activity of the ibuprofen moiety [80].
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To mitigate the weak bio-availability and the unfavourable pharmacokinetic properties
of trans-resveratrol, various bio-compatible resveratrol-loaded particles have been successfully
developed [81]. Another way is to synthesize resveratrol derivatives bearing a moiety capable of
promoting the crossing of the membrane barrier. In 2012, Sciuto’s team studied the interactions
of two hydrophobic O-phosphorylresveratrol derivatives 26a and 26b (Figure 14) with a DMPC
(1,2-Dimyristoyl-sn-glycero-3-phosphocholine) model membrane [82]. 3-O-phosphorylresveratrol
derivative (25a) turned out to insert into the hydrophobic core of the membrane and diffused across it,
while isomer 26b was preferentially bound to the membrane surface and did not cross the membrane
barrier. These results were correlated with the fact that the antitumoral effect of 26a against DU-145
prostate cancer cells was higher than that of 26b.
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The same research team achieved the direct coupling of a lipophilic group (related to lipids
membrane) to resveratrol derivatives 26a and 26b to afford amphiphilic resveratrol lipoconjugates
27a and 27b (Figure 15) [83]. These innovative trans-resveratrol derivatives had greater anticancer
activity against the neuroblastoma SH-SY5Y cell line than the free parent molecule. Lately, a mixture
of O-phosphorylresveratrol derivatives 26b and amphiphilic resveratrol lipoconjugate 27b was shown
to be efficient to abolish hIAPP amyloid growth and membrane damage in diabetes mellitus type
II pathology [84]. Both trans-resveratrol derivatives act in a complementary way to fight amyloid
poration phenomena and lipid extraction by amyloid fibrils.
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5. Discussion

The main goal of research teams in designing new resveratrol derivatives is the improvement of
one or several biological activities of the parent molecule. These improvements involve not only the
way to “dress” the stilbene scaffold, but also to address both the pharmacokinetics and bioavailability
aspects. In this review, we only considered stilbene derivatives whose modifications relate to the
nature, the number, and the position of aromatic rings’ substituents. We showed the chronological
evolution over the last 25 years of different chemical strategies followed by researchers in the aim to
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develop efficient trans-resveratrol derivatives towards various pharmacological activities. It should be
noted especially the evolution of derivatives bearing non-functionalized phenyl rings’ substituents
to derivatives designed according to the multi-targeted designed drugs (MTD’s) paradigm. Because
the number of publications related to such trans-resveratrol derivatives is impressive, the list of these
relevant cited papers is far from exhaustive. However, among the selected examples in this review, the
following conclusions may be raised based on the points summarized below.

First, even the number and position of the 9 hydroxy groups on resveratrol phenyl rings play
an important role in the various activities of the polyphenols, and the presence of methoxy groups
and/or halogen atoms may lead to interesting properties. Thus, the increase of the number of hydroxy
groups on the resveratrol phenyl rings (Figure 4) enhances COX-2 inhibition, anti-oxidant activity,
and cytotoxic effect against breast cancer [51–54]. Stilbenes 8–12 (Figure 6) bear both the hydroxy
and methoxy groups and fluorine atoms that provide antitumoral activity [64], acetylcholinesterase
and butyrylcholinesterase inhibition activities [60], and anti-oxidant activity [66]. In the other hand,
in compound 14a, the position 4 of the hydroxy group is less favorable than the positions 2 or 3 in
compounds 14b and 14c (Figure 7) for antibacterial and antifungal activities [68] while the presence of
the methoxy group and/or fluorine atom on the other phenyl ring of stilbene 13a (Figure 7) reverses
this result [69]. When 4-hydroxy group is surrounded by two bulky groups in stilbenes 16a and 16b
(Figure 8), the anti-oxidant activity is enhanced, while strongly reducing its interferences with estrogen
and ArH receptors [71]. However, the tetra-methoxylated stilbene DMU-212 (6, Figure 5) leads to an
increase in antitumoral activity by apoptotic induction [56–58].

Thus, as a result of so many complex results, it appears that applying the multi-targeted
designed drugs (MTD’s) paradigm may be a very promising concept to better identify judicious
stilbene derivatives with interesting pharmacological activities. Indeed, innovative coupling of
trans-resveratrol with a fatty alcohol provided resveratrol fatty alcohol or RFAs (15, Figure 8) bearing
both neuroregenerative and neuroprotective features [70]. This hybrid compound may be considered
as the premise of a large series of stilbenes designed according to the multi-targeted designed drugs
(MTD’s) paradigm. Thus, the O-alkylation of one or two phenolic functions with a PPARα agonist,
such as fenofibric acid (21), leads to hybrid compounds 22a and 22b (Figure 11), lowering triglycerides
in hyperlipidemic mice and blood glucose levels in mice [78], respectively. Coupling ibuprofen (24)
with resveratrol solves the side effect problem because the resveratrol moiety 25 (Figure 13) protects
the gastric mucosa against the acidity of the anti-inflammatory drug [80].

In a last point, the lipophilic character of resveratrol is a crucial parameter to increase its biological
activities. It can be modulated in one way or another depending on the nature of the added chemical
functions (ethers, carboxylic acids, esters, amides, etc.) to the trans-resveratrol core. For example,
a series of resveratrol aliphatic acids, including compound 17 (Figure 9), synthesized in 2008 proved to
be more soluble in water than the parent molecule and, therefore, the binding affinity of 17 to human
serum albumin was 40-fold higher [85]. It was recently shown that the mono-O-phosphorylresveratrol
derivatives 26a and 26b (Figure 14) have a hydrophobic character. As a result, their interaction
with DMPC model membrane turned out to be good [82]. In contrast, tri-esters 19a and tri-ethers
19b (Figure 10) have higher lipophilic characters than resveratrol and may be considered as good
candidates for skin-whitening cosmetics [74].

Biochemical mechanisms and lipophilic aspects of resveratrol derivatives are overall well
highlighted in the literature cited in this review. However, as it was mentioned in a recent review [33],
we noticed that most of the biological tests carried out on resveratrol derivatives bearing hydroxy,
methoxy, and halogen groups have been done on cultured cell lines (in vitro) or on isolated enzyme,
but rarely in vivo and never through clinical studies. However, in vivo experiments with resveratrol
derivatives bearing functionalized substituents have been carried out, but the pharmacokinetics aspects
were not mentioned [78].
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6. Conclusions

To get a better understanding of the biological effects of natural trans-resveratrol either from vine
grape derived-beverages or from diet, the use of resveratrol derivatives appears very useful for the
identification of cell targets to help maintain the best healthy conditions, e.g., to prevent diseases,
such as stroke, cancer, and infection, and to increase longevity. Some resveratrol derivatives may allow
differentiation of candidates with or without anti-oxidant properties. From a pharmaceutical point of
view, the discovery of innovative resveratrol analogs is also very relevant to determine effective and
safe dosage. Moreover, this requires more in vivo experiments to understand the metabolism of the
derivatives and effects on whole organisms in terms of benefits and possible toxicity.
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