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Abstract
The special nature, volume and broadness of biomedical literature pose barriers for automated classification methods. On

the other hand, manually indexing is time-consuming, costly and error prone. We argue that current word embedding

algorithms can be efficiently used to support the task of biomedical text classification even in a multilabel setting, with

many distinct labels. The ontology representation of Medical Subject Headings provides machine-readable labels and

specifies the dimensionality of the problem space. Both deep- and shallow network approaches are implemented. Pre-

dictions are determined by the similarity between extracted features from contextualized representations of abstracts and

headings. The addition of a separate classifier for transfer learning is also proposed and evaluated. Large datasets of

biomedical citations are harvested for their metadata and used for training and testing. These automated approaches are still

far from entirely substituting human experts, yet they can be useful as a mechanism for validation and recommendation.

Dataset balancing, distributed processing and training parallelization in GPUs, all play an important part regarding the

effectiveness and performance of proposed methods.

Keywords Classification � Indexing � Word embeddings � Thesauri � Ontologies � Doc2Vec � ELMo � BERT �
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1 Introduction

In the light of recent public health emergencies, the sheer

volume of biomedical literature is continuously increasing

and puts excessive strain on manual cataloguing processes:

For example, the US National Library of Medicine expe-

riences daily a workload of approximately 7000 articles for

processing [19].

Current research in the automatic indexing of literature

is constantly advancing and various approaches are

recently proposed, a fact that indicates this is still an open

problem. These approaches include multilabel

classification using machine learning techniques, training

methods and models from large lexical corpora as well as

semantic classification approaches using existing thematic

vocabularies. To this end, the Medical Subject Headings

(MeSH) is the de-facto standard for thematically annotat-

ing biomedical resources [28]. At the same time, natural

language processing (NLP) meets a rejuvenation owing to

the success and milestone achievements of related state-of-

the-art machine learning models.

In this paper we propose and evaluate various approa-

ches for automatically annotating biomedical articles with

MeSH terms. We are interested in the performance of

current state-of-the-art algorithms based on contextualized

word representations and word embeddings, including

Doc2Vec [14], ELMo [23] and BERT [3]. We suggest

producing vectorized word and paragraph representations

of articles based on context and existing thematic annota-

tions (labels). Consequently, we seek to infer the most

similar terms retrieved by the model. We evaluate and
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compare both pretrained and transfer learning models for

multilabel classification (see Sect. 3.4). Moreover, we

combine these algorithms with structured semantic repre-

sentations in Web Ontology Language format (OWL), such

as the implementation of the MeSH thesaurus in OWL

Simple Knowledge Organization Systems (SKOS) [30].

We investigate the effect and feasibility of employing

distributed data manipulation for dataset preprocessing as

well as dataset balancing. Finally, we examine the scala-

bility of training for transferring learning occurring within

a pretrained language model to an attached classifier.

A preliminary version of this paper appears in [11]. In

addition to the original paper we have built an additional

multilabel classification model based on ELMo embed-

dings. We also investigate additional transfer learning

language models including BERT.

We evaluate our models, including vector space word

models (Doc2Vec) and perform a comparative analysis of

results. Depending on the model evaluated and the total

number of classes, our experiments yield results with F-

score values ranging from 0.34 to 0.77. These outcomes

improve or are on par with current state of the art, espe-

cially considering the small number of classes for multil-

abel classification employed in current benchmarks. For

example, the GLUE benchmark [6] includes the Corpus of

Linguistic Acceptability (COLA) dataset and the down-

stream task is to classify each sentence in only two classes,

depending on whether it is a grammatical English sentence.

When MeSH headings are considered, classification scores

range between 0.61 and 0.69 (e.g. [17, 33]).

We also report comparison between pretrained model

and transfer learning for downstream tasks such as classi-

fication, for which there are currently mixed indications.

We conclude that transfer learning through pretrained

models is preferred for our problem domain and that

appending a fully connected classification layer to a pre-

trained model can substantially improve the classification

accuracy.

For the sake of performance and fast dataset consoli-

dation, in our work data comprises only of papers’ titles

and abstracts. This is in contrast to the full text of the

publications which is utilized in related work (e.g. [2, 33]).

As a result, training lasts only for a few hours, a process

which would be useful for online inference and constantly

updating data.

To the best of our knowledge, ontology-based MeSH

indexing using deep contextualized representations, such as

ELMo and BERT embeddings for titles and abstracts plus

MeSH labels themselves, has not been investigated before.

Further, this is the first comparative evaluation of perfor-

mance between the various inference modes of word

embedding models for MeSH classification.

The rest of this paper is organized as follows: in Sect. 2

we review relevant literature in the field of biomedical text

classification; in Sect. 3 we summarize current word

embedding approaches as the main background and iden-

tify the major inference modes that can be used with lan-

guage models; Sect. 4 presents our methodology and

approach, by outlining the structure and use of the MeSH

vocabulary, the notion of cosine similarity for classification

and the indexing procedure designed. Section 5 describes

the datasets used and explains the design, configuration and

implementation of the various models we have used to

perform automated classification. Optimizations such as

dataset balancing, and distributed pre-processing are also

discussed. Section 6 contains the results of the various

experiments and their comparative analysis, while Sect. 7

outlines our conclusions.

2 Related work

A variety of studies have attempted to tackle with the

problem of automatic MeSH indexing. To this end, they

mainly combine word embeddings with classifiers. Typical

cases are discussed next.

MeSH Now [17] indexes MeSH terms in three steps:

obtains an initial list of MeSH candidates, ranks all main

headings and selects top-ranked terms. To do this, it uses

k-NN and Support Vector Machine (SVM) algorithms, thus

achieving a 0.61 F-score.

DeepMeSH [20] attempts to examine firstly the fre-

quency characteristics of the MeSH terms with deep

semantic representation called D2V-TFIDF and secondly

the semantics of the citations with a classification frame-

work. Candidate MeSH headings are rated by a k-NN

classifier. This system achieves an F-score of 0.63.

Another approach [25] for solving this issue uses the

cosine similarity metric and a representation of the the-

saurus as a graph database. It starts with the use of Elastic

Search to convert texts into vectors, then with the cosine

similarity metric it identifies the most similar texts. By

deriving the terms from these texts and calculating the

frequency of occurrence in conjunction with similarity, an

evaluation function which classifies documents is defined.

This implementation yields a F-score of 0.69.

The BioWordVec [34] system combines sub-word

information from biomedical texts with MeSH terms in two

steps: firstly, it constructs MeSH graph data and samples

the MeSH term sequences and, secondly, it employs the

FastText sub-word embedding model to learn the dis-

tributed word embeddings based on text sequences and

MeSH term sequences. In this way, the value of the F-score

metric is improved to 0.69 and 0.72 for CNN and RNN

models respectively.

938 Neural Computing and Applications (2022) 34:937–950

123



MeSHProbeNet [32] is a self-attentive deep neural net-

work, which is able to predict a set of MeSH terms for a

biomedical article. It consists of three main components: a

Bidirectional RNN where the full body of text is led to, a

self-attentive MeSH probe and a Multi-view classifier at

the output. It achieves micro F-score of 0.69.

FullMeSH [2] takes advantage of the availability of full

text of publications from PubMed Central and assigns the

entire 29K MeSH headings. This model, starting from

segments of an article, extracts their representations with

Word2Vec, calculates the candidate terms and finally

selects the top ranked ones with AttentionCNN, achieving

a micro F-score of 0.67. Training takes 5 days on GPU-

powered hardware.

BertMeSH [33] uses BERT in the first layer to obtain

deep contextual representations for each word. Then, the

next layer concatenates all the outputs to represent a given

article. Next, AttentionCNN uses multilabel attention to

capture the most relevant parts of an article’s full text with

each label. Finally, it uses fully connected layers to obtain

the predicted score for all 29K MeSH headings, achieving

an F-score of 0.69. However, it relies on full text rather

than title and abstract for training; the latter takes 4 days on

GPU-powered hardware.

3 Word embedding models

3.1 Vector space models for natural language

Vector space models are widely used to represent textual

information. Particularly in information retrieval, the Term

Frequency—Inverted Document Frequency (TF-IDF) is a

well-known method for the computation of real-valued

vectors representing documents and queries. However, for

general language processing tasks, most traditional meth-

ods end up with very sparse matrices of high dimension-

ality [1]. In addition, inverted indexing does not account

for the semantic similarity of text elements, but rather

focuses on their common co-occurrence in text corpora.

On the other hand, recent techniques based on neural

networks attempt to capture the meaning of a word or

sentence based on the distributional hypothesis [5]: a word

can be known by the company it keeps. These techniques

encode text elements into vectors of some constant

dimension N, known as word embeddings [15]. Neural

networks are one tool for this implementation using a

training process. They manage to adjust the vector repre-

sentations of words to close values, when they refer to

conceptually close words. Thus, these vectors will be

characterized by a high probability of similarity.

In the following, we briefly review some major models

and architectures in this category, that have had significant

impact in contemporary NLP tasks, including word and

paragraph classification. These models are used as the basis

for our approach to biomedical literature indexing. More-

over, we examine the various inference approaches taken

by these models, which affect our methodology and are

also evaluated in our experiments.

3.2 Shallow neural network

Shallow neural networks are simple architectural structures

limited to a maximum of two fully interconnected levels.

However, this lack of structural complexity does not

account for weak computational capacity. These models

can successfully tackle simple and well-structured prob-

lems, in the field of natural language processing. In many

cases, part of the architecture will produce the word rep-

resentations vector. As observed in Fig. 1, a structure is

directly involved in word embedding techniques. Specifi-

cally, at the input layer, one-hot vectors represent each

word of the body text, the output layer includes the pre-

diction, while at the hidden layer the vector word repre-

sentations are produced as the connection weights.

Considering specific solutions, the start has been made

with the Word2Vec algorithm [18] where unique vector

word representations are generated by means of shallow

neural networks and the prediction method. Its explicit

extension Doc2Vec (Document to Vector) [14] is capable

of computing unique vector representations for entire

sentences or paragraphs.

A related method is the Global Vectors (GloVe) algo-

rithm [22], which manages to transfer the words into a

vector space by making use of an enumeration method,

efficiently leveraging statistical information. Then, the

FastText algorithm [10] achieves not only the management

Fig. 1 Shallow neural network architecture for word embedding

models
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of a large corpus in optimal time but also better word

embeddings due to the use of syllables.

3.3 Contextualized representations

Training a shallow neural network would produce the

single best embedding for each word. However, the same

word can often have multiple meanings depending on its

use. This can usually be resolved by looking at the word’s

context but cannot be captured into a single vector. To

accommodate for this polysemy more complex structures

are required—consisting of many layers (more than 3) [15].

In this case, these models are able to solve complex

problems efficiently, but at the same time they have

increased computational power requirements. The multiple

levels which make up such a structure, with information

passing through many layers, require specialized training.

Nevertheless, this does not prevent their involvement in the

field of natural language processing, with the creation of

new word vector representations. Such an architecture

related to word embedding is illustrated in Fig. 2. We can

observe one-hot vectors for each word at the input layer,

the embedding layer straight after that, and then the

intermediate layers which eventually lead to the output

layer or otherwise to the prediction.

Common representatives in this category include the

ELMo algorithm [23], which uses deep neural networks,

LSTMs, and different vector representations for a word the

meaning of which it differentiates; also BERT [3], which

also generates different representations of a word accord-

ing to its meaning, but instead of LSTMs it uses

bidirectional transformer elements [31]. Finally, GPT-2

[24] is a large-scale unsupervised language model. It uses

transformers and has the ability to generate synthetic text

samples. Also, it can be applied to tasks such as machine

translation, summarization, question answering and others.

The above algorithms are summarized in the following

Sable 1.

3.4 Inference approaches

All architectures discussed above can be used to produce

suitable embeddings for words or sentences that attempt to

capture their underlying semantics. The question then

arises as to how we can tap into these embeddings to

produce meaningful results, such as inferences for down-

stream tasks, including classification, entity recognition,

relation extraction and so on. There are mostly three

approaches appearing in the literature:

3.4.1 Pretrained model

This approach corresponds to utilizing an existing

embeddings model that has been trained in advance, ‘as is.’

In this way, features out of inputs are extracted, which, in

the case of language models, are the values of the vectors

that embed words and sentences. Because of this, this

method is also referred as feature-based in [3]. An example

of this is ELMo [23]. Usually a model is trained with large,

unlabeled word and sentence datasets, sometimes special-

izing in different domains, such as biomedicine (e.g.,

BlueBERT [21]). The model receives no further training.

The output used is an average pooling of the word

embedding vectors produced or the output of a single

summarizing token or the output of some intermediate

layers in case of deep architectures. For example, in the

case of BERT, authors report that best results are achieved

by concatenating the output of the last 4 layers [3]. Else-

where it is claimed that it is better to use the output of the

second to last hidden layer or the hidden state of the first

Fig. 2 Deep neural network architecture for word embedding models

Table 1 Models and architectures used for word embeddings

Algorithms Year Researchers ANN Vector per

Word2Vec 2013 Mikolov Shallow Word

Doc2Vec 2014 Mikolov Shallow Word and Paragraph

GloVe 2014 Stanford – Word

FastText 2016 Facebook – Syllable

ELMo 2018 Allen Institute Deep Character

BERT 2019 Google Deep Sub-word

GPT-2 2019 OpenAI Deep Sub-word
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token, provided the model has been finetuned first (https://

github.com/hanxiao/bert-as-service). Nevertheless, it

appears that the selection of an appropriate output remains

subjective and task dependent.

3.4.2 Finetuning

In the finetuning approach, a single layer is added to the

pretrained model, and all parameters are jointly finetuned

on a downstream task. Fine tuning involves a much smaller

dataset than the one used for pretraining. Therefore,

although all parameters are updated, it can be considered a

lightweight version of the transfer learning approach dis-

cussed below. This is different than the previous approach

in that the entire resulting model (pretrained ? shallow

layer) gets trained once more, but usually with fewer

training data. In addition, the output layer added allows to

tailor the output for the specific task, e.g., classification,

sentence similarity etc. However, there are mixed results

on the suitability of finetuning vs. the pretrained model

approach, especially for sentence similarity tasks [8].

3.4.3 Transfer learning

Finetuning retains some of the benefits of the pretrained

model approach because it gets trained with only so much

additional training cycles. However, its added value

depends solely on a single simple layer which actually

finetunes the model for the downstream task at hand. On

the contrary, the transfer learning approach embodies the

very idea of transfer learning: an already trained network

with all weights configured is reused as a basis for training

another model [7]. This way, many underlying word and

text features are already learned, and the new model need

not train from scratch.

Usually an additional dense layer is appended to the

original pretrained model. The latter’s weights are frozen,

and training commences to configure the parameters of the

dense layer. This often ends up with a final SoftMax layer

or sigmoid layer, depending on whether it is about single-

label multiclass classification or multilabel classification,

respectively.

This is different to finetuning, because: (a) the model is

trained with more data, (b) a dense layer (deeply connected

NN) is used instead of a single shallow layer, (c) the

original pretrained model parameters get frozen, whereas

they do get updated in finetuning. It also differs from the

pretrained approach: An entire dense layer is attached, and

additional training takes place, while in the pretrained

approach the model is used ‘as is.’

4 Classification methodology

Manual indexing of biomedical literature is a hard and

time-consuming task. It usually takes 2–3 months to

incorporate new articles and the cost for each article is

approximately $10 [17].

Our methodology for automated indexing is as follows:

First we consider a formal vocabulary to draw our classes

from. This is offered by the Medical Subject Headings

(MeSH), an official thesaurus which holds some important

properties, such as a large number of classes, which dif-

ferentiate from current classification approaches. Then we

look into an efficient procedure to determine which MeSH

terms or classes are appropriate for each paper and offer a

concrete example and workflow. The design and built of

our inference models are discussed in the next section.

4.1 MeSH ontology

Medical Subject Headings (MeSH) is a controlled vocab-

ulary of biomedical terms in a hierarchical structure that is

produced and maintained by the United States National

Library of Medicine (NLM). MeSH vocabulary is used for

indexing journal articles and books in the field of life sci-

ences. It is used by MEDLINE/PubMed article database

and NLM’s catalog of book holdings. It is also exploited by

ClinicalTrials.gov registry [27] to classify which diseases

are studied by trials registered in ClinicalTrials.

MeSH is a large and dense thesaurus consisting of

29,917 concepts (called Descriptors) as of 2021 [28].

Descriptors are used to index publications for topical

headings. In addition, a set of Qualifiers are defined, whose

aim is to confine the subject to a particular aspect of the

main headings. All terms in MeSH are hierarchically

organized with most general terms higher in the taxonomy

than most specific terms. Moreover, MeSH headings are

also organized in a hierarchical tree, where a term can

appear in different subtrees. The MeSH tree is composed of

16 main branches (subtrees). Therefore, any term can have

some broader relative terms and several narrower terms, as

shown in Fig. 3.

The indexing of records in MEDLINE is made by using

appropriate MeSH terms, each of which is in the format of

combining one main heading and one or multiple Quali-

fiers. For example, the use of qualifier ‘drug therapy’ to the

subject heading ‘Osteoporosis,’ will lead to the retrieval of

document records that discuss drug therapies for the

treatment of osteoporosis.

The MeSH vocabulary is available in different for-

mats—like XML, OWL/RDF—and has been implemented

in SKOS [30]. Figure 3 shows an overview of the MeSH

structure as well as an example of this ontological
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implementation that we tap into to retrieve the structure

and properties of the MeSH headings.

4.2 Cosine similarity and classification

Cosine similarity is a widely used method for retrieving

information by checking the similarity of elements such as

words, sentences, and even whole texts. It accepts two

vectors as arguments and returns their similarity value,

which is a real number belonging to the closed space

between zero and one. The higher this value, the better the

similarity between them.

Our current hypothesis is that thesauri terms that match

the meaning of a paper will demonstrate a higher degree of

similarity than other, arbitrary terms. The closer a term is

to a body of text, the higher its similarity score is to be

expected.

However, subject describing terms are indeed not arbi-

trary; rather, they are contained in a finite, although dense,

set, those of MeSH descriptors. They also often represent

closely related and fine-grained aspects of the domain of

interest. This means that first, the problem dimensionality

greatly expands with the total number of terms available

for classification. Second, the embeddings produced by any

model should likewise be extremely fine-grained, for the

model to be able to capture the semantic differences

between adjacent terms. Because hardly is this a fact with

existing pretrained language models, already trained on a

different dataset or different tasks, we already conjecture

that at least a model finetuning or the addition of a dense

classification layer may be necessary to produce more

accurate results.

In any case, the result is a list of terms hopefully cor-

responding to the subjects of the paper per se. This

indexing problem is therefore one of multiclass classifi-

cation. In addition, it is also multilabel, markedly an even

harder task.

4.3 Approach for biomedical resources
classification

Given the various inference modes discussed in Sect. 3, in

our approach we consider and compare both using pre-

trained models and transfer learning, with the addition of a

dense classification layer.

In the first case, we rely on the cosine distance to

determine the semantic similarity between the embeddings

produced by the model and the various MeSH terms. The

idea of thresholding has been thoroughly investigated

previously by the authors [13]. By considering a certain

similarity threshold above which values are classified as

positive, we can improve the quality of thematic sugges-

tions. In Sect. 6 we present evaluation results for various

values of the decision threshold. The models we build and

compare for this scenario include: training Doc2Vec for

scratch; using a pretrained ELMo model; and using a

pretrained BERT model.

In the second case, we attach a multilabel classifier to a

pretrained ELMo architecture. We train this classifier with

a biomedical dataset. Decisions are considered positive

when the classifier output exceeds 0.5 for a particular class

(MeSH term). Further, we relax this requirement by con-

sidering the top scoring classes, no matter whether they

exceed this threshold or not.

To prepare our training and test datasets we collect

metadata from bibliographic resources coming from open-

access repositories, such as PubMed [29], EuropePMC [4]

and ClinicalTrials [27], together with their manually

indexed MeSH terms. Particularly for the Doc2Vec model

training, we also take into account the MeSH ontology to

facilitate learning MeSH terms that may appear infre-

quently or not at all in the biomedical datasets. The sco-

peNote field for each term within the ontology contains a

brief explanation about the term and can be used as a

training paragraph. In addition, we take care to train the

Fig. 3 An example of a MeSH heading and its relations
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model as evenly as possible for each MeSH term that is, the

training dataset to be equally balanced for each class. We

confirm experimentally the positive effects balancing has

for evaluation measures (precision and recall) in Sect. 6.

We parse the metadata record for each item and retrieve

the title and abstract of the item (body of text). This body

of text is then given as input to each model and its vector

similarity or decision score is computed against the list of

MeSH terms available in the vocabulary. In the example

shown in Fig. 4 a paper with https://doi.org/10.1148/radiol.

2020200905 related to research about the COVID-19

pandemic is fed to our model. As a result, the model comes

up with a set of suggestions together with their score.

MeSH terms such as D001185: ‘Artificial Intelligence’ are

included in the manual annotations of the item and are

correctly predicted by the model. It is worth noting how-

ever that the model can make also suggestions that are not

included in the current expert-indexed terms but are

otherwise closely related to the topic of the publication.

This is evident for example with the term

D000658:‘Amoxicillin’ which, although not picked by the

human indexer at the time, it is an antibiotic widely dis-

cussed for the treatment of COVID-19.

For evaluation purposes, we should compare the output

of our model to some baseline, i.e. the ground truth. The

ground truth is offered by the manual annotations inserted

by expert indexers, that are included in our reference

PubMed dataset, described in Sect. 5.

5 Model building for biomedical indexing

In this section we explain the design, configuration and

implementation of the various models we have used to

perform automated classification. In accordance to the

arguments made in Sects. 3 and 4, two main methods are

considered: (a) directly using a model (pre-) trained for our

problem domain, where we configure models based on

Doc2Vec, ELMo and BERT and (b) transfer learning

employed in a (pre-) trained model as input to a classifier

(dense layer), fully trained on the specific biomedical

classification task, where we reuse the pretrained ELMo

architecture. Therefore, a total of 4 different models are

being implemented and evaluated. First, however, we

describe the assembly and characteristics of initial data for

training and testing, identify their sources, and present the

data preparation and balancing procedure.

5.1 Dataset

A dataset from the PubMed repository is used, with records

including biomedical citations and abstracts. NLM is

responsible for this material being updated daily with new

insertions, revisions and deletions. All of these updates are

incorporated into a basic file with 30 M records once a year

(in December) and they are made freely available to

researchers.

The data are available in XML format [26]. A sample

PubMed record is displayed in Fig. 5. The elements finally

used for training are ArticleTitle, AbstractText that repre-

sent the body text; and, from the MeshHeadingList, the

DescriptorName with MajorTopicYN = ‘‘Y’’ or the De-

scriptorName that includes at least one QualifierName with

MajorTopicYN = ‘‘Y’’. The information contained in the

DescriptorName is a unique ID of the format, e.g.,

Fig. 4 A specific item gets subject annotations and their similarity

scores are computed Fig. 5 Sample from a PubMed article metadata record
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D007069 and it represents the labels of the text (thesaurus

terms).

Another source is EuropePMC, which also provides free

access to full texts as well as 5M other related resources.

Furthermore, the ClinicalTrials repository also contains

359K records of biomedical research studies. We consoli-

date records from these different sources aiming at vari-

ability and dataset diversity.

Each record in the dataset contains information related

to biomedical literature such as the title and the summary

of the article, as well as a list of subject headings from the

MeSH thesaurus. The selection and integration of the

appropriate MeSH heading is carried out by human

indexers, who usually choose 10–12 terms to describe a

publication. However, in our test datasets, only few are

present, typically 1 or 2 or 3 (Table 2), because (a) we only

select terms designated as major topics, (b) we conduct

experiments with fixed number of total classification labels,

thus ignoring some annotations and (c) the balancing pro-

cess may remove some annotations to keep uniform

occurrence of terms.

5.2 Data preprocessing

5.2.1 Using a distributed file system

For the collection of data from the various repositories we

first follow a serial approach [12]. For example, PubMed

offers a File Transfer Protocol (FTP) service which pro-

vides access to 1015 zip files (until December 2019). Each

file is inserted into the preprocessing stage individually and

as a result the completion of the dataset construction shows

some time delays. Moreover, any disconnections to the

repositories may add additional delays.

Algorithm 1: Dataset preparation procedure 
input: XML files from repository  
output: two CSV files 

Step 1. for each file ∈ repository do
Step 2. connect to FTP server 
Step 3. get file to local disk 
Step 4. store file as line in RDD 
Step 5. delete file from local disk 
Step 6. end for
Step 7. parse file - useful information is extracted 
Step 8. convert RDD to DataFrame 
Step 9. write useful information to CSV files  

Another approach, aimed at reducing preprocessing

time, is the use of a distributed infrastructure, the Apache

Spark framework. The addition is that now all the infor-

mation in the XML files is stored in a DataFrame. In detail,

we convert each XML file, per line, into a Resilient

Distributed Dataset (RDD). Then, after parsing the file, we

convert the RDD into a DataFrame, from which we finally

extract all the information into CSV files (Algorithm 1). In

this way, by transferring part of the processing and

extraction of useful information into a distributed infras-

tructure, we speed up the data preprocessing process.

5.2.2 Dataset balancing

The next step in the dataset preparation is the adequate

coverage of the MeSH thesaurus. That is, the model must

learn each term with a sufficient and fixed number of

examples. The aim is to avoid bias toward terms with many

samples compared to others with only a few. Therefore,

when a term is integrated into the set, the number of its

samples is limited by an upper limit (Algorithm 2). If there

are fewer samples, the term is ignored. If there are more,

the search is stopped. Finally, there may not be full cov-

erage of the thesaurus, as shown in Table 2. However, the

terms contained are represented by a sufficient and uniform

number of samples, resulting in a balanced dataset for

training.

Algorithm 2: Dataset balancing procedure 
input: two CSV files, thesaurus terms 
output: two CSV files with balanced dataset

Step 1. for each term ∈ thesaurus do
Step 2. compute # of term occurences in CSV
Step 3. if number  100 then
Step 4. collect first 100 samples
Step 5. add samples in two lists 
Step 6. end if 
Step 7. end for
Step 8. write lists to CSV files

5.3 Pretrained models: Doc2Vec, ELMo and BERT

5.3.1 Doc2Vec

With this model, we embed words and paragraphs into a

lower-dimensional vector space using a shallow neural

network. There are no relevant pretrained weights available

Table 2 Details of dataset

Unbal Test Bal Test

Total items 1.0 M 13 K 100 K 10 K

Total annotations 3.2 M 41 K 140 K 14 K

Average # terms per item 3 3 1.4 1.4

Thesaurus coverage rate 70% 25% 4% 4%

944 Neural Computing and Applications (2022) 34:937–950

123



for Doc2Vec, so we train our own. Main concept is to have,

along with the word vectors, at least one vector for the

paragraph. All these vectors participate in the training

simultaneously, therefore they gradually adapt to their final

state. To do this, we used the Distributed memory (PV-

DM) method of Doc2Vec. Specifically, given a set of

words and the paragraph id, it predicts the next word. To

see the effect of balancing, we train and evaluate two

separate models, one with the balanced dataset and another

with the unbalanced dataset (Table 2).

By examining the structure of the model, it is observed

that it commences with the input which has a size equal to

the size of the dictionary. The full body of text is fed to this

layer, with each word represented by a ‘‘one hot’’ vector.

Next, the hidden layer, which includes 100 nodes with linear

activation functions, has the same size as the vector of the

word representation. At the output layer, which has a size

equal to the dictionary, that is 34,024, the nodes have soft-

max activation function. Finally, with training the meaning

of words is captured and put into the corresponding vector.

The training of the Doc2Vec model is carried out with

the help of the Gensim library. Extensive experiments led

to the selection of the following parameters: train epochs

100, size vector 100, learning parameter 0.025 and mini-

mum number 10. The text body, just before being directed

to the input of the model, passes the Gensim utils.sim-

ple_preprocess method with a view to convert words into

tokens. At the same time, one-character words are

removed, as well as those which maintain less than 10

appearances in the text, thus creating better and faster

vector representations.

Tests have shown that when there are only a few sam-

ples per term, a greater number of epochs can compensate

for the sparsity of the training samples. In order to avoid

this situation, a balanced dataset was constructed and used.

This model, with the adopted weights of the resulting

synapses, essentially is a dictionary. In total, it contains the

complete set of words from the text used in the training, the

vectors of these words, and finally a vector for each full

text, respectively.

5.3.2 ELMo

With this model, we move words to the vector space using

contextualized representations. Specifically, taking into

account the fact that a word can have a different meaning

depending on its position in the text, we extract different

vectors for each case. This task is completed by utilizing a

deep bidirectional language model (biLM) already trained

on a specific biomedical large text corpus, such as PubMed.

Particularly, this pretrained model is openly available by

AllenNLP (https://allennlp.org/elmo) and is included in

two files, a JSON options file and a hdf5 weight file, which

incorporate the structure and the weights of the model,

respectively.

Concerning the model’s structure [23], it uses 2 biLSTM

with 4096 units and 512-dimension projections. It has also

connections from the first to the second layer. The context

representation uses in order, 2048 character n-gram con-

volutional filters, followed by two highway layers and a

linear projection with 512 output dimensions. As a result,

the model provides three representation levels for each

input token, including the character input. In contrast,

traditional word integration methods such as Word2Vec

give only one layer of representation for tokens.

The model is trained for 10 epochs on domain specific

data, specifically 10M abstracts of PubMed articles [9]. For

the output, we have selected the linear weighted combi-

nation of the 3 ELMo layers.

5.3.3 BERT

BERT is another model which, just like ELMo, can learn

different embeddings for different senses of the same word,

depending on its context. In contrast to ELMo, it does not

operate on the raw characters level but on subwords (called

tokens). In addition, it does not rely on LSTMs for bidi-

rectional encoding, but uses a transformer—an attention-

based mechanism with positional encodings to represent

word positions. BERT and its variants currently outperform

other architectures in recent NLP benchmarks (https://

gluebenchmark.com/leaderboard).

We use a specific BERT model pretrained on PubMed

abstracts, known as BlueBERT [21]. Its training corpus

includes approximately 4000 M words extracted from

PubMed. Its base version comprises 12 hidden layers of

stacked transformers, each of 768 hidden units, 12 attention

heads and 110M parameters in total. As a result, the output

embedding size for each token is 768.

The BERT model receives a fixed length of sentence as

input: for out-of-vocabulary tokens, there is a limit of 512.

Following the inference approaches discussed in Sect. 3, in

our experiments we adopt the following strategy: We

refrain from using the last layer hidden-state of the first

token as output, because the model is not finetuned and is

considered not a good summary of the semantic content of

the input (https://huggingface.co/transformers/model_doc/

bert.html#tfbertmodel ). Rather, we concatenate the output

of the last 4 hidden layers, producing a tensor of (max 512,

3072) dimension and perform average pooling on the

sentence token embeddings. Next, we compute similarity

between the 3072-sized vector of an item’s body of text

and the 3072-sized vector of the MeSH term embedding.

To find the MeSH embedding, we use both the term pre-

ferred label (the name of the term) as well as its scope note,

which is usually larger and more descriptive. The scope
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similarity should have a major weight in determining a

semantic relation, but label-only similarity can also offer

some boost in case of unambiguous terms. The final sim-

ilarity score is therefore computed as:

0:7 � scope similarityþ 0:3 � label similarity

5.4 Transfer learning for building
an embeddings classifier

For implementing the transfer learning approach, a pre-

trained ELMo model is utilized. Vectors produced by the

pretrained model are led to a single dense layer, while an

output layer is responsible for making label predictions.

This structure, with the help of training, utilizes the pri-

mary knowledge of the representations by transferring

learning captured by the ELMo model to the attached

classifier. To construct our classifier, we use the Keras

library and get the set of weights and parameters of an

ELMo model trained on the 1 Billion Word Benchmark,

available at TensorFlow Hub.1

The overall architecture of the ELMo-based classifier is

shown in Fig, 6. First, we have the input with the body of

text. This is passed to the pretrained ELMo model, which

produces a vector of size 1024 for each word in the input

text. The next layer performs average pooling of the ELMo

word embeddings, thus producing a vector representation

of the entire text. Then, there is the dense classification

layer, containing 256 nodes with the ReLU activation

function. Finally, the output layer contains sigmoid units,

one for each label, for our multilabel classification task.

During training, a Tensor Flow session is used with the

following parameters: epochs 10 and batch_size 10,

defining in this way a limit to the number of training

epochs, as well as to the packages transferred. The pre-

trained model parameters remain frozen and the weights of

the dense and output layer are updated accordingly. After

the completion of the training, the final weights are stored

so that the system is immediately available for utilization

in various tasks.

6 Comparative evaluation

6.1 Evaluation methodology

Metrics commonly used in categorization problems are

precision, recall, and F-measure. For the application of

these metrics the existence of pre-categorized data also

constitutes a required condition, a process performed by

experts. In detail, for the evaluation of each system

described in the previous section, measurements are exe-

cuted after examining the entire test set. Thus, having the

total values, such as total number of relevant, suggested

and correct terms we can compute an average for each

metric. For our purposes, a single information need is

defined as a single-term match with an item (1–1) and we

report the mean value of these metrics over all these

matches, i.e. they are micro-averaged.

To define these metrics, let yli and byli the ground truth

and the prediction for sample i and for some label l

respectively. Their domain is limited to the set {0, 1} while

the entire label set is denoted by L. To derive the final value

for each metric, the enumeration method, of these binary

elements, is applied in the following formulas.

Precision (P) checks how many terms suggested by the

system are correct, i.e. they coincide with the terms sug-

gested by the experts.

Pmicro ¼
P

i

P

l2L y
l
i � byli

P

i

P

l2L by
l
i

ð1Þ

Recall (R) checks how many terms proposed by the

system are contained in the list of terms suggested by the

experts, i.e. how many correct terms the system can

retrieve.

Rmicro ¼
P

i

P

l2L y
l
i � byli

P

i

P

l2L y
l
i

ð2Þ

As a general evaluation metric, we also report on the F-

measure (F), which is the harmonic mean of precision and

recall. This is obtained immediately after calculating pre-

cision and recall by applying the following formula:

Fmicro ¼ 2 � Pmicro � Rmicro

Pmicro þ Rmicro

ð3Þ

Experiments and results presented in the following

evaluate the 4 different models discussed in Sect. 5, either

pretrained or utilizing transfer learning for classification.

6.2 Experimental results of pretrained models

6.2.1 Doc2Vec

The behavior of the Doc2Vec model is examined by

comparing its performance against both the balanced and

unbalanced test sets. In each case the classification task is

to correctly identify correct MeSH labels out of a total of

1000 available terms, a demanding multilabel assignment.

A body of text (title and abstract) is given as input to the

model and a vector representation is created. The model

then searches for the most similar vectors in the vector set

it has already incorporated from the training. At most 10

suggestions are produced by the model. The threshold
1 https://tfhub.dev/google/elmo/3.
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value reported is the similarity score above which sug-

gestions are classified as positive.

Best results are observed when considering only the first

3 suggestions for the unbalanced dataset (rank@3); and

only the first suggestion for the balanced dataset (rank@1).

This is consistent with the average number of terms

appearing in the respective test sets, which is 3 and 1.4,

respectively. Figure 7 shows the micro-averaged F-score

for each case. Obviously, the balanced model demonstrates

better scores that its unbalanced counterpart. This is

because none of the 1000 terms involved gets any training

bias; conversely, no term gets underfitted.

6.2.2 ELMo

In order to evaluate the ELMo approach, a total of 1000

samples are used, distributed evenly between 100 unique

labels (10 samples per label). This test set is also balanced

and significantly reduced compared to the corresponding

test set of the previous model. We have used a reduced

number of classes due to the increased computing resour-

ces required by the model for vectors inference. We also

examine the model’s behavior with only 10 classes, still

above the current practice in state-of-the-art models.

A body of text (title and abstract) is given as input to the

model. The output is the average pooling of the ELMo

embeddings for each word in the body of text. Vectors for

the MeSH terms are likewise computed, using the term

label plus its scope note as input. The model then searches

through the set of the term vectors to find those that are

most similar to the generated one. Best scores are achieved

when considering only the first prediction (rank@1), i.e.

the most similar term produced, because the test set in both

10- and 100-labels cases contains on average no more than

two terms for each item. For the same reason, P and R are

reported equal or close enough (Table 3).

6.2.3 BERT

As with ELMo, also for the pretrained BERT model we

measure effectiveness with 100 and 10 distinct MeSH

labels. The model returns the best matching terms, as

described in Sect. 5.3, along with their similarity score.

Table 3 compares retrieval effectiveness of the various

pretrained models.

For our problem domain it turns out that pretrained

ELMo outperforms BlueBERT, with an almost double F-

score. A possible reason is that the deeply bidirectional

architecture of the BERT transformers vs. the concatena-

tion of the left-to-right and right-to-left representations of

ELMo is not effective in this setting: The text corpus

comprises highly specialized biomedical writings in a

single language (English). Therefore, concept ambiguity,

for which deep bidirectional transformers are all about, is

rare. In addition, BERT may be hampered by a higher rate

of out-of-vocabulary words in respect to its training set.

ELMo, operating on the character level, is much less

affected by this situation.

Overall, it appears that Doc2Vec performs best, as it

yields acceptable scores even for 1000 distinct classifica-

tion labels, for which it has been specifically trained in a

supervised manner. In contrast, in the two previously pre-

trained models the training was carried out with an unla-

beled dataset, without considering MeSH labels

specifically. We conclude that some finetuning for the

MeSH classification task and the different number of labels

is necessary for the other models to achieve their potential.

6.3 Experimental results of transfer learning
model

Our ELMo-based classifier implements the transfer learn-

ing approach described in Sect. 5.3, as opposed to using a

Fig. 6 A multilabel classifier

built by concatenating a

pretrained ELMo model with a

dense classification layer of

sigmoid activations
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trained model directly. We train the classifier on the

10-labels and 100-labels dataset and evaluate precision and

recall on the corresponding test sets (Table 2). We use 0.5

as a decision threshold, meaning that values with sigmoid

output[ 0.5 are classified as positive.

Figure 8 demonstrates the effect of increasing the (bal-

anced) training set size in each case. When only a small

number of labels is selected (10), metrics improve, but

generally the classifier performs well even when trained

with 100 samples per class. Where it is favored is when

allowing 100 different classes: Results considerably

improve with the larger dataset, but performance is overall

low, due to the high dimensionality. When considering

1000 classes, training could not complete beyond 100

samples per label because of out-of-memory errors.

To compensate for potential underfitting and ill-cali-

bration of the classifier outputs, a common approach is to

consider other thresholding techniques [16]. In our case,

rather than using any single cutoff, we proceed with a fixed

number of the highest outputs, i.e. we consider the sigmoid

probability as a similarity score. Given that the ground

truth for the 100-label dataset contains mostly one label per

item, we take only the 1st highest value as positive and

compute precision (P@1) and recall (R@1). These values

are shown in the charts of Fig. 9, in comparison with the

scores achieved with the 0.5 thresholding method.

We notice a slight improvement in F-score in the case of

10 or even 100 different classes, thus validating this choice

(Fig. 9, model trained with 100 samples per label). How-

ever, for the 1000-label test set, precision and recall sig-

nificantly drop. This is a clear indication of severe

underfitting, because for a dimensionality that high, only

100 samples per label are insufficient. In addition, the

output values are quite below the decision threshold of 0.5

and only few suggestions pass this mark, leading to better

precision scores in the first case (0.5 cutoff).

A performance summary of the 4 different implemented

models is shown in Table 4 for various classification car-

dinalities. For completeness, we report the F-score of every

model in all cardinalities we could produce results.

Apparently, the ELMo classifier, having the benefits of

transfer learning for embeddings as well as the discrimi-

native power of a dense classification layer, outperforms

other methods. However, this comes at the cost of separate

training with 100 or 1000 samples per label. At the same

time, only the ‘lightweight,’ shallow-network Doc2Vec

approach could produce meaningful results for 1000 labels

classification, while its scores for fewer labels are up-close.

6.4 Scalability

Training can be a particularly demanding process in com-

puting resources as it depends directly on the architecture

of the model. This is a valid reason why it is recommended
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Fig. 7 Doc2Vec F-score results for various values of the decision

threshold regarding a balanced and an unbalanced dataset
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Table 3 Precision, recall and F-score for the 3 pretrained approach

models with increasing number of labels

Labels P R F-score

Doc2Vec 1000 0.41 0.29 0.34

ELMo 10 0.70 0.70 0.70

100 0.31 0.30 0.30

BERT 10 0.42 0.42 0.42

100 0.16 0.13 0.15
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to avoid training language models for scratch and adopt the

benefits of pretrained models.

In the case of shallow neural networks, such as Doc2-

Vec, processing power requirements are limited. Training

can be completed without significant delays, even with 100

epochs. However, even in the case of transfer learning,

such as with our ELMo Classifier, the requirements change.

The increased complexity of these models along with the

need for sufficient training, increase demands in computing

power. Consequently, the utilization of parallel processes is

required in order to improve training time as well as to

complete the effort itself.

There are cases of executing algorithms with extended

datasets and/or many epochs which can lead to either

prohibitive completion times or even interruption of their

execution. For example, training the ELMo Classifier

model with a small set of 1000 samples (10 labels with 100

samples each) takes about 20 minutes, on average com-

modity hardware (Intel i7, 2.6 GHz, 4-core CPU with

16 GB RAM).

Based on this concern, we perform experiments on high-

performance infrastructures with a large number of

graphics processing units (GPUs). The GPUs allow for

performing calculations at a much higher rate than con-

ventional CPUs. We use a server with two Intel Xeon

processors, including 12 cores, 32 GB of RAM and Nvidia

V100 GPU. The V100 has 32 GB of memory and 5120

cores and supports CUDA v. 10.1, an API which allows for

the parallel use of GPUs by machine learning algorithms.

With the execution transferred to the GPU, the 1,000-

sample dataset takes only 30 s to be trained. This faster

execution (40x) ensures completion of experiments and can

assist scalability with larger datasets that would otherwise

be impossible to achieve.

Figure 10 presents training times for the ELMo Classi-

fier variants in a logarithmic scale. We notice that it is not

only the total number of samples but also the architecture

of the model that can affect scalability. The 100-label

experiments involve 10X more output units thus increasing

the total number of parameters and hardening the training

process. For example, training the 1000-label model with

more than 100 samples per label could not conclude within

a reasonable timeframe, even on the V100 hardware.

7 Conclusions

Recent models featuring context-based word- and sen-

tence- representations appear to revolutionize traditional

NLP and make Natural Language Understanding (NLU) a

commonplace reality even for everyday tasks. When

combined with evolving hardware configurations, they can

offer efficient solutions to text processing tasks that would

be otherwise impossible to perform on a large scale.

However, training such models from scratch is hard and

very computationally expensive.

Having implemented and evaluated different models and

approaches, we have shown that one can reap the benefits

of transfer learning when using available pretrained models

in conjunction with a classifier. This can lead to state-of-

the-art results, also for biomedical indexing with MeSH

labels, even when considering titles and abstracts only. On

the other hand, using base models directly and classifying

according to semantic similarity cannot compete the added

complexity of a classification layer, except maybe when

training is conducted for the specific task at hand. This also

holds even when using specialized models pretrained on

domain datasets. We have experimentally confirmed our

earlier hypothesis that, in our domain of interest, the

complexity of authoritative controlled vocabularies neces-

sitates extremely fine-grained embeddings, and these can

only be achieved with some form of finetuning and/or

training. Particularly, utilizing lightweight training in a

pretrained model, thus customizing it for the specific

dataset at hand, is crucial especially for online decision

making and constantly updating data.

Additionally, a careful dataset balancing as well as the

capability of deep networks to leverage distributed GPU

architectures are demonstrated beneficial and should be

exercised whenever possible. Finally, we see improve-

ments in the way classification suggestions are being
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Fig. 10 Training times for the ELMo Classifier

Table 4 F-score for the various classification models

10 100 1000

Doc2Vec 0.70 0.53 0.34

ELMo Pretrained 0.70 0.30 0.15

BERT Pretrained 0.42 0.15 0.04

ELMo Classifier (100 samp.) 0.77 0.50 0.26

ELMo Classifier (1000 samp.) 0.75 0.60 –

Bold indicates highest score per number of classes
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offered, especially in view of the density of the thesaurus

used: other ontological relations, such as generalization or

specialization of concepts can be taken into account in

order to discover and prune hierarchy trees appearing in the

recommendations list.
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