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Abstract

Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD) simulations
of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed.
Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i) they are not data
driven, (ii) they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii)
they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We
advocate the application of principal component analysis (PCA) and a non-metric multidimensional scaling (nMDS) method
to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other
methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories.
Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous.
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Introduction

Molecular Dynamics (MD) simulations are frequently used

today to study protein folding. The greatest challenges that MD

simulations of protein folding face are those of timescale and

accuracy. The currently known fastest folding proteins fold over

0.7–1.0 ms [1]. There is a hypothesized limit of around (N=100) ms

for the folding timescale of an N residue protein [2]. Only recently

has technological progress enabled atomistic MD simulations to

probe microsecond timescales regularly [3–5].

One of the most commonly studied fast folding proteins is the

villin headpiece, a 35 residue actin-binding domain, which folds

into a three helix bundle with a hydrophobic core in about 4.5 ms

[6]. In 1998, Duan and Kollman simulated the villin headpiece in

what had been the longest simulation (of 1 ms) until then [7].

Complete explicit solvent MD folding trajectories for the villin

headpiece were recently obtained by Freddolino and Schulten [6].

The protein folded to its native state, starting from a completely

unfolded state in three different trajectories of *6 ms each, and

continued to be stable for more than 1 ms after folding. Such a

folding trajectory contains millions of frames (each frame being

one snapshot in time of all of the protein’s atomic coordinates) and

in order to obtain a qualitative picture of the folding process and to

find collective coordinates of folding, if any, it is important to

obtain reduced representations of these trajectories.

Conventional clustering algorithms used to reduce MD

trajectories [8–10] require specification of the number of clusters

or a cluster radius, making the clustering artificial, that is (i) inter-

cluster relationships are not taken into account and (ii) the clusters

are unstable against small changes in cutoff parameters and noise

in the data. When simple cut-off based clustering was applied to

villin folding trajectories using the program GROMACS [11],

varying the cluster radius in a range of 2 to 6 Å was found to shift

the cluster centers. Some of the clusters that were maximally

occupied when the trajectory was clustered with a smaller cutoff,

merged into larger clusters when the cutoff was changed by 1 Å. In

addition, the clustering was not stable when the trajectories were

binned more coarsely or finely in time by up to five times. While

such clustering analyses may be acceptable for qualitatively

visualizing MD trajectories, their use to study the number of

structural transitions present in the trajectories and perform free

energy calculations such as in [12], may lead to serious artifacts.

Furthermore, partitions generated by clustering are generally

validated by visual inspection of the structures returned as cluster

centers. Since little is known about protein dynamics en-route to

folding, visual inspection may not be a reliable way of validating

clustering techniques applied to MD simulations of protein folding.

Various rigorous cluster validation methods, which take into

account inter-cluster relationships have been developed in the field

of bioinformatics [13]. It can nevertheless be quite difficult to choose

the necessary and sufficient set of validation techniques for MD

trajectories without prior knowledge of the structural processes

underlying folding. An additional goal of MD simulations of folding

processes is to find collective coordinates. Clustering does not yield

itself to such analysis. There is clearly a need to go beyond clustering

to analyze MD folding trajectories. In this paper, we report
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application of data reduction methods to analyze villin headpiece

folding trajectories. Our methods can be used for reducing any large

MD trajectory to obtain salient features.

The most widely used technique to obtain collective coordinates

from folding trajectories and experiments is principal component

analysis (PCA) [14–16]. However, apart from having other well

known drawbacks [17], PCA is unable to achieve sufficient data

compression when the data are nonlinearly correlated. Our

trajectories reside in a high dimensional space as every snapshot

has information about all atomic coordinates. However, not all

coordinates are important to folding; many coordinates are likely

to be nonlinearly correlated and, thus, if viewed in the correct

coordinate space, the folding trajectories might lie in some lower

dimensional space. The extraction of a correct reduced basis has

been the goal of a variety of dimensional reduction methods. Apart

from PCA, which was first applied in 1992 [14] to the study of

protein folding, other multidimensional scaling methods have been

applied to protein folding trajectories [18,19]. We have adapted a

non-metric multidimensional scaling method (nMDS) for our analysis

[20–24]. nMDS is a completely data driven scheme and in our

experience its performance is superior to other methods of its class

(except perhaps in terms of computational requirements). The

dimensionality of the representation is reduced by nMDS while

preserving the inter-relationships of the data points (described in

detail in the following section). There is no standard recipe for

interpreting the axes obtained after nMDS embedding. The

situation is not very different in PCA, where, although the axes are

known mathematically, it may be hard to find a simple

interpretation for them, especially if the original trajectories reside

in a high dimensional space. Often reduced axes have to be

inferred by visual inspection of the projected data. There are

nonlinear versions of PCA that may be used for dimensionality

reduction, similar to Coifman et al’s diffusion maps [25], but these

versions of PCA differ from nMDS in that they are not truly data

driven and depend on the choice of kernel used. By appropriately

selecting a kernel, reasonable results may be achieved. However, it

is hard to find a reasonable kernel without a priori information

about the data set. As we know very little about the differences

between structures enroute to folding, we choose to work with a

metric free multidimensional scaling method.In the following

sections, we discuss the nMDS method and the results obtained

from applying PCA and nMDS to our trajectories.

Methods

In this section, we explain the implementation of nMDS. nMDS

is an unsupervised data geometrization method placing N points

representing the objects under study (in our case, the N frames of

an MD trajectory), in a certain metric space E (explained for our

particular case later), such that the pairwise distances d(i,j) of the

points in E have consistency with the pairwise dissimilarities d(i,j)
of the corresponding objects in the input data [20–23,26,27].

More precisely, nMDS tries to ensure that if d(i,j)wd(k,l), then

d(i,j)wd(k,l) for all i,j,k and l denoting objects being analyzed. It

is considered non-metric because, strictly speaking, the d(i,j)
values need not be known; only their order relationships need to

be known, i.e., whether d(i,j)wd(k,l) holds or not. If we have a

reasonable number (Nw30) of points, this condition is typically

strong enough to ensure a unique geometrical pattern for good

data [28]. There are many possible implementations of an nMDS

algorithm outlined above. We use an algorithm that has been

successfully applied by Taguchi and Oono [24,29–31] to large sets

of gene expression time series data to unravel relational patterns

among genes. A flowchart explaining the application of nMDS to

MD trajectory data is shown in Fig. 1.

If the pairwise dissimilarity d(i,j) has ranking Rij in the set of all

the available dissimilarities, and d(i,j) has ranking rij in the set of

all the pairwise distances of the points in E, the points in E are

positioned to minimize

D:
X

(i,j)

(Rij{rij)
2:

The minimum of this is achieved when Rij~rij for all i and j, i.e.,

when the pairwise rankings in the original data and those in the

embedded space exactly match. This is achieved through an over-

damped dynamics driven by the ranking mismatch. The updating

scheme used is:

dxi~s
X

j

(Rij{rij)
xi{xj

Dxi{xj D

where the positions of the points in E are given by xi and s is an

appropriately small number to make the relaxation dynamics

stable. The xi are initially chosen randomly, and the positions are

updated using the rule above until a fixed point is reached. It

should be clear that the desired minimum of D does correspond to

fixed point of the dynamics. Like all nonlinear-optimization

methods, there is a risk of getting trapped in a fixed point that is a

local minimum, although in practice the dependence on initial

condition seems to be weak compared to the dependence found for

other methods.

If additional structures are added to a trajectory, which are

smaller in number compared to the already embedded structures

in the projected space, then we may construct a new mapping for

the trajectory by maximally respecting the old configuration in the

projected space. The scheme is similar to Scheme S outlined in

Rajaram et al. [32], where each point is updated around its

position in the old configuration in the projected space.

Figure 1. nMDS algorithm. Flowchart describing data embedding to a reduced space from a higher dimensional input space (dihedral angles or
cartesian coordinates).
doi:10.1371/journal.pone.0009890.g001

Table 1. Correlation coefficients between 2D and 3D axes
obtained by applying PCA to nMDS results on all villin
trajectories in the dihedral angle space.

Traj 1 3DI 3DII 3DIII

2DI 0.982 0.012 0.002

2DII 0.012 0.975 0.005

Traj 2 3DI 3DII 3DIII

2DI 0.992 0.009 0.001

2DII 0.011 0.989 0.001

Traj 3 3DI 3DII 3DIII

2DI 0.965 0.018 0.003

2DII 0.03 0.934 0.01

doi:10.1371/journal.pone.0009890.t001

MD Trajectory Analysis
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Comparison of the embedding done by nMDS to that produced

by PCA is done in our case to check if nMDS achieves a

reasonable embedding.

Results and Discussion

We now illustrate the usefulness of PCA and nMDS in finding

reduced representations for large MD trajectories using three

complete villin headpiece folding trajectories. In order to apply

PCA/nMDS, we chose to work with backbone dihedral angles (to

study local structure formation) and Ca coordinates (to study

tertiary structure formation). Below, we describe our findings in

each of these input spaces. Note that a variety of metrics are used

in our analysis (described ahead), different from the metric used in

[6] and also our trajectories are binned more coarsely than in [6].

Dihedral angle space
The trajectories were binned at every 6 ns and every resultant

snapshot/frame was read in as a 70-dimensional vector (w/y angles

for the 35 residues) to obtain about 1000 vectors for each trajectory.

To do PCA in the dihedral angle space, similar to the version

outlined in Wang and Brüschweiler [33], we take the covariance

matrix, whose elements are given by Cov(sinWi,sinWj) (where Wi

and Wj are the corresponding dihedral angles of a residue in two

different structures i and j). On applying this linear PCA, we found

that in all three trajectories, 90 percent of the total amplitude of

fluctuations was captured by the 6 largest amplitude modes. A

nonlinear dimension reduction method is hence sure to yield good

compression for up to 3 or 4 dimensions. We applied nMDS to all

trajectory data using a Euclidean distance sinWi{sinWj , (where Wi

and Wj are as defined before) in the 70-dimensional input space as a

metric to assign dissimilarities. It was found that a two dimensional

Euclidean space was enough to capture the variations in the data

(this was checked by applying PCA to the embedded results

obtained from nMDS reduction to 2, 3, 4 and 5 dimensions as

described in [29]). The idea is as follows: Suppose we use nMDS to

embed identical data into n-dimensional and (nz1)-dimensional

spaces. Using the embedded results and applying PCA to them, we

can construct principal axes. Then, we study the correlation of the

principal axes obtained thus. Usually, the first n principal axes of the

(nz1) dimensional embedding result have high correlation

coefficients with the n principal axes of the n-dimensional

embedding result. If the correlation between the (nz1) th axes of

an (nz1) dimensional embedding with that of the n axes of an n
dimensional embedding is very small, then we may say that the n-

dimensional reduced space captures the main features in the data.

In Tables 1 and 2, we show the application of this method to n~2 in

the dihedral angle space for all trajectories. As can be seen from the

Table 2. Correlation coefficients between 2D and 1D axes
obtained by applying PCA to nMDS results on all villin
trajectories in the dihedral angle space.

Traj 1 2DI 2DII

1D 0.632 0.294

Traj 2 2DI 2DII

1D 0.812 0.178

Traj 3 2DI 2DII

1D 0.56 0.32

doi:10.1371/journal.pone.0009890.t002

Figure 2. Stability of nMDS to bin size. nMDS embedding (in 2D) of villin trajectory 1 data in the dihedral angle space is shown when the binning
time was varied between 1 ns and 30 ns. The patterns in the projected space remained stable with change in binning time.
doi:10.1371/journal.pone.0009890.g002
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Figure 3. PCA and nMDS embedded representation of trajectory 1 applied to dihedral angle space. Two panels showing the
embedding of trajectory 1 from the dihedral angle space to a 2D space obtained by PCA (left) and nMDS (right). It may seem that PCA separates data
more clearly into clusters, however we must not read too much into PCA results. The first two axes suffice to embed all the data in nMDS, whereas
with PCA, they capture only 50% of the total amplitude fluctuation in the data. Both PCA and nMDS do well to separate the structures into clusters
and this shows that when a nonlinear method like nMDS is used to reduce representation, PCA may be used to construct linear maps from PCA axes
to nMDS axes. However, we do not have sufficient data to do this.
doi:10.1371/journal.pone.0009890.g003

Figure 4. Reduced representation of Trajectory 1. In the embedded 2D space (structures numbered chronologically). Helix 1 and 3 (in blue and
red resp.) form very quickly, but helix 2 (in white) forms only towards the end when helix 1 adopts the correct orientation with respect to the rest of
the structure. Each representative structure is superimposed over the native state to show folding.
doi:10.1371/journal.pone.0009890.g004
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table, we may conclude that 2D is necessary and sufficient to

capture the main features in the data. We also checked that the

reduced representation in two dimensions remained unaffected by

binning our trajectories by up to five times more coarsely or finely in

time (see Fig. 2). Hence, nMDS proves to be stable when used to

view trajectories at different time scales.

Figure 3 shows the embedded space representation for trajectory

1 obtained by PCA and nMDS. Note that if some structures lie

closer to each other than the other structures in the projected space,

we call them a ‘‘cluster’’ for the purpose of qualitative analysis.

Although it seems like PCA produces better clusters from Fig. 3, it

should be noted that these clusters are illusory. The first two

principal components only capture 50% of the fluctuations in the

data and, moreover, when the number of data points were increased

to over 2000 by binning more finely in time, PCA was unable to

project the partially folded initial (occurring between 500 to 900 ns)

states clearly. Many of these initial states lay close to the native

cluster after PCA was applied. PCA results are hence unstable to

finer binning in time. nMDS proved to be robust in preserving inter-

relationships between structures, although it is computationally

expensive when the data size was increased. Hence, we chose to

work with nMDS embedding to analyze the villin folding

trajectories. However, PCA still proves to be a computationally

cheaper first look at the trajectories and nMDS can be used to find

further structure in the data set if needed.

We picked representative structures from the densely occupied

portions of the reduced conformational space (in 2D) to obtain a

reduced representation for the trajectories (see Figs. 4, 5 and 6).

nMDS results show that the conformational space explored by the

protein narrowed with time as expected. In all three trajectories,

the protein initially explores conformational space in what seems

like random motion after which the secondary structure elements

begin to form. In Trajectory 2 and 3, all three helices form within

the first 400 ns. In Trajectory 1, it takes up to 1 ms for helix 1 and

helix 3 to form and helix 2 forms only in the last microsecond. We

can see natural clustering in all cases, which implies that there are

many fairly well defined metastable states. When simple clustering

was used, a large number of clusters (w100) were found, but

nMDS and PCA show clearly that there are not more than 5 or 6

distinctly densely populated regions in the explored phase space.

This shows again that simple clustering may unnecessarily split

similar structures into different clusters.

Figure 5. Reduced representation of Trajectory 2. In the embedded 2D space (structures numbered chronologically). All three helices form very
quickly but their relative orientations are incorrect. Parts of these helices then dissociate, form non native contacts and finally rearrange to reach the
correct structure.
doi:10.1371/journal.pone.0009890.g005
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In order to find collective coordinates for villin folding, we must

ask how similar the three trajectories are. Is there a structure or a

cluster of structures that occur in all three trajectories? To answer

this, we must study how close to each other the data points across

three trajectories lie in the reduced (projected) space. We applied

nMDS to data from all three trajectories together after removing

noise (dihedral angles of floppy residues: residue numbers 1–3, 11–

12 and 32–35) and found that the structures from different

trajectories clustered very differently in the 2D projected space,

except for a few similarities. We found that along one of the axes in

the 2D projection, the trajectories met at a few points, which on

visual examination showed that helix 1 and helix 3 were

completely formed for those data points in all trajectories.

However, along the second dimension, the trajectories were still

slightly separated (the separation could be due to the difference in

conformation of the residues forming helix 2) except for around

the native state where they met again (Fig 7). Notice that in our

reduced space separation implies real distinction of conformations.

Needless to say, coincidence does not necessarily imply agreement

of conformations. Trajectories 2 and 3 had more similarities with

each other than with Trajectory 1 in the second projected axis. It

was found that both Trajectories 2 and 3 had two-helix structures

similar to that shown in Fig. 7. Although in trajectory 2, these

structures occurred transiently, in trajectory 3 they seemed to be

very stable and lasted for up to 3 ms. Some of the qualitative

features we distill from nMDS and PCA closely reproduce those

obtained from careful visual inspection by Freddolino and

Schulten [6].

nMDS results thus show that the path to the native state along

the dihedral angle coordinates differs qualitatively for all

trajectories, although a few trivial similarities like the rapid

formation of helix 1 and 3 exist. One axis may be interpreted as

pertaining to formation of helices 1 and 3 and the other pertaining

to local structure of the residues forming helix 2 and the coil

regions. Since PCA results and nMDS results looked very similar

for the dihedral angle space, if enough trajectories become

available in the future, it might be possible to construct a map

between the PCA axes and the nMDS axes. The axes obtained by

PCA are known linear combinations of the input dimensions. By

constructing a simple map (for e.g., quadratic or some power

series) from the coordinates of the projected data in the PCA-

reduced space to the corresponding coordinates in nMDS-reduced

space, we can attempt to reconstruct the nMDS coordinates.

However, when we attempted to map PCA axes to the

corresponding nMDS axes using three trajectories, the data was

insufficient for a clear interpretation to emerge. This is perhaps

Figure 6. Reduced representation of Trajectory 3. In the embedded 2D space (structures numbered chronologically). A two-helix conformation
with helix 2 and helix 1 joined is very stable for the first 3 ms; the protein then dissociates these helices and adopts the correct tertiary structure.
doi:10.1371/journal.pone.0009890.g006
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because we have only three trajectories showing large heteroge-

neity. Empirical evidence from the use of nMDS in bioinformatics

suggests that if we had about 30 trajectories, it is likely that such

mappings may become statistically possible [30].

In order to understand the tertiary rearrangement in folding, we

need to look at the trajectories in cartesian coordinate space. After

that, we attempt to combine both dihedral angle and cartesian

coordinates before applying PCA/nMDS to obtain a better

picture of the folding process.

Cartesian coordinate space
We chose an internal coordinate system (described below) for

each trajectory (similar to that used in [6] with the gromos [10]

method in GROMACS [11] program for clustering) to apply

dimension reduction. Suppose that there are N frames in the

trajectory (or that the trajectory is divided into N equally spaced

snapshots). Then, let us construct a symmetric matrix M defined

through M(i,j)~distance (RMSD) between frame i and frame j.
Now, each of the rows of this matrix is a vector and nMDS is

applied to these N vectors. The matrix was constructed by

computing the RMSD between all heavy atoms across frames after

discarding some of the initial unfolded state frames and aligning all

the frames (by appropriate rotations and translations). Each

trajectory (binned at 6 ns) hence consisted of about 1000 vectors of

1000 dimensions each. PCA applied to these vectors again showed

that the largest 6 modes captured 90 percent of the total amplitude

of all the modes and hence, dimension reduction could be applied

in this coordinate space. In this coordinate space, PCA did not do

as well as nMDS. It is likely that the correlation between cartesian

coordinates of heavy atoms across frames is nonlinear, whereas the

backbone dihedral angles are probably not correlated in any

significantly nonlinear way for nMDS to have a clear advantage. A

comparison of PCA and nMDS 2D embedding obtained for

trajectory 1, when applied to the internalised coordinate system, is

shown in Figure 8.

We found that two dimensions were enough to represent the

data after applying nMDS. All three trajectories again showed

completely different structures in the reduced 3-D space. While in

trajectory 2, rapid hydrophobic collapse led to structures similar to

Structure 3 in Fig. 4 to be stable over 1–2 ms, in trajectory 3, a

two-helix structure as shown in Fig. 7 was the most stable. In all

three trajectories, a similar transition referred to as a ‘‘flipping

transition’’ in [6] happened towards the last 500 ns prior to

folding. The flipping transition involved the reversal of helix 1

(flipping from pointing into the page to out of the page, with the

page aligned along the plane formed by helix 2 and helix 3) [6].

The structure before helix 1 flipped into the correct native

conformation will be called the flipped state in our discussion.

Does the flipping transition occur similarly in all three

trajectories? In order to answer this question, we chose Ca

coordinates of only five of the residues (residues: 5, 8, 15, 23 and

27) forming the three helices and used the contact distances between

them, together with the turning angle of helix 1 (residues 5 and 8)

about the plane formed by helix 2 and 3. We now apply nMDS to

all three trajectories using the contact distances described above.

Two axes were found to be sufficient to represent the data and we

found that the trajectories explored different portions of the

projected space and met only close to the native state (Fig. 9). On

visual inspection, no clear interpretation of the projected axes

emerged but the points of meeting for trajectory 2 and 3 showed a

series of two-helix conformations and a common flipped confor-

mation (marked on Fig. 9). Trajectory 1 only explored transiently

Figure 7. Separation of the trajectories in reduced dihedral angle space. Along one of the axes, there are many crossing points beteween
the trajectories. The crossing points were found to correspond to similar secondary structure elements forming, i.e. formation of helix 1 and 3. Along
the other axis however, trajectory 1 is separated until it reaches the cluster containing the native state. Trajectories 2 and 3 meet at the two-helix
states. The double helix (DH) and flipped (F) states are marked for each trajectory in the figure. Note that the flipped state of trajectory 1 is different
from that of trajectories 2 and 3.
doi:10.1371/journal.pone.0009890.g007
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some of the structures that were common to Trajectory 2, and a

two-helix state never occurred. The flipped state was found to be

different in Trajectory 1 as compared to that of Trajectories 2 and 3

(Fig. 9) in that the second helix was formed only after the flipping

happened in Trajectory 1. In Trajectories 2 and 3, helix 2 and 3

dissociated from the two-helix state described before and the protein

quickly locked itself in the correct tertiary state after helix 1 flopped

around exploring various non-native conformations. Although the

flipped structure occurred in all three trajectories (and was slightly

different in trajectory 1 structurally compared to trajectories 2 and 3

as explained above), the flipping transition was observed to occur

through a different series of steps in all three trajectories. We cannot

determine from the present data whether the inter-trajectory

differences in the path followed during the flipping transition are

Figure 8. PCA and nMDS embedded representation of Trajectory 1 applied to internal coordinate space. Two panels showing the
embedding of trajectory 1 from the internal coordinate space (described in the paper) to a 2D space obtained by PCA (left) and nMDS (right). PCA
results were not stable when binning time was reduced, nMDS was found to be more stable. Additionally, the first two PCA axes capture only 40% of
the total amplitude fluctuation in the data.
doi:10.1371/journal.pone.0009890.g008
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due to the presence of a few distinct options, or because the

intermediate is so disordered (due to the lack of tertiary contacts)

that its motion is essentially diffusive until the secondary structure

elements reform contacts with each other.

When both Ca coordinates and dihedral angle coordinates were

used to apply nMDS reduction, the resultant representation was

dominated by the Ca coordinate values and no new similarities

between the trajectories emerged. This shows that the similarities

in local structure formation are trivial and the global folding path

is very different for all trajectories. Dihedral angles may hence not

be good candidates for collective coordinates of small proteins such

as villin headpiece. A more rigorous method to detect common-

Figure 9. Separation of the trajectories in reduced Ca contact distances space. The points of meeting for trajectory 2 and 3 are a series of
two-helix conformations (labelled as DH) and the flipped state (F). Trajectory 1 does not meet the other two trajectories except towards the last
500 ns when the protein is nearly folded. No obvious interpretation of the axes emerged on visual inspection, the trajectories showed more marked
difference in the parts of projected space they explored.
doi:10.1371/journal.pone.0009890.g009

MD Trajectory Analysis

PLoS ONE | www.plosone.org 10 April 2010 | Volume 5 | Issue 4 | e9890



alities, ICS Survey [30] was also used in the combined Ca

coordinates - dihedral angle space, but no interesting common-

alities were found. nMDS was always used with a Euclidean metric

in our results reported in this paper. However, the Euclidean

metric may not be suitable to the study of all proteins/biological

systems. In certain systems, it might be wiser to design more

intuitive metrics that separate visually different structures even if

their RMSDs are close. We also used a Hamming distance metric

to rank the frames in our trajectories before applying nMDS, but

this did not yield any new information. It is likely that the folding

pathways are structurally heterogeneous and there are not many

significant intermediates that new metrics may find. However, if

larger proteins are studied, it would be desirable to design metrics

that can distinguish topologically distinct structures that may lie

close together if viewed in dRMSD space alone.

The most notable common feature found across trajectories

using nMDS on all input spaces was the competition between local

and global structure formation. If the protein formed all three

helices very early like in trajectories 2 and 3, it spent a long time

exploring non-native two-helix or collapsed conformations before

dissociating and locking into the correct global structure.

However, small changes in folding time such as this are not

significant for small proteins. To understand the competition

between global arrangement and local structure formation, it is

important to study folding trajectories of larger proteins. To this

end, we need at least four orders of magnitude faster computa-

tional speed.

In conclusion, we have shown that nMDS can achieve high

compression of MD data while preserving the salient features of

the underlying trajectories. We also showed that PCA is a good

tool that can be applied to the data as a first step to check for any

structure present in the projected data. Our analysis has

convincingly been able to pick out similarities and distinguishing

features of different MD folding trajectories better than any cut-off

dependent clustering method. While conventional clustering

methods produced unstable (to cutoff parameter changes/coarser

binning in time) clusters, nMDS produced a stable representation

of all trajectories showing densely populated regions of the

(reduced) phase space clearly. Also, unlike tight clustering which

produces a large number of clusters whose interrelationships are

not known, nMDS gives a clear picture of the relationships

between data points across time. Investigations of villin headpiece

folding using nMDS have shown that the three villin trajectories

analyzed here explore significantly different portions of the

conformational space barring a few similarities such as rapid

formation of most secondary structure elements and a similar

flipping transition towards the end of the folding process. Many

recent findings support the view of multiple routes to protein

folding [34,35]. Proteins with heterogeneity in the folding

pathways may have been evolutionarily selected so that folding

is ensured under very different conditions possible in the cell [35].

Much work still remains to be done with nMDS. While the

compression achieved is certainly very high, nMDS is a

computationally costly method and PCA may be a cheaper

alternative if sufficient compression can be achieved using linear

PCA. The interpretation of axes obtained after nMDS is still very

dependent on visual inspection of embedded space data and

perhaps some attempts can be made to construct linear maps

between axes obtained by nMDS and those obtained by PCA.

However for such mappings to be statistically meaningful, one will

need to work with at least about 30 trajectories. It can be expected

that with the advance of technology, a large number of folding

trajectories may soon become available and nMDS can prove to

be a robust method to find collective coordinates for description of

folding processes. Although we have illustrated our case for protein

folding trajectories, nMDS should be able to reduce any MD

trajectories effectively.

Acknowledgments

A. R. would like to thank Satwik Rajaram for help with coding nMDS and

valuable suggestions regarding nMDS, and Yoshi Oono for several useful

discussions.

Author Contributions

Analyzed the data: AR. Contributed reagents/materials/analysis tools:

AR. Wrote the paper: AR. Conceived and performed the molecular

dynamics simulations analyzed in this manuscript: PLF. Conceptualized

the simulations performed: KS.

References

1. Kubelka J, Chiu TK, Davies DR, Eaton WA, Hofrichter J (2006) Sub-

microsecond protein folding. J Mol Biol 359: 546–553.

2. Kulbeka J, Hofritcher J, Eaton WA (2004) The protein folding speed limit. Curr

Opin Struct Biol 14: 76–88.

3. Maragakis P, Lindorff-Larson K, Eastwood MP, Dror RO, Klepeis JL, et al.

(2008) Microsecond molecular dynamics simulation shows effect of slow loop

dynamics on backbone amide order parameters of proteins. J Phys Chem B 112:

6155–6158.

4. Ensign DL, Kasson PM, Pande VS (2007) Heterogeneity even at the speed limit
of folding: large-scale molecular dynamics study of a fast-folding variant of the

villin headpiece. J Mol Biol 374: 806–816.

5. Freddolino PL, Liu F, Gruebele M, Schulten K (2008) Ten-microsecond MD

simulation of a fast-folding WW domain. Biophys J 94: L75–L77.

6. Freddolino PL, Schulten K (2009) Common structural transitions in explicit-

solvent simulations of villin headpiece folding. Biophys J 97: 2337–2346.

7. Duan Y, Kollman P (1998) Pathways to a protein folding intermediate

observed in a 1 microsecond simulation in aqueous solution. Science 282:

740–744.

8. Karpen ME, Tobias DJ, Brooks CL (1993) Statistical clustering techniques for

the analysis of long molecular dynamics trajectories: analysis of 2.2-ns

trajectories of YPGDV. Biochem 32: 412–420.

9. Hubner IA, Deeds EJ, Shakhnovich EI (2006) Understanding ensemble protein

folding at atomic detail. PNAS 103: 17747–17752.

10. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, et al. (1999)

Peptide folding: When simulation meets experiment. Angew Chem Int Ed 38:

236–240.

11. van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, et al. (2005)

GROMACS: Fast, flexible, and free. J Comput Chem. pp 1701–1718.

12. Krivov SV, Muff S, Caflisch A, Karplus M (2008) One-Dimensional Barrier-

Preserving Free-Energy Projections of a beta-sheet Miniprotein: New Insights
into the Folding Process. J Phys Chem B 112: 8701–8714.

13. Handl J, Knowles J, Kell DB (2005) Computational cluster validation in post-
genomic data analysis. Bioinformatics 21: 3201–3212.

14. Garca AE (1992) Large-amplitude nonlinear motions in proteins. Phys Rev Lett
68: 2696–2699.

15. Lange OF, Lakomek NA, Farès C, Schröder GF, Walter KFA, et al. (2008)
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