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Prostate cancer is the second most frequently diagnosed cancer worldwide. Hypoxia-induced epithelial–mesenchymal transition
(EMT), driven by hypoxia-inducible factor 1𝛼 (HIF-1𝛼), is involved in cancer progression and metastasis. The present study was
designed to explore the role of propofol in hypoxia-induced resistance of prostate cancer cells to docetaxel. We used the Cell
Counting Kit-8 and 5-ethynyl-2-deoxyuridine incorporation assay to measure cell viability and cell proliferation, respectively,
in prostate cancer cell lines. Then, we detected HIF-1𝛼, E-cadherin, and vimentin expression using western blotting. Propofol
reversed the hypoxia-induced docetaxel resistance in the prostate cancer cell lines. Propofol not only decreased hypoxia-induced
HIF-1𝛼 expression, but also reversed hypoxia-induced EMT by suppressingHIF-1𝛼. Furthermore, small interfering RNA–mediated
silencing of HIF-1𝛼 reversed the hypoxia-induced docetaxel resistance, although there was little change in docetaxel sensitivity
between the hypoxia group and propofol group. The induction of hypoxia did not affect E-cadherin and vimentin expression, and
under the siRNA knockdown conditions, the effects of propofol were obviated.These data support a role for propofol in regulating
EMT in prostate cancer cells. Taken together, our findings demonstrate that propofol plays an important role in hypoxia-induced
docetaxel sensitivity and EMT in prostate cancer cells and that it is a potential drug for overcoming drug resistance in prostate
cancer cells via HIF-1𝛼 suppression.

1. Introduction

Hypoxia is common in themicroenvironment of solid tumors
and is associated with tumor invasion, distant metastasis, and
epithelial–mesenchymal transition (EMT) [1–3]. Hypoxia-
inducible factor (HIF) regulates the expression of proteins
that increase oxygen delivery, which enables cells to survive
in oxygen-deficient conditions [4]. HIF is a heterodimer
consisting of theHIF-1𝛼 andHIF-1𝛽 transcription factors [5].
HIF-1𝛼 is the most important hypoxia-induced transcription
factor and has multiple functions in tumor progression,
including changes in the aggressive behavior of the tumor [6].
Moreover,HIF-1𝛼 plays a role in prostate cancer cell EMTand
migration [7]. EMT is involved in many crucial cancer cell

functions, including tissue reorganization, tumorigenesis,
cancer recurrence, and metastasis [8]. EMT is characterized
by the combined loss of epithelial cell junction proteins such
as E-cadherin and the gain of mesenchymal markers such as
vimentin or fibronectin [9]. It has become increasingly clear
over recent years that EMT, a critical developmental process,
plays a major role in cancer progression [10, 11]. Prostate
cancer is the most commonly diagnosed malignancy and the
second leading cause of cancer death among men in devel-
oped countries [12]. Docetaxel is produced semisynthetically
from the needles of the Pacific yew tree (Taxus brevifolia) [13].
In recent years, docetaxel has been considered standard first-
line therapy in prostate cancer cases [14]; however, it confers
only a modest survival advantage, as patients eventually
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acquire docetaxel resistance [15]. However, the mechanisms
involved in hypoxia-induced docetaxel resistance remain
unclear. Therefore, it is urgent that this mechanism be
elucidated.

Propofol (2, 6-diisopropylphenol), a general sedative and
hypnotic agent, is widely used for the induction and main-
tenance of general anesthesia [16]. Accumulating evidence
suggests that propofol has several nonanesthetic effects [17].
Recently, it was reported that propofol has potential anti-
cancer properties, such as inhibiting cancer cell proliferation,
adhesion, and metastasis and inducing cancer cell apopto-
sis [18–20]. Recent studies have shown that propofol can
suppress cell invasion and reverse EMT by decreasing HIF-
1𝛼 expression in lipopolysaccharide-treated non-small cell
lung cancer cells [21]. Furthermore, propofol inhibits viability
and induces apoptosis in lung cancer, pancreatic cancer, and
cervical cancer cells [22–24]. However, this process has not
been completely elucidated in prostate cancer cell lines.

In this study, we found that propofol could reverse
hypoxia-induced docetaxel resistance in prostate cancer cells
by reversing EMT via HIF-1𝛼 inhibition. The stronger sen-
sitivity of the cells to the combined docetaxel and propofol
treatment as comparedwith docetaxel-only treatment that we
observed shows that propofol sensitized the prostate cancer
cells to the hypoxia-induced docetaxel inhibitory effect.

2. Materials and Methods

2.1. Cell Culture and Induction of Hypoxia. The human
prostate cancer cell lines PC3, DU145, and 22RV1 were pur-
chased from American Type Culture Collection (Manassas,
VA, USA). All cells were cultured in Roswell Park Memorial
Institute (RPMI) 1640 medium (Gibco, Grand Island, NY,
USA) supplemented with 10% fetal bovine serum (FBS;
Gibco) and 1% penicillin/streptomycin (Sigma-Aldrich, St.
Louis, MO, USA). All cells were incubated at 37∘C in a
humidified atmosphere containing 21% O2 and 5% CO2. For
hypoxic culture, the cells were placed in a hypoxic incubator
(1% O2, 5% CO2) at 37

∘C for 6 h. HIF-1𝛼 small interfering
RNA (siRNA) and negative siRNA were purchased from
Santa Cruz Biotechnology (Dallas, TX, USA). Propofol was
purchased from Sigma-Aldrich.

2.2. Cell Viability Assay. We used Cell Counting Kit-8 (CCK-
8; Dojindo Laboratories, Kumamoto, Japan) to determine
the cell viability rate. The cells were seeded in 96-well plates
(5 × 103 cells/well) in 100 𝜇L maintenance medium and
cultured for 24 h.The culture mediumwas replaced with 10%
FBS–medium containing the drugs (docetaxel (𝜇M): 0, 6.25,
12.5, 25, 50, and 100; propofol (𝜇M): 0, 1.25, 2.5, 5, 10, 20,
40, 80, 160, and 320). After 48-h incubation, 10 𝜇L CCK-
8 solution was added, the cells were incubated for 3 h, and
then the absorbance at 450 nm was measured using an MRX
II microplate reader (Dynex Technologies, Chantilly, VA,
USA). The cell viability rate was calculated as a percentage
of untreated controls.

2.3. HIF-1𝛼 siRNA Transfection. The cells were seeded in
6-well plates at (1 × 105 cells/well) and transfected with

HIF-1𝛼 siRNA or negative siRNA using Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s protocol. The transfection medium (Opti-MEM;
Gibco) was removed and replaced with complete medium 6 h
after transfection. All experiments were performed for 24 h
after transfection and repeated three times.

2.4. Western Blot Analysis. Western blotting was used to
detect protein expression. Briefly, the cells were lysed with
radioimmunoprecipitation assay lysis buffer containing pro-
tease inhibitors (Sigma-Aldrich) for 30min on ice. Then,
the lysates were centrifuged at 12000 rpm for 5min at 4∘C.
The supernatants were collected and a bicinchoninic acid
protein assay kit (Sigma-Aldrich) was used to determine the
protein concentrations. Protein (20𝜇g) from each samplewas
separated by 10% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis and transferred to polyvinylidene difluoride
membranes (Millipore, Billerica, MA, USA).Themembranes
were blocked with 5% bovine serum albumin in Tris-buffered
saline and 0.1% Tween 20 (TBST) for 2 h at room temper-
ature and then incubated with primary antibodies (anti–E-
cadherin, anti-vimentin, anti–HIF-1𝛼, diluted 1 : 1000 in
TBST;Abcam,Cambridge,MA,USA) overnight at 4∘C.Then,
the membranes were washed three times with TBST and
incubated with a horseradish peroxidase–conjugated sec-
ondary antibody (1 : 2000; Cell SignalingTechnology, Beverly,
MA, USA) for 2 h at 37∘C. 𝛽-Actin (Cell Signaling Technol-
ogy) was used as the loading control. Protein bands were
detected using an enhanced chemiluminescence detection
system (Biological Industries, Beit HaEmek, Israel). Gray
value analysis of the protein bands was performed using
ImageJ software (National Institutes of Health, Bethesda,
MD, USA).

2.5. 5-Ethynyl-2-deoxyuridine (EdU) Analysis. The EdU
incorporation assay was used to calculate DNA incorpora-
tion/synthesis. Measurement of the rate of cell proliferation
inhibition was assessed using a Click-iT EdU Imaging Kit
(Thermo Fisher Scientific, Carlsbad, CA, USA) according to
a procedure described previously [25].

2.6. Statistical Analysis. Theexperimental data were analyzed
using GraphPad Prism 5 software (GraphPad, San Diego,
CA, USA) and expressed as the means ± standard deviation
(SD). Statistical analysis was conducted using a 𝑡-test or
one- or two-way analysis of variance, followed by Dunnett’s
or Bonferroni’s multiple comparison test. 𝑃 < 0.05 was
considered to indicate a statistically significant difference.

3. Results

3.1. Hypoxia Induced Docetaxel Resistance in Prostate Can-
cer Cells. To investigate prostate cancer cell sensitivity to
docetaxel under normoxic and hypoxic conditions, we used
the CCK-8 assay to measure cell viability. Cell viability
was significantly increased in hypoxic conditions compared
with normoxia (Figures 1(a)–1(c), Table 1), confirming that
hypoxia induces docetaxel resistance in prostate cancer cells.
The EdU incorporation assay was used to measure the effects
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Figure 1: Hypoxia-induced prostate cancer cell resistance to docetaxel. (a–c) CCK-8 detection of viability of prostate cancer cells in normoxic
or hypoxic conditions after docetaxel treatment. (d–f) EdU assay detection of the proliferation rate of prostate cancer cells treated with
docetaxel under normoxic or hypoxic conditions. ∗∗𝑃 < 0.01 versus docetaxel.

of docetaxel on prostate cancer cell proliferation following
48-h treatment under hypoxic conditions. Docetaxel treat-
ment in hypoxia enhanced cell proliferation (𝑃 < 0.01 versus
docetaxel) (Figures 1(d)–1(f)).

3.2. Propofol Reversed Hypoxia-Induced Docetaxel Resistance
in Prostate Cancer Cells. To evaluate whether propofol could
reverse hypoxia-induced docetaxel resistance, we used CCK-
8 to measure the viability of cells treated with docetaxel alone
or with docetaxel combined with propofol under hypoxic
conditions. Initially, 80, 160, or 320𝜇Mpropofol significantly
inhibited cell viability compared with 0 𝜇Mpropofol (Figures
2(a)–2(c)). Then, we selected the highest concentration of
propofol (40 𝜇M) that caused little effect for further anal-
yses. Surprisingly, docetaxel sensitivity was enhanced after

Table 1: The cell viability of PC cells treated with different concen-
trations of docetaxel under normoxia and hypoxia conditions.

Cell lines IC50 (𝜇M)
Normoxic Hypoxic

PC3 66.26 (58.30 to 74.22) 169.6 (123.9 to 215.2)
DU145 27.03 (25.46 to 28.59) 106.9 (97.00 to 116.8)
22RV1 26.73 (22.92 to 30.54) 208.7 (130.2 to 287.2)
IC50 values show docetaxel concentration [𝜇M, mean (95% confidence
intervals)].

combination with propofol (Figures 2(d)–2(f), Table 2). The
EdU incorporation assay indicated that the EdU-positive cell
ratio was significantly decreased compared to the hypoxia
+ docetaxel group (𝑃 < 0.01) (Figures 2(g)–2(i)). Then we
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Figure 2: Propofol reversed hypoxia-induced docetaxel resistance in prostate cancer cells. (a–c) Human prostate cancer cells were treated
with propofol for 48 h, and cell viability was measured using CCK-8. ∗∗∗𝑃 < 0.001 versus 0 𝜇M. (d–f) Cell viability was measured in prostate
cancer cells treated with docetaxel with or without propofol (40𝜇M) under hypoxic conditions for 48 h. (g–i) EdU assay detection of the
proliferation rate of prostate cancer cells treated with docetaxel or docetaxel plus propofol under hypoxic conditions. Histograms represent
the positive cell rate (%). ∗∗𝑃 < 0.01 versus hypoxia + docetaxel. DTX, docetaxel. (j)Western blotting detection ofHIF-1𝛼 expression following
propofol treatment under hypoxic or normoxic conditions.
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Figure 3: Propofol partially reversed hypoxia-induced EMT. Western blot showing E-cadherin and vimentin expression in prostate cancer
cells treated with or without propofol under hypoxic or normoxic conditions.

Table 2:The cell viability of PC cells treated with docetaxel alone or
docetaxel plus propofol under hypoxia conditions.

Cell lines IC50 (𝜇M)
Hypoxic Hypoxic + propofol

PC3 159.1 (107.6 to 210.6) 88.00 (69.51 to 106.5)
DU145 114.4 (86.92 to 141.9) 54.45 (48.74 to 60.16)
22RV1 179.4 (131.1 to 227.6) 77.67 (67.55 to 87.79)
IC50 values show docetaxel concentration [𝜇M, mean (95% confidence
intervals)].

Table 3:Thegrey value of theHIF-1𝛼protein treatedwith orwithout
propofol under normoxia or hypoxia conditions.

Cell lines HIF-1𝛼/𝛽-actin
Normoxic Hypoxic Hypoxic + Propofol

PC3 0.448049 0.942486 0.508608
DU145 0.420623 1.034483 0.698514
22RV1 0.439184 1.303041 0.549622

Table 4: The grey value of the E-cadherin protein treated with or
without propofol under normoxia or hypoxia conditions.

Cell lines E-cadherin/𝛽-actin
Normoxic Hypoxic Hypoxic + propofol

PC3 1.167701 0.66641 0.906073
DU145 0.972721 0.038215 0.421248
22RV1 0.641246 0.174243 0.555517

detected HIF-1𝛼 expression in prostate cancer cells under
hypoxic conditions and with or without propofol and found
that hypoxia induced HIF-1𝛼 upregulation, whereas propofol
suppression of HIF-1𝛼 expression reversed this result (Fig-
ure 2(j), Table 3). These findings demonstrate that propofol
reverses hypoxia-induced docetaxel resistance in prostate
cancer cells.

3.3. Propofol Partially Reversed Hypoxia-Induced EMT in
Prostate Cancer Cells. To determine whether the mechanism
of propofol reversed hypoxia-induced docetaxel resistance

Table 5: The grey value of the vimentin protein treated with or
without propofol under normoxia or hypoxia conditions.

Cell lines Vimentin/𝛽-actin
Normoxic Hypoxic Hypoxic + propofol

PC3 0.2797 1.436738 0.685475
DU145 0.128068 0.335682 0.154392
22RV1 0.071099 0.741434 0.109708

is related to EMT, we detected E-cadherin and vimentin
expression by western blotting. Hypoxia downregulated E-
cadherin expression and increased vimentin expression in the
cells. In addition, E-cadherin expression was increased and
vimentin expression was decreased after propofol treatment
as compared with the hypoxia-induced group, indicating
that propofol can reverse hypoxia-induced EMT in prostate
cancer cells (Figure 3, Tables 4 and 5).

3.4. HIF-1𝛼 Knockdown Partially Reversed Hypoxia-Induced
Docetaxel Resistance. Hypoxia promotes EMT by activating
HIF-1𝛼 [26]. Although we had determined that propofol
could reverse hypoxia-induced EMT in prostate cancer cells,
it was unclear whether the effect of propofol was related
to HIF-1𝛼. We hypothesized that propofol affects hypoxia-
induced docetaxel resistance in prostate cancer cells by regu-
lating HIF-1𝛼. To further examine this effect, we transfected
HIF-1𝛼 siRNA into prostate cancer cells and then examined
their viability following docetaxel treatment with or without
propofol in hypoxic conditions or with docetaxel alone in
normoxia; there was little change in the docetaxel resis-
tance among the three groups (Figures 4(a)–4(c), Table 6).
Furthermore, HIF-1𝛼 knockdown partially reversed the
hypoxia-induced docetaxel resistance (Figures 4(a)–4(c)).
The proliferation-suppressing effect of docetaxel was verified
by the EdU assay, although there was no significant difference
among the groups (Figures 4(d)–4(f)). Western blotting was
performed to determine knockdown efficiency (Figure 4(g)).
The findings show that inhibiting HIF-1𝛼 reverses hypoxia-
induced docetaxel resistance in PC cells.
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Figure 4: HIF-1𝛼 knockdown partially reversed hypoxia-induced docetaxel resistance. (a–c) Cell viability assay quantification of prostate
cancer cells treated with docetaxel with or without propofol under normoxic or hypoxic conditions following HIF-1𝛼 knockdown. (d–f) EdU
assay detection of the proliferation rate of prostate cancer cells following HIF-1𝛼 knockdown and treatment with docetaxel, docetaxel plus
propofol in hypoxia, or docetaxel alone in normoxia. (g) Western blot assessment of HIF-1𝛼 knockdown efficiency in hypoxia condition;
histogram represents the average grey value of the HIF-1𝛼 protein. ∗∗∗𝑃 < 0.001 versus control. DTX, docetaxel; ns, not significant.
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Table 6: The cell viability of PC cells treated with docetaxel alone under normoxia or hypoxia conditions or docetaxel plus propofol under
hypoxia conditions.

Cell lines IC50 (𝜇M)
Normoxic Hypoxic Hypoxic + propofol

PC3 55.73 (46.25 to 65.21) 64.58 (54.11 to 75.05) 65.54 (52.64 to 78.43)
DU145 31.44 (29.31 to 33.58) 32.20 (27.81 to 36.59) 31.63 (28.10 to 35.17)
22RV1 26.61 (23.49 to 29.73) 31.65 (27.96 to 35.35) 31.10 (27.38 to 34.81)
IC50 values show docetaxel concentration [𝜇M, mean (95% confidence intervals)].

3.5. Propofol Played a Role in Prostate Cancer Cell Doc-
etaxel Sensitivity by Decreasing HIF-1𝛼. We determined that
hypoxia induced E-cadherin downregulation and vimentin
upregulation. To explore the mechanism underlying EMT
and hypoxia-induced docetaxel resistance due to HIF-1𝛼
overexpression in prostate cancer cells, we knocked down
HIF-1𝛼 and examined E-cadherin and vimentin expression
using western blotting. Interestingly, hypoxia did not affect
E-cadherin and vimentin expression. However, the effects
of propofol were blocked such that there was no significant
change in the levels of expression of EMT markers between
any of the groups (Figure 5(a), Tables 7 and 8).

4. Discussion

Docetaxel is more effective against progressive human
prostate cancer than other conventional anticancer agents
[27]. Unfortunately, drug resistance negatively impacts the
effects of this treatment. The mechanisms involved in doc-
etaxel resistance in hypoxia remain unclear, so further studies
are needed to clarify this issue.

In clinical practice, propofol is commonly used in the
induction and maintenance of general anesthesia. An intra-
venously administered hypnotic agent, propofol, is widely
used in all types of surgeries due to its short effect and rapid
recovery. A variety of studies have illustrated its neuropro-
tective property [28, 29]. Recently, research has focused on
its antitumor effect [30]. Several studies have shown that
propofol can be used in combination with current clinical

chemotherapeutic drug regimens such as gemcitabine or
paclitaxel [31, 32]. Moreover, it had been proved that propofol
works as an antioxidant and that propofol can act in an anti-
oxidant capacity mainly on mitochondrial Complex I to
decrease cellular ROS levels required to stabilize HIF [33]. In
the present study, we hypothesized that propofol is involved
in docetaxel resistance in prostate cancer cells. Western
blotting and CCK-8 showed that hypoxia induced docetaxel
resistance in prostate cancer cells, which is consistent with
that reported for breast cancer cells in response to dox-
orubicin [34]. Docetaxel treatment in hypoxic condition
enhanced prostate cancer cell proliferation. However, com-
bining docetaxel with propofol enhanced docetaxel sensitiv-
ity in prostate cancer cells.

EMT is considered an essential step in cancer pro-
gression and metastasis because it allows cancer cells to
migrate, invade the surrounding tissues, and escape into the
bloodstream, such that primary tumors can metastasize to
other organs [35]. Some microenvironmental factors, such
as hypoxia, are also involved in EMT during malignant cell
transformation [36]. Hypoxia-induced HIF-1𝛼 expression
enhances EMT and induces resistance to radiotherapy and
chemotherapy, promoting tumor migration and invasion.
EMT may be a key process regulating resistance to chemo-
therapy in malignant tumors [37, 38]. NSCLC cells with an
epithelial phenotype aremore sensitive to chemotherapy than
those with a mesenchymal phenotype. We proved that com-
bined docetaxel with propofol enhanced sensitivity under
hypoxia condition in prostate cancer cells, and it was related
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Table 7: The grey value of the E-cadherin protein treated with or without propofol after knockdown of HIF-1𝛼 under normoxia or hypoxia
conditions.

Cell lines E-cadherin/𝛽-actin
HIF-1𝛼 siRNA HIF-1𝛼 siRNA + hypoxic HIF-1𝛼 siRNA + hypoxic + propofol

PC3 0.66447 0.64527 0.675951
DU145 0.431083 0.4735 0.443874
22RV1 0.426146 0.465596 0.447101

Table 8: The grey value of the vimentin protein treated with or without propofol after knockdown of HIF-1𝛼 under normoxia or hypoxia
conditions.

Cell lines Vimentin/𝛽-actin
HIF-1𝛼 siRNA HIF-1𝛼 siRNA + hypoxic HIF-1𝛼 siRNA + hypoxic + propofol

PC3 0.144313 0.152617 0.154287
DU145 0.109956 0.107534 0.105961
22RV1 0.049789 0.048136 0.040924

to HIF-1𝛼 expression. Then western blot analysis showed
that hypoxia induced HIF-1𝛼 upregulation compared with
normoxia, but propofol induced the HIF-1𝛼 downregulation
as compared with hypoxia. Next, we attempted to identify
whether propofol has EMT-inhibiting capability. We directly
evaluated the effect of propofol on several hypoxia-mediated
EMTparameters, including E-cadherin and vimentin expres-
sion levels. We found that propofol inhibited the hypoxia-
induced EMT and reversed the hypoxia-induced E-cadherin
downregulation and vimentin upregulation. Taken together,
these data indicate that propofol reverses hypoxia-induced
docetaxel resistance in prostate cancer cells by prevent-
ing EMT. HIF-1𝛼 is a key transcription factor induced by
hypoxia [39] and it activates the transcription of genes
implicated in tumor angiogenesis, cell survival, and resistance
to chemotherapeutic drugs [40–42]. Thus, inhibiting HIF-
𝛼 activity or EMT might be a new target for innovative
mechanism-based drug discovery for cancer disease. We
transfected HIF-1𝛼 siRNA into prostate cancer cells to knock
down HIF-1𝛼 expression and found that hypoxia-induced
docetaxel resistance disappeared and that propofol did not
reverse docetaxel resistance in prostate cancer cells after HIF-
1𝛼 siRNA transfection.

In conclusion, we have established that propofol plays
an important role in hypoxia-induced docetaxel resistance
in prostate cancer cells. Propofol reversed hypoxia-induced
docetaxel resistance through EMT by inhibiting hypoxia-
inducedHIF-1𝛼 expression.These results indicate that propo-
fol has potential as a therapeutic agent for improving prostate
cancer treatment.
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