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Abstract

In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory
and map development. However, the organization of structure and dynamics of neural networks induced by external
asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP) is a typical synaptic plasticity that
has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity
is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in
response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we
study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks
through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and
use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately
on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus
on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of
propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by
stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The
results imply a possible important role of STDP in generating feedforward structure and collective propagation activity
required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the
results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well.
Furthermore, this finding suggests a potential application for examining STDP by measuring neural population activity in a
cultured neural network.
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Introduction

In neural systems, an asynchronous state characterized by

arbitrarily low mean spiking correlations has been observed

extensively in experiments [1,2], which offers substantial advan-

tages for information processing and coding [2]. Especially in

sensory systems, the asynchronous firings or external asynchro-

nous stimuli (which can produce the asynchronous firings) play an

important role in perceptual learning, associative memory and

map development [3,4]. It has been experimentally found that, the

sensory asynchronous stimuli are used to mediate the plasticity of

neural responses for learning and memory in adults and the

activity-dependent development of sensory map during a critical

period of early postnatal life [3–8]. For instance, late visual

stimulus is able to serve instructive role for earlier arriving auditory

input in the barn owl, a highly efficient predator [5]. Neural

associations between stimuli and reward expectancy in primary

visual cortex can form when adult rats experience an association

between visual activity (conditioned stimulus) and subsequent

reward (unconditioned stimulus) [6]. A recent study has reported

that the asynchronous stimuli producing binocular retinal activities

in mice during a critical period in development enhance eye-

specific segregation and regulate retinotopy in the developing

visual system [7].

Recently, an important cognitive function, cue-triggered recall

of learned temporal sequences, has been experimentally studied

[9,10]. The cue-triggered recall of a learned temporal sequential

firing has been found in neuronal ensemble of hippocampus, its

surrounding cortical areas [11,12] and visual cortical circuits [13].

Importantly, the learned sequential firing can be trained in

experiments by the repeated asynchronous stimuli. For example, a

recent study reported that [13], a moving spot that asynchronously

stimulated the neurons whose receptive fields fall along the motion

path, can evoke the sequential firing of neuronal ensemble in

primary visual cortex. Shortly after repeated motion conditioning,

a brief flash at the starting point of the motion path can also evoke

the sequential firing similar to that evoked by the moving spot. In
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this experiment, the sequence learning and cue-triggered recall

become more persistent with more repeats of the stimulation of the

moving spot. This indicates that, asynchronous stimuli evoked by

the moving spot, play an important role in the formation of the

sequence learning and recall.

In general, asynchronous stimuli can be used to mediate the

activity-dependent map development during a critical period of

early postnatal life and the synaptic plasticity for learning and

memory in adults [3,4,6,8,14]. Especially, asynchronous stimuli

contribute to the formation of sequence learning and recall [11–

13]. Many neuron scientists thought that, these functional roles

result from activity-dependent synaptic plasticity between neurons

[4,5,7,8,13]. However, the organization of structure and dynamics

of neural networks due to synaptic plasticity are not well

understood in the presence of asynchronous stimuli. It is clear

that, the asynchronous stimuli can produce asynchronous,

segregative firings of pre- and postsynaptic neurons. So far,

experiments have extensively found a type of synaptic modifica-

tion: spike-timing-dependent plasticity (STDP), which is highly

sensitive to correlations between pre- and postsynaptic firings [15–

17]. Particularly, this synaptic plasticity has been widely found in

sensory systems [18–21], which could contribute to learning,

memory and development [4,21–23]. Therefore, it is natural to

expect that STDP could play an important role in response to

asynchronous stimuli.

In order to explore the role of STDP in the presence of external

asynchronous stimuli, we construct a network model with local

connectivity and sparseness depending on the spatial distance

between neurons, and use external currents to stimulate alternately

on different spatial layers. We here expect that, STDP can modify

some synaptic strengths to form a feedforward network due to

asymmetric pre-post spike orderings resulting from asynchronous

stimulus pairings. In the resulting feedforward structure, a short

stimulation current can be expected to produce wave propagation

of neuronal firings, which could provide an alternative explanation

for the cue-triggered recall of sequence learning. In addition, the

results imply an important role of STDP in generating feedforward

structure and collective propagation activity required for experi-

ence-dependent map plasticity in developing in vivo sensory

pathways and cortices. Since the synaptic modification due to

STDP is sensitive to correlations between pre- and postsynaptic

firings [15,16], the resulting feedforward structure is expected to

reflect the property of STDP. In the feedforward network, directed

propagation dynamics of neural activity is also expected to reflect

the underlying property of STDP, which suggests an application of

the analysis for examining STDP by measuring neural population

activity in cultured neural network.

Materials and Methods

Spatial Neural Network Model
Recently, spatial network has been widely modeled [24–27].

Considering the locally-linked structure in real neural systems, we

here construct a two-dimensional neural network model with local

connectivity and sparseness, depending on the spatial distance

between connected neurons. As shown in Fig. 1(a), N neurons are

located in lattice points of the two-dimensional square with M
layers, where each layer has n~N=M neurons. Each pair of

neurons is connected locally with probability p~e{kr [28] by

synapse with random-chosen initial synaptic strength from 0 to 1,

where k denotes the locally connecting strength and r is the

distance between two neurons (the side length of square is

regarded as 1 here). For simplicity but without loss of generality,

the model is composed of Integrate-and-Fire type neurons with

chemical couplings of d function. The dynamics of the membrane

potential Vi of neuron i is described by

tm
dVi

dt
~Vrest{Viz

XN

j~1,j=i

gAijWij(VE{Vi)d(t{tj
sp)zI : ð1Þ

Here, we adopted the parameter values as those in Refs.

[29,30], which model V1 cells according to empirical observations

[31]. The membrane time constant tm equals 30 ms, the resting

potential Vrest is {60 mV, and the reversal potentials VE for all

the excitatory synapses are 0 mV. Each neuron i integrates

external stimulus I and inputs coming from the connecting

neurons j at spike time t~tj
sp. When the potential Vi reaches the

threshold value {50 mV, the neuron i emits a spike, and then the

membrane potential is reset to the resting potential Vrest. Here, we

do not consider the refractory period of neuronal activity in order

to improve the speed of modeling. However, the qualitative results

are independent of the refractory period. Also, the parameter

g~0:02 is constant synaptic conductance, Aij(i=j) is the

adjacency matrix (Aij~0 or 1) and Wij(i=j) is the weight of

synaptic strength from neurons j to i. The synaptic modifications

are subject to STDP, which will be described in the following.

Spike-Timing-Dependent Plasticity
STDP has been extensively found in experiments and has

received much theoretical attention in recent years [32–36]. The

temporal order of presynaptic and postsynaptic spikes determines

whether the synaptic change is potentiated or depressed. The

synaptic change will be potentiated if presynaptic neuron spikes

before postsynaptic neuron; otherwise, it will be depressed. The

changes of synaptic strength are a function of the relative timing

between presynaptic spike arrival and postsynaptic firing. The

smaller the lag between the spikes, the larger the change. The

modification DWij of synaptic weight Wij from neuron j to i is

approximated by exponential functions of the spiking time

difference Dt between post- and presynaptic neurons [15],

DWij~Aze{Dt=tz , (Dt§0);

DWij~{A{eDt=t{ , (Dtv0):

8><
>:

ð2Þ

The parameters Az, A{, tz and t{ describe the property of

STDP. Generally, STDP can be divided into two forms in

numerical studies. If Az~A{ and tz~t{, it is temporally

symmetric form; otherwise, it is temporally asymmetric form.

According to Eq. (2), the synaptic dynamics in Eq. (1) is described

as,

DWij(t)~Aze
{(tisp{t

j
sp)=tz , (ti

sp§tj
sp)

DWji(t)~{A{e
{(tisp{t

j
sp)=t{ , (ti

spwtj
sp)

8>>><
>>>:

(t~ti
sp), ð3Þ

when neuron i fires. For simplicity of simulation and without loss

of generality, we only consider the low-frequency stimuli. Thus, we

here consider only the largest modification corresponding to last

spike time tj
sp of neuron j at spiking time t~ti

sp of neuron i

(ti
sp§tj

sp). Particularly, at t~ti
sp~tj

sp (i.e., synchronous spikes of

STDP and Asynchronous Stimuli
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neurons i and j), DWij(t) and DWji(t) are both equal to

Aze
{(tisp{t

j
sp)=tz~Az. As discussed in [15], Wij (or Wji) is set

to 0 if the change makes Wijv0 (or Wjiv0) and Wij (or Wji) is set

to the maximal value 1 if the change would make Wijw1 (or

Wjiw1).

For STDP model, the authors only consider.

External Asynchronous Stimuli
For many years, the neural-response to external stimulus has

been challenging hot topics for the study of neurology

[5,7,37,38]. By using external asynchronous stimuli, our model

produces a feedforward network due to STDP. In our model,

for each pair of layers, we firstly stimulate the left layer with

duration T and then stimulate the corresponding right layer

with the same duration T after time Dttr by inputting pulse

current I~I0 (Fig. 1(b)), where I0 is set as a small enough value

that it cannot induce spikes of neurons in other layers. Clearly,

the synapses from neurons of the left layer to those of the right

layer are potentiated by STDP because spikes of the left

neurons precede those of the right neurons due to interval

Dttr§0, while the synaptic strengths of reverse connections are

depressed. After each training trial for each pair of layers, there

are long enough time T0 to let network activity recover to the

rest state for the next training. Here, we do the training with

the same number of trials for each pair of layers. After many

training trials for all the pairs of layers, all the synaptic weights

from left layers to right layers will increase almost to 1, while

reverse synaptic weights will decrease approximately to 0.

Namely, the resulting network structure is expected to be a

feedforward structure from left to right after many enough

training trials. Then, to test the feedforward structure, we

measure collective propagation property of neural activity by

injecting a steady current I1 into a certain layer in the resulting

network (Fig. 1(c); here, we choose the 3rd layer).

Results

Generation of Feedforward Structure
We firstly simulate the generation of feedforward structure. As

shown in Fig. 2, the initially locally-linked network (Fig. 2(a)) forms

a feedforward structure (Fig. 2(b)) due to STDP by the training

procedure mentioned above. Moreover, we show in Fig. 2(c) the

propagation activity of neural spikes by inputting steady current.

Obviously, the signals from the stimulated layer 3 (neurons i~201
to 300) spread only to the right layers (neurons i~301 to 1000),

while the left layers (neurons i~1 to 200) cannot respond. This

directed propagative activity indicates the formation of feedfor-

ward structure and thus reflects the existing of STDP in this neural

network.

Effect of Number of Training Trials
In order to further explore the impact of the training on the

resulting feedforward structure, we next investigate the depen-

dance of synaptic weights for different connection types on the

number of training trials while keeping Dttr~20 ms. Here, we

divide the synaptic connections into three types: feedforward (in

the training direction, from left layer to right layer in model

Fig. 1(a)), feedback (the opposite training direction, from right

layer to left layer) and recurrent (intra-layer) connections. Fig. 3(a)

shows the situation at the beginning of our simulations, with all

synaptic weights randomly chosen from 0 to 1. After 10 trials

(Fig. 3(b)), the feedforward synaptic weights are potentiated by

STDP because left (presynaptic) neuron spikes before right

(postsynaptic) neurons. On the contrary, the feedback synaptic

weights are depressed due to reverse pre-post spike ordering. In

addition, we can see the strong increase of recurrent synaptic

weights. This is because the linked neurons within a layer often

synchronously fire due to the same driving stimulus, causing the

synaptic potentiation by STDP (see Eq. 3 for ti
sp&tj

sp). After 20

(Fig. 3(c))and 30 (Fig. 3(d)) trials, many more feedforward synapses

have been strengthened (e.g. 63% being approximate to 1 in the

left panel of Fig. 3(d)) and many feedback synapses have been

weakened (e.g. 63% being approximate to 0 in the middle panel of

Figure 1. The locally-linked neuronal network model and external asynchronous stimulus currents. (a) The locally-linked neuronal
network model on two-dimensional square having N neurons and M layers. Here, we take N~1000, M~10 and label neural number (1 – 1000) from
left to right layers. (b) To train the network, the input pulse current I0 with duration T is injected alternately into each pair of layers with the left-right
sequence having the same inter-stimulus interval Dttr , respectively. After each training trial, there is a long enough time T0 to let network activity
recover to the rest state for the next training. We perform training for all the pair of layers with the same number of trials. (c) To test the resulting
feedforward structure and its propagative capacity, a steady current I1 is injected into a certain layer (here, we choose the 3rd layer, i.e., L3).
doi:10.1371/journal.pone.0084644.g001
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Fig. 3(d)), which makes the network form feedforward structure

(Fig. 2(b)).

Fig. 4(a) shows clearly the changes of average synaptic weights

with respect to the number of training trials. Obviously, the

increasing amount of synaptic modification for feedforward

connections is equal to the decreasing amount of synaptic

modification for feedback connections (Fig. 4(a)), which results

from the temporally symmetric form of STDP adopted here (i.e.,

Az~A{ and tz~t{). For temporally asymmetric form of

STDP, we also show the similar changes of average synaptic

weights in Fig. 4(b). As in the symmetric case, the feedforward

structure will emerge and become stronger with the increase of the

number of training trials. Differently, the incremental amount of

synaptic strengths for feedforward connections and reductive

amount of synaptic strengths for feedback connections are not

equal (Fig. 4(b)) owing to the asymmetric modification between

Figure 2. Evolution of the network and dynamical propagation. The weights of synaptic strengths on the model before (a) and after (b) 20
training trials. (c) The spatiotemporal pattern Sp(i,t) of neuron spikes by injecting steady current for testing feedforward network. The system
parameters are k~0:2, Az~A{~0:02 and tz~t{~50 ms. The parameters for training (Fig. 1(b)) and testing (Fig. 1(c)) are given by I0~20,
T~100 ms, T0~3 s, Dttr~0 ms, and I1~400.
doi:10.1371/journal.pone.0084644.g002

Figure 3. Distribution of synaptic weights after the different training trials. Distribution of synaptic weights for three different connection
types: feedforward (left), feedback (middle) and recurrent (right) at the beginning of training (a) and after the training with different number of trials
10 (b), 20 (c), 30 (d). The same parameters are the same as in Fig. 2, except for Dttr~20 ms.
doi:10.1371/journal.pone.0084644.g003

STDP and Asynchronous Stimuli
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potentiated and depressed synaptic strengths with the same pre-

post firing timing.

Effect of Inter-stimulus Interval
We also studied the effect of inter-stimulus timing (i.e., interval

Dttr) on synaptic weights for different connection types. When the

interval is shortened to 0 ms (Fig. 5(a)), about 62% of feedforward

synapses have been strengthened to 1 (see the left panel of Fig. 5(a)),

while 62% of feedback synapses have been weakened to 0 (see the

middle of Fig. 5(a)) after 20 trials, indicating a generation of strong

feedforward structure (see Fig. 2(b)). With the increasing of inter-

stimulus interval (Figs. 5(b)–5(d)), the resulting distributions of

synaptic weights become broader, showing that the feedforward

structure is weaker. For example, when the inter-stimulus interval

is increased to 60 ms, there are insufficient potentiation (only 23%

being approximate to 1 in the left panel of Fig. 5(d)) and

insufficient depression (only 23% being approximate to 0 in the

middle panel of Fig. 5(d)) after 20 trials to form feedforward

structure.

The right panels of Fig. 5 show that the synaptic distribution in

recurrent connections appears to be independent of inter-stimulus

interval. Since the training current I0 is set as a small enough value

that it cannot induce spikes of neurons in other layers without

receiving training, the amount of recurrent synaptic modification

within layer is completely determined by duration of external

current stimuli imposed to the layer (i.e., the product of T and

number of training trials in Fig. 1(b)), independent of the inter-

stimulus interval. This result implies that the synaptic modifica-

tions for the recurrent and feedforward/feedback connections are

independent. So, the effect of recurrent connections on the

formation of feedforward network can be neglected in our model.

Fig. 6(a) clearly shows the changes of average synaptic weights

with respect to the inter-stimulus interval. Importantly, the

amount of average feedforward modification relative to its initial

value 0.5 (see the value at 0 trials in Fig. 4(a)) exhibits an

exponential decay with Dttr, SWT{0:5*e{Dttr=tS
z with an

exponent tS
z (Fig. 6(b)), and the amount of modification of

average feedback connections relative to its initial value 0.5 (see

the value at 0 trials in Fig. 4(a)) is also characterized as an

exponential decay 0:5{SWT*e{Dttr=tS
{ with another exponent

tS
{ (Fig. 6(c)). For the temporally symmetric form of STDP, the

two exponents tS
z and tS

{ are equal (Figs. 6(b) and 6(c)) due to the

equal amounts of synaptic potentiation and depression for a pre-

post firing timing. The two exponents tS
z and tS

{ are different for

the temporally asymmetric form of STDP because the symmetric

modification of potentiation and depression is broken, shown in

Fig. 7.

We numerically examined the relationships between the

exponents tS
z and tS

{ characterizing the exponential falloffs with

the exponents tz and t{ in the STDP functions (Figs. 8(a) and

8(b)). The exponents tS
z and tS

{ are close to tz and t{,

respectively. Moreover, tS
z and tS

{ are independent of t{ and tz,

respectively. It’s further found that, these equal relationships hold

for networks with different connecting parameter k (results not

shown). These findings suggest that the dependence of the

structure modification on inter-stimulus interval Dttr reflects the

exponents of STDP. Since network structure determines dynamics

of the network, a similar dependance of population dynamics on

interval Dttr is naturally expected to reflect the underlying STDP

properties in the resulting feedforward networks, which is

described below.

Propagation Property
In brain, information and cognitive processing requires signal

propagation through multiple regions [39]. The feedforward

network plays a crucial role in signal propagation [40]. Here we

study the propagation property in the above feedforward network

after training. In Fig. 9(a), we show the effect of inter-stimulus

Figure 4. Average synaptic weights as a function of the number of training trials. Average synaptic weights for three different connection
types: feedforward (squares), feedback (circles) and recurrent (upward triangles) as a function of the trial number for temporally symmetric form of
STDP (Az~A{~0:02 and tz~t{~50 ms) (a) and for temporally asymmetric form of STDP (Az~0:04, A{~0:02 and tz~30 ms, t{~60 ms)
(b). The other parameters are the same as in Fig. 2 except for Dttr~20 ms. Also, we show the average synaptic weights for the connections including
both feedforward and feedback types (downward triangles) in (a) and (b).
doi:10.1371/journal.pone.0084644.g004

STDP and Asynchronous Stimuli
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Figure 5. Distribution of synaptic weights after the different training stimulus intervals. Distribution of synaptic weights for different
connection types: feedforward (left), feedback (middle) and recurrent (right) after the 20 training trials with different stimulus intervals Dttr~0 ms (a),
Dttr~20 ms (b), Dttr~40 ms (c), Dttr~60 ms (d). The other parameters are the same as in Fig. 2.
doi:10.1371/journal.pone.0084644.g005

Figure 6. Average synaptic weights as a function of the stimulus interval for STDP with temporal symmetry. Average synaptic weights
for three different connection types: feedforward (squares), feedback (circles) and recurrent (upward triangles) as a function of the stimulus interval
after the 20 training trials (a). The amounts of average synaptic modification relative to its initial value 0.5, SWT{0:5 (b) and 0:5{SWT (c) for
feedforward (b) and feedback (c) connections exhibit exponential falloffs as the stimulus interval Dttr increases with exponents tS

z (b) and tS
{ (c),

respectively in linear-log scales. we also show the average synaptic weights for the connections including both feedforward and feedback types
(downward triangles) in (a). The parameters are the same as in Fig. 2.
doi:10.1371/journal.pone.0084644.g006

STDP and Asynchronous Stimuli
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interval of training on the propagation ability. As we see in

Fig. 3(c), the resulting network can support directed propagation of

activity from left to right when the 3rd layer is stimulated, and the

activity decays out. Here we do not consider further effect of

STDP during propagation. We plot the number of spikes Nsp of all

propagated layers (i.e., layers 4 to 10) as a function of inter-

stimulus interval Dttr. Clearly, it exhibits an exponential falloff

Nsp*e{Dttr=tD
z with exponent tD

z, similar to the exponential falloff

of STDP in Eq. (3). The exponent tD
z increases almost linearly

with the exponent tz in STDP, which is almost independent of

the other exponent t{ (Fig. 9(b)). This is because the spike number

Nsp of propagated layers depends mainly on the amount of

feedforward synaptic modification (not on that of feedback

synaptic modification), determined by the exponent tz of

potentiation term in Eq. (3) (Fig. 8(a)). For a comparison, we find

that the scaling of the propagative activity remains the same when

the feedback connections are cut (Fig. 9(a) without feedback),

showing that the feedback connections are so weak that their effect

on neural activity can be neglected. Additionally, the propagative

activity is still almost the same without recurrent connections

(Fig. 9(a)), indicating that the recurrent connections within layers

also have little effect on the propagative dynamics. This is because

recurrent connections are very sparse with k = 0.2 (Fig. 3(b))

Figure 7. Average synaptic weights as a function of the stimulus interval for STDP with temporal asymmetry. The same as in Fig. 6, but
for the temporally asymmetric form of STDP. Here, the parameters are the same as in Fig. 2, except for Az~0:04, tz~30 ms, t{~60 ms.
doi:10.1371/journal.pone.0084644.g007

Figure 8. Dependance of exponents for the resulting structure on exponents of STDP after 20 training trials. (a) tS
z vs. tz for different

t{ (b) tS
{ vs. t{ for different tz. For comparison, tS

z~tz and tS
{~t{ are shown as solid lines in (a) and (b), respectively. The other parameters are

the same as in Fig. 2.
doi:10.1371/journal.pone.0084644.g008

STDP and Asynchronous Stimuli
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although recurrent connection strengths are strong. Consequently,

the resulting feedforward structure governs the propagative

property of the whole network in the presence of the input

current. In Fig. 9(c) we show the linear relation tD
z&f tS

z between

the structure modification and dynamical propagation. The

coefficient f depends strongly on the stimulation strength I1. As

shown in Fig. 9(d), f increases with I1. From these simulation

results, we can see that a STDP-structure-dynamics relation

tz&tS
z!tD

z (Figs. 8(a), 9(b) and 9(c)) can emerge in the

feedforward network induced by asynchronous stimuli on different

spatial neuronal layers.

Discussion

In experiments, cultured neuronal networks and developing

neural systems can both generate spontaneous activity in the form

of synchronized bursting events (SBEs) [41–43], short time events

during which most of the recorded neurons fire rapidly, with

several subgroups. Besides, neural activity often exhibits avalanch-

es with some dynamical clusterings described by synchronous

firing of neurons in vivo and in vitro [42,44–46]. In SBEs and

avalanche activity, the different dynamical clusterings behave

inter-cluster asynchronous firings. So, the dynamical clusterings

might strongly shape the network structure due to STDP, as the

external asynchronous stimuli do in our model. This suggests an

important role of STDP in generating feedforward structure and

collective propagation activity on neural systems in vivo and

in vitro [23,41,44,45]. The role of STDP in the formation of

feedforward structure driven by asynchronous stimuli might

provide insight into important role of propagating feedforward

(from low-level to high-level brain areas) information flow for

experience-dependent map plasticity in the development of in vivo

sensory pathways and cortices [4,7,21,22].

The sequence learning and recall may result from activity-

dependent synaptic plasticity. The conditioning-evoked sequential

spiking of neighboring neurons is well suited for the induction of

STDP [13], which selectively potentiate the directed connections

between neurons and facilitate spike propagation in the same

direction. Our study may provide an insight into formation

mechanism of the sequence learning and recall. In our model, the

resulting feedforward structure could denote sequence memory

formed by the sequence learning. The spiking propagation in the

direction of feedforward structure could reflect dynamical process

of the cue-triggered recall. From Figs. 3 and 4, we can see the

resulting feedforward structure will become clearer and so produce

the more prominent propagation, as the number of our training

trials increases. Indeed, with more repeats of stimulus sequence in

experiment, the sequence learning and recall become more

persistent [13]. Thus, our study suggests that STDP may modify

neuronal structure and dynamics induced by external asynchro-

nous stimuli to support the sequence learning and recall, which is

consistent well with the experimental observation.

The amount of synaptic potentiation or depression due to

STDP is typically measured by pairing a number of pre- and

Figure 9. (Color online) The property of dynamical propagation in the resulting network. (a) The total number of spikes Nsp of
propagated layers as a function of inter-stimulus interval Dttr in the feedforward network obtained after 20 trials of training when keeping all the
connections, indicating the exponential behavior of propagation dynamics with exponent tD

z in the linear-log scales. For comparison, the Nsp are also

plotted in (a) when feedback and recurrent connections are cut (i.e., without feedback and without recurrent), respectively. (b) The exponent tD
z as a

function of exponent tz in STDP for different t{. (c) The exponent tD
z as a function of the corresponding exponent tS

z in the feedforward network
structure for different t{. In (b) and (c), the linear fit lines of data are also given with slope f . (d) The coefficient f as a function of stimulation strength
I1 . The other parameters are the same as in Fig. 2. Data of Nsp are compiled for 1000 ms, and averaged over 10 independent runs with error bar in (a).
doi:10.1371/journal.pone.0084644.g009
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postsynaptic action potentials with a specified time interval

between them [32,33,35,47]. But, for a large-scaled neural system,

it becomes very complex and difficult to directly test each synaptic

modification due to spike timing and ordering. In our model, the

resulting STDP-structure-dynamics relation (Figs. 8(a), 9(b) and

9(c)) suggests a potential method to examine STDP in large-scaled

neural network. Our results demonstrate the propagative activity

exponentially decays with exponent tD
z!tz, which provides an

application for examining STDP by measuring neural population

activity in a cultured neural network trained by external

asynchronous stimuli. Cultured neural networks cultivated on

multi-electrode arrays provide relatively simple and well-con-

trolled model systems for investigating long-term activity of

individual neurons at different locations [33,41,48–50]. By

cultivating our two-dimensional network model and adopting

our training/testing method, the strength of exponent tz in STDP

might be qualitatively examined by measuring propagation

property in the resulting feedforward network. This study could

shift the attention in the measurement of synaptic plasticity from

the single synapse to the collective network activity. In the future,

how to design other model and method for examining more

parameters (e.g., Az, A{ and t{) of STDP is an interesting

question to pursue.

To sum up, using a simple locally linked network of integrate-

and-fire neurons with STDP, we showed that it can naturally

evolve into a feedforward structure when a pair of external

asynchronous stimuli is used to train the network. Interestingly, the

amount of synaptic modification due to asynchronous stimulus

pairing with a time interval falls off exponentially as the interval

increases, similar to the falloff of STDP as the interspike interval

increases. Moreover, exponents (tS
z and tS

{) of the exponential

falloff are almost the same as the exponents (tz and t{) of STDP

(i.e., tS
z&tz and tS

{&t{). Most interestingly, propagative

activity also exhibits a similar exponential falloff with exponent

tD
z!tz in the resulting feedforward network. Thus, by measuring

the exponential falloff of the propagation activity as a function the

inter-stimulus intervals in the resulting trained network, we are

able to extract a direct measurement of the characteristic time

scale in the network’s STDP property. Generally, STDP-structure-

dynamics relation tz&tS
z!tD

z can emerge in our model.

Although the formation of feedforward structure under the action

of STDP has been widely studied [51,52], the external asynchro-

nous stimuli observed and used extensively in experiments, has not

yet been investigated to induce the feedforward structure through

STDP. The STDP-structure-dynamics relation is the first to be

shown in the resulting feedforward network by imposing

asynchronous stimuli. Our model may prove useful for under-

standing the relation between structure and dynamics induced by

asynchronous stimuli through STDP and provide a starting point

for studying the property of STDP by using external asynchronous

stimuli.
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