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Abstract

Sterol regulator element binding proteins (SREBPs) are a family
of transcription factors involved in the biogenesis of cholesterol,
fatty acids and triglycerides. They also regulate physiological
functions of many organs, such as thyroid, brain, heart,
pancreas and hormone synthesis. Beside the physiological
effects, SREBPs participate in some pathological processes,
diabetes, endoplasmic reticulum stress, atherosclerosis and
chronic kidney disease associated with SREBP expression
changes. In the liver, SREBPs are involved in the pathogenesis
of nonalcoholic fatty liver disease, nonalcoholic steatohepatitis,
hepatitis and hepatic cancer. There are several SREBP inhibitors
that have potential for treating obesity, diabetes and cancer.
This review assesses the recent findings about the roles of
SREBPs in the physiology of organs’ function and pathogenesis
of liver diseases.
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Introduction

The sterol regulator element binding proteins (SREBPs) are a
family of transcription factors. These proteins are synthesized
as 110-amino acid inactive precursors; then, they are inserted
into the endoplasmic reticulum (ER) membrane.1 In the ER,
SREBPs interact with a sterol sensor, the SREBP-cleavage acti-
vating protein (Scap).2 The SREBP/Scap complexmoves to the
Golgi apparatus, where the mature or nuclear forms of SREBP
are generated by two proteases, the site 1 protease and the
site 2 protease, and an anchoring protein. The insulin-induced
gene (Insig)-1/2 also contributes.3 Then, the nuclear SREBPs
translocate to the nucleus and bind to the target gene pro-
moters, such as those of lipid metabolism-related genes.4

The expressions of these transcriptional genes regulated by
feed-forward and feedbackmechanisms (i.e. increased choles-
terol in the cells) inhibit the proteolytic activation of SREBPs
and decrease expression of SREBP target genes.5

The SREBP family consists of three members: SREBP-1a;
SREBP-1c, from the SREBF-1 protein coding gene; and,
SREBP-2, from the SREBF-2 protein coding gene.6,7 SREBP-1c
is mainly expressed in the liver, white adipose tissue, adrenal
gland, skeletal muscle and brain of mice and humans;7 but
SREBP-1a is expressed in cell lines, spleen and intestinal
tissues.8

Physiological function and regulation of SREBPs

The SREBP family plays a key role in lipid homeostasis
(cholesterol and triglyceride). Moreover, SREBPs are also
involved in the normal functions of some organs. One of
these organs is the thyroid. Thyroid hormones (THs) change
the SREBP-2 gene promoter; then, the low-density lipoprotein
(LDL) receptor expression deceases and plasma cholesterol
level increases.9,10 SREBPs are also known as regulators of the
Na/I pump, iodide oxidation and iodination of thyroglobulin
in TH synthesis.11 Another study by Rauer et al.12 showed
25-hydroxycholesterol, as a SREBP-1c inhibitor, decreased
the mRNA levels of thyroid peroxidase by 50%. Rochira and
colleagues13 have also revealed that in HepG2 cells, 3,5,3′-
triiodo-l-thyronine regulates SREBP-1expression in a dose-/
time-dependent manner. Their results also indicated that the
AKT/PI3K signaling pathway may be involved in this process.
The 3,5-diiodo-l-thyronine, unlike 3,5,3′-triiodo-l-thyronine,
blocks SREBP-1c activation in HepG2 cells, activates b-oxidation
and reduces lipogenic factor expression via nongenomic mech-
anisms.14 In this way, the findings show that THs can effect
SREBP expression, while, on the other hand, SREBP-1 can affect
the thyroid gland and decrease thyroid peroxidase levels.
Dehydroepiandrosterone is one of the adrenal hormones; the
reduction of which is associated with poor sexual function.
Dehydroepiandrosterone stimulates intracellular activity of
the cyclic adenosine 3′,5′-monophosphate and cyclic adenosine
3′,5′-monophosphate-dependent protein kinase A that leads to
down-regulation of SREBP-1 and PPARa, and inactivation of
carnitinepalmitoyltransferase, therefore decreasing fat dep-
osition.15 Androgens and progesterone also stimulate SREBP-1c
and 2 expressions in normal cell lines, increase mRNA and
protein levels of fatty acid synthase (FAS), acetyl-CoA-
carboxylase, acetyl-CoA-synthase and HMG-CoA-reductase.16

In this context, another organ affected by SREBPs is the pan-
creas, and its hormone, insulin. In insulin signaling, it has been
demonstrated that SREBP-1c binding to the Irs-1 promoter
region suppresses Irs-1 gene transcription that leads to
insulin resistance in the skeletal muscle.17,18 Insulin resistance
is also associated with increased AMP-activated protein kinase
(AMPK)a phosphorylation, FAS, ChREBP and SREBP-1 mRNA
expression.19 Activation of both PKb/Akt and PKCk pathways
lead to SREBP-1c expression increase.20
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Indeed, the activated liver X receptor (LXR)a-C/EBPb
complex binds to the SREBP-1c promoter in sites that are
required for insulin induction,21 and LXRa loss leads to decre-
ment of SREBP-1c, FAS and lipogenic factors and improve-
ment of insulin sensitivity in LXRab-deficient-ob/ob mice.22

But, Eberlé et al.1,21 did not find any effect of SREBP-1c stim-
ulation, and determined that these effects were exclusive to
SREBP-1a and SREBP-2. In another attempt, Cagen et al.21

have shown that insulin activates LXR, specificity protein 1 and
nuclear factor-Y that are required for the full action of SREBP-1c.
Taken together, the role of SREBPs in control of insulin signal-
ing and secretion is important and inhibition of SREBP path-
ways may be a potential treatment in the future, possibly for
obesity with type 2 diabetes.23,24

Brain is the most cholesterol-rich organ, andmostly de novo
pathways synthesize cholesterol. Studies have shown SREBP-2
expression in the normal hippocampus, cortex and striatum;25

it has also been shown that neuronal injury induced by kainite
results in a down-regulation of SREBP-2 expression in lesion
areas of the brain.26 Other documents have reported that
SREBP-2 expression is decreased in streptozotocin-induced
mice and in Alzheimer’s disease.27 Reduction of the cholesterol
sensor Scap in the brains of mice causes impaired synaptic
transmission and altered cognitive function.28,29

24 S-hydroxycholesterol is an important metabolic product
of cholesterol in the brain.37 Wang et al.30 showed that under
cholesterol excess 24S-hydroxycholesterol is increased, acting
as a sensor and reducing cholesterol synthesis enzymes
through SREBP-2 down-regulation. Brain acyl-CoA hydrolase
is responsible for hydrolyzing the long-chain acyl-CoA among
neurons; it has been demonstrated that SREBP-2 binds to the
sterol regulatory element motif, activating brain acyl-CoA
hydrolase enzyme and thereby the conversion of long-chain
acyl-CoAs to fatty acids and CoA-SH.31 In total, these research
findings have provided insights into the interaction between
SREBP-2 and cholesterol metabolisms in neurons.

In healthy people, lipid storage is minimal in the heart, but
Marfella et al.32 reported a significant correlation between
increase of SREBP-1c levels and increase of cardiomyocyte tri-
glyceride accumulation among metabolic syndrome patients,
which is associated with ejection fraction lowering and cardiac
dysfunction. In addition, SREBP-1c gene silencing reduces tri-
glyceride sand very low-density lipoprotein (VLDL) content in
bovine hepatocytes33 (Fig. 1).

Interaction between SREBPs and other transcription
factors

The LXRs, LXRa and LXRb, are ligand-activated transcription
factors and members of the DNA-binding transcription
factors. Their functions are related to retinoid X receptors.34

The LXRs play an important role in cholesterol homeostasis
and hepatic lipogenesis.35 LXRa allows for SREBP-1c induc-
tion.11 Studies have shown that activation of LXRa increases
SREBP1c expression, which leads to hepatic lipogenesis and
hypertriglyceridemia.36 In addition, insulin stimulates SREBP-1c
expression through the nuclear receptor of LXR.37The hepato-
cyte nuclear factor-4 alpha (HNF-4a) is another nuclear recep-
tor protein involved in hepatic lipid homeostasis through
regulation of VLDL and apolipoprotein B function.37 In this
context, Misawa et al.38,39 reported that overexpression of
HNF-4 in HEK293 cells augmented the expression of SREBP-
responsive genes and that it seemedlikeHNF-4 potentiates
the SREBP functions and stimulates the expression of

SREBP-responsive genes in the enterohepatic cells. Another
study showed activation of SREBP2 blocking HNF-4a expres-
sion in the mouse liver.40 (Fig. 2)

SREBPs in liver disease

Role of SREBPs in nonalcoholic fatty liver

SREBPs are involved in some metabolic disorders, including
obesity, type 2 diabetes, dyslipidemia, atherosclerosis, etc.41,42

Nonalcoholic fatty liver disease (NAFLD), the most common
liver disease, is simple hepatic steatosis, and nonalcoholic
steatohepatitis (NASH) is a developed form of NAFLD that is
associated with hepatic inflammation and fibrosis. NASH could
lead to cirrhosis and hepatocarcinoma.35 Genetic background,
obesity and insulin resistance are considered contributing
factors to the pathophysiology of NASH.43 Studies on single
nucleotide polymorphisms (i.e. rs2297508) and SREBP-1
gene variations have shown a positive relation with increased
risk of NAFLD development.37 Other documents have con-
firmed that patatin-like phospholipase3 (PNPLA3) plays a key
role in NASH development as well44,45 and that PNPLA3gene
polymorphisms are strongly associated with severity of
NAFLD.46 SREBP-1c binds to the PNPLA3gene and activates
its expression; then, PNPLA3 stimulates lipid accumulation,
as shown in mouse hepatocytes.46,47

The stimulatory effects of insulin on lipogenesis in the liver
and the adipose tissue are well known, but the cellular
mechanisms remain unclear. To our knowledge, insulin effects
on hepatic lipogenesis are partly mediated by SREB-1c, from
SREBP-1c gene expression until entry to the cell nucleus.48

Indeed, insulin stimulates SREBP-1c gene expression, enhanc-
ing SCAP/SREBP complex export to the Golgi and proteolytic
processing on the nascent SREBP-1c by reducing levels of
Insig-1/2.49 Furthermore, we know that AMPK, an energy
sensor for cellular energy of homeostasis, inhibits cleavage
and transcriptional activation of SREBP via phosphorylation.
In this regard, Li and colleagues41 reported that metformin
stimulated AMPK activity; it also suppressed SREBP-1c cleav-
age and nuclear translocation via Ser372 phosphorylation,
leading to liver steatosis attenuation in diet-induced insulin-
resistant LDL receptor-deficient mice. On the other hand, there
are many documents that provided evidence of SREBP-1c
inducing lipogenic enzymes and causing lipid deposition asso-
ciated with insulin resistance.50 Sun et al.51 found that early
insulin therapy in type 2 diabetic rats leads to down-regulation
of SREBP1 in hepatic tissue and fat shifting from liver to the
adipose tissue.

Ding and colleagues52 have reported that curcumin inhib-
its SREBP expression, and improves serum lipid levels and
insulin sensitivity in high-fat diet-induced obese mice. The
current findings may consider two opposite roles for insulin
in relation to SREBP1 that dependent on the tissue types,
obese or nonobese, etc.8 In rats, injection of leptin leads to
fat deposition with up-regulation of SREBP-1 though the
JAK2-STAT3/PI3K signaling pathway.53

Obesity is another feature of NAFLD pathogenesis. Western
diets and modern diets are factors causing obesity and fatty
liver diseases. High-fat diet, especially with different fat
sources, usually induces obesity and lipid accumulation in the
hepatocytes and adipocytes.54 In this context, Ronis et al.55

reported that olive oil increased SREBP1c expression greater
than corn oil or echium oil in overfed male rats. Another study
showed that docosahexaenoic acid/eicosapentaenoic acid at
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a 1:2 ratio decreased serum triglycerides, total cholesterol,
and LDL-cholesterol levels, lowered SREBP-1C and FAS mRNA
expression and alleviated liver damage in mice. It seems that
this process is probably mediated by both activation of AMPK
and inhibition of mechanistic target of rapamycin complex
1.56,57 Moreover, it has been reported that dietary consump-
tion of fish oil as a source of n-3 polyunsaturated fatty acids,
down-regulates SREBP1c mRNA expression but probably
does not influence SREBP-2 expression.58 Obesity can also
cause insulin resistance, increased leptin levels and, impor-
tantly, stimulation of SREBP1c expression.59

Today, fructose has markedly increased in our diet and
overconsumption of fructose has also been shown to stimulate
SREBP1c expression and lead to hepatic lipid accumulation.60

In contrast, some foods such as soy supplements and pro-
biotic foods are considered to decease insulin secretion, and

to suppress SREBP1c expression and enzymes involving lipid
synthesis61 (Fig. 3).

Role of SREBPs in ER stress

ER, a critical membranous organelle, plays a key role in lipid
synthesis, nascent protein folding and Ca+2 ion storage.62 In
special circumstances, such as pharmacological stimuli, oxida-
tive stress, viral infections and dietary demands, ER homeo-
stasis can disrupt and create an ER stress phenomenon63 that
causes abnormalities in insulin action, inflammatory responses,
lipoprotein B100 degradation and hepatic lipogenesis.64 Three
ER transmembrane sensors, inositol-requiring protein 1,
protein kinase-like ER kinase and activating transcription
factor 6, are activated by the glucose-regulated protein 78
required for folding of proteins in the ER. Tunicamycin, cow
milk casein or oxidative stress induce acute ER stress,65,66

while overfeeding of fatty acids, cholesterol and fructose,
due to the produced obesity and insulin resistance, induce
chronic ER stress that is not fully restored.67 Many studies
have shown that ER stress and glucose-regulated protein 78
activation up-regulate SREBPs directly and indirectly.68

Recently, it has been reported that elevated uric acid levels
are associated with ER stress induction and hepatic lipid
accumulation via SREBP-1c activation.69 One of the v-3 poly-
unsaturated fatty acid derivatives and resolving D1, alleviated
tunicamycin-induced ER stress and decreased SREBP1c via
inhibition of c-Jun N-terminal kinase expression in hepato-
cytes.20,70 In contrast, AMPK activation down-regulates SREBP
1c expression and alleviates ER stress response through sup-
pression of mechanistic target of rapamycin complex 1 signaling

Fig. 1. Schematic diagram of the physiologic function of SREBP in several organs.

Fig. 2. Diagram of the interaction between SREBP and transcription fac-
tors.
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in the ER stress-induced hepatocytes.41 In the study by Sun
et al.71, early insulin therapy reduced c-Jun N-terminal kinase
and IRS-1 expression; it also improved ER stress and steatosis
in the rat liver. Several pharmacologic agents, including rosigli-
tazone, naltrexone and tauroursodeoxycholic acid, also attenu-
ated ER stress liver injury and down-regulated both SREBP1 and
SREBP2 expression.72,73 (Fig. 4).

Role of SREBPs in hepatitis disease

Hepatitis C virus (HCV)-2 infection markedly leads to chronic
hepatitis, liver cirrhosis and possibly hepatocellular carci-
noma.74 Liver steatosis is frequently found in the patients
who are infected with HCV, but the molecular mechanisms
of HCV-associated steatosis are not clear. Since SREBPs are
the key transcriptional factors in lipogenic gene expression,
they are likely important in the HCV-induced liver steatosis.75

Some studies have shown that HCV nonstructural protein 2,
HCV nonstructural 4B protein and HCV-3a core protein
increase SREBPs expression.76 These results suggest activa-
tion of the PI3K and Akt-2 pathway, enhancement of HCV
entry, replication and translation of HCV, increased SREBP-1
activityandsteatosis.77

Contrary to these studies, McPherson et al.78 have reported
that among HCV patients, there was no significant difference in
the hepatic expression of SREBP-1c or FAS mRNA compared
with normal subjects. Moreover, a negative relationship was
found between hepatic SREBP-1c mRNA expression and
grade of steatosis. These findings state that SREBP-1c may
play transient and not a prominent role in HCV-related steato-
sis.20 In other research, Kim et al.79 found that curcumin
decreases HCV gene expression via suppression of the Akt-

SREBP-1 pathway. Another study indicated that, among patients
with HCV infection, although SREBP-2 expression was
unchanged, HMG-CoA reductase, HMG-CoA synthase and
SREBP-1c expression was up-regulated.80

Subtilisinkexin isozyme-1/sphingosine 1-phosphate is recog-
nized as a novel regulator of the HCV lifecycle. In hepatomacells,
subtilisinkexin isozyme-1/sphingosine 1-phosphate-specific
protein-based inhibitor blocked HCV from establishing infec-
tion and reduced lipid droplets; it could be considered as a
therapeutic target against HCV infection and liver steatosis,
thoughmore evidence is required to support this hypothesis.81

These studies indicate that more evidence is also required to
clarify the role of SREBP-1 in patients with HCV. Silent infor-
mation regulator 1 (SIRT1) is another regulator of hepatic lipid
metabolism. In 2013, Sun and colleagues82 found that HCV
replication inHuh-7.5 cells decreased SIRT1, up-regulated
SREBP-1c, FAS, ACC and SREBP-2, and increased lipid profile.
Recently, it has been reported that retinoid-interferon-induced
mortality 19 reduces HCV-infected Huh7 cells and that activa-
tion of retinoid-interferon-induced mortality 19 attenuates
intracellular lipid droplets through a decrease of SREBP-1c83

(Fig. 4).

SREBP inhibitor agents

Nowadays, research on SREBP inhibitory agents is being
conducted. Inhibitors of SREBP processing can be helpful in
reducing the risk of atherosclerosis, metabolic syndrome and
obesity.84 There are several SREBP inhibitors, such as 24-HC,
25-HC, 27-HC, etc. But since LXR up-regulates SREBP
expression, it’s important that inhibitors of SREBP do not acti-
vate LXR expression.57,58 Botulin, as a specific inhibitor of
SREBP, suppresses SREBP maturation and decreases choles-
terol and fatty acid synthesis.59 In this context, Quan and
colleagues85 reported that betulinic acid reduced hepatic
steatosis and levels of SREBP1 in HepG2 cells and in livers
of mice that were fed a high-fat diet. They also showed that
this function is mediated by the Ca(+2)-calmodulin depend-
ent protein kinase-AMPK-SREBP1 signaling pathway.

Another agent is fatostatin, that interacts with Scap, blocks
ER-Golgi translocation of SREBP and decreases blood glucose
and liver steatosis in obese ob/ob mice.86 Fatostatin also has
antitumor properties and inhibits cell growth.87 Other natural
compounds, including and rographolide and anhydroicaritin,

Fig. 3. Diagram of the involvement of SREBPs in nonalcoholic fatty liver disease.

Fig. 4. Diagram of the role of SREBPs in endoplasmic reticulum stress,
hepatitis C virus infection and hepatic cancer.
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ameliorate obesity, insulin resistance, liver steatosis and
hyperlipemia via suppression of SREBP activation.88 Emodin
from the Rheum palmatum herb has anti-inflammatory and
anticancer effects, and attenuates obesity but decreases
insulin sensitivity through regulation of the SREBP pathway.89

However, it has been revealed that antipsychotic drugs, such
as clozapine, olanzapine and haloperidol, increase lipogenesis
gene expression via SREBP activation; although, there are some
differences in rates of SREBP activation among these drugs.90

Role of SREBPs in cancer

Cholesterol and lipid are requirements for new membrane
building and for maintaining active signaling in developing
cancer cells;91 therefore, lipid metabolism-related transcrip-
tional genes and their enzymes change in carcinoma cells.
Hepatocellular carcinoma (HCC) is one of the most common
liver malignancies in the world.84 Many research studies have
demonstrated that SREBP up-regulation, and FAS and LDL
receptor overexpression occur in prostate, breast and glioblas-
toma.92,93 Previously, Li et al.94 demonstrated that overex-
pression of SREBP-1 is associated with large tumor size, high
histological grade and advanced tumor-node-metastasis stage
in HCC patients, and that SREBP-1 down-regulation sup-
pressed cell proliferation and apoptosis in both HepG2 and
MHCC97L cells.94

One of the effects of SREBP-2 in cell proliferation is mediated
by regulation of farnesyldiphosphate synthase gene transcrip-
tion.95 It has also been shown that tocotrienol (a minor form of
vitamin E) reduced SREBP-2 activity and improved cell viability
in prostate cancer cells.96 Obesity, fatty liver and hepatitis have
potential roles in pathogenesis of HCC.97 In this regard,
Zhang et al.98 have indicated that miR-449 inhibits SIRT1,
and decreases SREBP1c expression and that of downstream
target genes, including fatty acid synthase and 3-hydroxy-3-
methylglutaryl CoA reductase. Also, miR-449 can repress DNA
synthesis and proliferation, both in HepG2 and Huh7 cells.98

Overexpression of NS5ABP37protein, a HCC oncogenomic
screen and hepatitis C virus nonstructural protein 5A-associated
binding protein, decreased intracellular triglyceride and total
cholesterol contents, down-regulated SREBP1c and SREBP2
expression and inhibited cancer cell proliferation in human
hepatoma cells.99 Moreover, SREBP pathway blocking by
L-Scap-/- and L-gp78-/- mice led to reduced SREBP1c,
SREBP1a and SREBP2 expression and to decrease in related
enzymes, such as fatty acid synthase, ACC, LDLR and HMGCs,
improving HCC tumor progression.100 In human NAFLD-
associated HCC, SREBP-1 up-regulated HDAC8 and suppres-
sion of the histone deacetylase HDAC8, and decreased insulin
resistance and NAFLD-associated HCC.101

Among SREBP inhibitor agents, it has been shown that
fatostatin, andrographolides and silibinin have anticancer
effects. Li et al.87 and other researchers have reported that
fatostatin blocks cell proliferation through lipid-independent
and Scap-independent mechanisms, causing G2-M cell-cycle
arrest and inducing apoptosis. Silibinin also has been shown
to induce apoptosis in prostatic cancer cells.102 (Fig. 4)

Conclusions

SREBPs (SREBP1c, SREBP1a and SREBP2) are found in several
organs and participate in physiologic and pathologic functions
of the body. SREBPs are involved in lipid and glucose homeo-
stasis as well as hormones synthesis. SREBPs also have a

key role in the pathogenesis of NASH, obesity and cancers.
Moreover, they cause lipid-regulated cellular disorders in hep-
atocytes that can lead to steatosis and liver injury. Several
SREBP inhibitors, including natural and synthetic agents, have
potential treatment effects in obesity, hepatic steatosis and
even tumor cells.
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