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Abstract: Podoconiosis is an endemic, non-infectious, geochemical and non-filarial inflammatory
cause of tropical elephantiasis. The immunology of podoconiosis is not yet expressly understood.
In spite of this, co-infection and co-morbidity with the infectious, soil-transmitted hookworm
disease that causes iron deficiency anemia has been found to be predominant among affected
individuals living in co-endemic settings, thus creating a more complex immunological interplay
that still has not been investigated. Although deworming and iron-rich nutrient supplementation
have been suggested in podoconiosis patients living under resource-poor conditions, and it is
thought that hookworm infection may help to suppress inflammatory responses, the undisputed
link that exists between a non-infectious and an infectious disease may create a scenario whereby
during a co-infection, treatment of one exacerbates the other disease condition or is dampened by
the debilitation caused by the other. In this paper, we elaborate on the immunopathogenesis of
podoconiosis and examine the possible immunological dynamics of hookworm co-infection in the
immunopathology of podoconiosis, with a view toward improved management of the disease that
will facilitate its feasible elimination.

Keywords: podoconiosis; hookworm; iron deficiency anemia; co-infection; immunopathogenesis;
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1. Introduction

Podoconiosis is an endemic, non-infectious, geochemical and inflammatory disease caused by
chronic barefoot contact with mineral particles present in certain volcanic clay soils, resulting in
bilateral lymphedema and disfigurement of the lower legs [1]. The disease has long been identified
as a distinct entity [1] and in February 2011, the World Health Organization (WHO) listed it as one
of the 20 most neglected tropical diseases (NTD) [2]. It ranks second only to lymphatic filariasis
as the most common cause of tropical lymphedema, which is otherwise known as elephantiasis [3].
Furthermore, it places enormous economic and psychosocial burdens on affected populations [4–7].
Estimates suggest that 4 million people are affected globally, who are mainly in tropical Africa but also
in Central and South America and Southeast Asia [8]. The global distribution of podoconiosis has been
under-reported. In recent literature, the disease has been reported in 32 countries worldwide, some of
which are suspected or known to be endemic [8]. It is believed that Ethiopia, with around 1.5 million
cases (more than 25% of the global total) [9], bears the highest global burden of podoconiosis. It is
estimated that 24% of the overall land surface of the country area, on which 43.8% of the national
population lives [10], is covered by the irritant red clay [11].

Agrarian individuals, who walk and work barefoot in the fields of red clay soils, and individuals
living in houses with uncovered (mud or earth) floors are at risk [7,12]. The causative irritant
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microparticles, which are notably crystalline silica (cSiO2), alumino-silicate (Al2SiO5), stacked kaolinite
(Al2Si2O2[OH]4), iron oxide (Fe2O3) and zirconium (Zr), among others [13,14], are absorbed into the
skin and their progressive passage into the lymphatics causes damage to the endothelium of the lymph
channels and vessels as well as to the valves of lymph vessels and lymph nodes [15]. Itching and
splaying of the forefoot, increased skin markings, painful acute lymphangioadenitis, skin nodules and
papillomata formation, hyperkeratosis, rigid toes, the fusion of the interdigital spaces and ankylosis of
the interphalangeal or ankle joints, are pathognomonic for podoconiosis [1]. It is important to note that
toxicity of the irritant particles is concentration dependent [16] and human susceptibility is subject to
genetic influence [17]. For easy staging of disease severity, Tekola et al. [18] delineated 5 clinical stages
in podoconiosis, although it is important to underline that these stages do not necessarily represent
the disease process.

The infectious but neglected hookworm diseases, necatoriasis and ancylostomiasis, are also widely
found in the tropics with their highest prevalence occurring in Asia and sub-Saharan Africa [19,20].
Infections occur through percutaneous penetration of the soil-dwelling, filariform larvae (L3) of
the respective causative parasites, Necator americanus and Ancylostoma duodenale (also the zoonotic
A. ceylanicum), although this can also occur through the fecal–oral route in A. duodenale [19,21,22]. The
adult parasites inhabit the small intestine of humans and may cause severe iron deficiency anemia (IDA)
in infected individuals, especially those with heavy worm burdens [19,23,24]. Although the degree
of hookworm-induced IDA depends on the infecting worm species and anemia may occur even with
a lighter worm burden [19], it is generally believed that in light and moderate hookworm infections,
anemia results primarily due to insufficient iron intake worsened by the presence of the worms.
However, in heavy infections, anemia ensues even when adequate dietary intake is maintained [24].
Globally, 5.1 billion people are thought to be at risk of acquiring hookworm infection, of which
approximately 500 million people are currently affected [25]. According to the recent WHO global health
estimates, hookworm diseases account for over 1.7 million disability-adjusted life years (DALYs) [26].

Co-infections are not uncommon among individuals living in co-endemic areas. The undisputed
complex link that exists between non-infectious and infectious diseases may create a scenario whereby
during a co-infection, treatment of one exacerbates the other disease condition or is dampened by
the debilitation caused by the other. Higher hookworm infection rates have been reported among
podoconiosis patients [27], especially during the early clinical stages. Those with complicated and
advanced podoconiosis would be prevented from working on farms due to resulting incapacitation,
consequently resulting in them having less frequent contact with the soil and thus, the soil-transmitted
helminths [27,28]. According to Taye et al. [27], hookworm infections were found in 40.9% of
podoconiosis patients but in only 27.5% of the human controls living in the same endemic area.
This may attribute to the higher percentage (33%) of anemia cases found among podoconiosis patients,
which reaches well above the 15.25% cases of anemia found in the endemic controls [27]. Moreover,
the mean hemoglobin level was 13.5 g/dL in podoconiosis-hookworm patients compared with
the 14.5 g/dL observed among podoconiosis-unaffected but hookworm-infected individuals [27].
According to WHO [29], anemia occurs at a hemoglobin concentration below 13 g/dL in men over
15 years of age, below 12 g/dL in non-pregnant women over 15 years of age, and below 11 g/dL in
pregnant women. However, slight age- and race-related variations exist [30].

The geographical and occupational overlaps between both podoconiosis and hookworm infection
are considered as key predisposing factors for co-infection [28]. Nevertheless, it is yet unknown
how this co-infection may influence the pathogenesis of podoconiosis, exacerbate its pathology or
impair the effectiveness of the current available treatments, such as foot hygiene, foot elevation,
compressive bandaging and surgical nodulectomy. Interestingly, deliberate light infection with viable
human hookworm (N. americanus) is emerging as a possible therapy for some human inflammatory
diseases, although this has not yet been validated [31,32]. Elimination of podoconiosis is easible [33],
although this will further be hastened by a good understanding of the various spectra of the disease
pathogenesis that may provide insights toward improved disease management. This review elucidates
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the possible involvement of hookworm co-infection in the immunopathogenesis and progression of
human podoconiosis.

2. Immunology of the Pathogenesis of Podoconiosis

The immunopathogenesis of podoconiosis is complex and involves a plethora of immune factors
and cells. Macrophages are among the first major sets of innate cells that mount a defense against
the invading foreign microparticles. Based on their activation profiles, the macrophages may be
categorized as classically activated (M1) and alternatively activated (M2) macrophage phenotypes.
The M1 macrophages, also considered as proinflammatory macrophages, are polarized by tumor
necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and lipopolysaccharide (LPS). As a result, they produce
proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-8, IL-6, IL-12 and TNF-α. In contrast,
the profibrotic cytokines IL-4 and IL-13 induce polarization of the M2 macrophages, characterized by
the production of tissue-repairing IL-10 [34,35]. The prolonged delay in podoconiosis development
despite constant exposure to the irritant microparticles may be attributed to the sequestration of
the microparticles by the M2 macrophages, which are relatively insensitive to inflammatory stimuli
but express abundant levels of scavenger receptors [36]. At a certain threshold beyond which the
M2 macrophages are overloaded and are unable to accommodate more particles, most free particles
become engulfed by the inflammatory M1 macrophages [36].

Phagocytosis of mineral particles by the M1 macrophages stimulates the macrophages to release
reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS). Simultaneously, they release
nuclear factor-kappa B (NF-kB) and activator protein-1 (AP-1), which trigger the production and
subsequent release of inflammatory cytokines. These cytokines, which are majorly TNF-α, IL-1 and
IL-6, combine with proteases (e.g., matrix metalloproteinases or MMPs), arachidonic acid/eicosanoid
metabolites (leukotriene-B4, prostaglandin E2 or PGE2), mesenchymal cell growth-promoting factors
and other mediators to invoke an inflammatory response [37], such as endolymphangitis. Unsuccessful
particle clearance may cause apoptosis of the particle-containing macrophages, leading to release
of the particles, which are then re-engulfed by other M1 macrophages. This induces a cycle of
injury accompanied by the infiltration of lymphocytes, mast cells, plasma cells, neutrophils as well
as inflammatory cytokines, chemokines, macrophage inflammatory proteins (MIPs) and monocyte
chemoattractant proteins into the injured area, resulting in further inflammatory changes [36,37], such
as the painful acute lymphangioadenitis.

Fibrosis ensues as a result of dysregulated and prolonged wound healing or connective tissue
repair in response to recurring lymphatic tissue microinjuries [38]. During the aberrant wound
healing and fibrosis development, fibroblasts hyperproliferate at the site of injury, acquire a profibrotic
phenotype that is resistant to apoptosis and differentiate into contractile myofibroblasts that perpetuate
the fibrotic process [38]. Fibroblasts are the key cells responsible for the synthesis and deposition
of extracellular matrix (ECM) [38]. Excessive deposition of ECM components, such as collagen and
fibronectin, is a hallmark of the fibrotic repair process and irreversibly remodels the lymphatic tissue
structure [38]. This causes subendothelial edema, increased thickening of lymphatic walls (causing
progressive reduction of the lymphatic lumen until its complete blockage), simultaneous impairment
of lymph flow, lymph stasis and consequently, lymphedema [39,40]. In podoconiosis, the rims of
collagen around dilated blood vessels were found to be collagen IV-positive and the vascular systems
were positive for cluster of differentiation 31 (CD31) [41]. In advanced stages, the accumulation of
adipocytes, keratinocytes and fibroblasts transforms the initially soft swollen tissue into a hard fibrotic
mass and a stiff, thickened hyperkeratotic skin [42].

Both innate and adaptive immune cells modulate inflammation and fibrogenesis via different
mechanisms. The adaptive immune response is activated through antigen presentation and antigenic
stimulation by the macrophages and other antigen-presenting cells. Studies conducted on affected
individuals have demonstrated that podoconiosis is adaptively a T-cell-mediated inflammatory
condition [17,41], although 30% of the lymphocytic infiltrates in podoconiosis nodular tissue consists
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of B cells [41]. CD4+ T cells have important role in the pathogenesis and progression of fibrosis,
depending on the type of response that develops. Apart from the type 17 T helper (Th17), Th22 and
regulatory T (Treg) cells, the CD4+ T cells are divided majorly into two subsets: Th1 and Th2, according
to their patterns of cytokine production. Th1 cells mainly secrete IFN-γ, IL-2, and IL-12 and other
associated proinflammatory cytokines, while the Th2 cells secrete large amounts of IL-4, IL-5 and IL-13
to promote collagen synthesis by fibroblasts [43]. However, there is the possibility that Th1 may also
contribute to fibrogenesis, as Th1 and Th2 cytokines can cross-regulate each other’s responses [43].
For instance, the Th1 IFN-γ cytokine may exacerbate fibrotic disease by downregulating the IL-13
decoy receptor (IL-13Rα2) [44], functioning as a soluble fusion protein that effectively inhibits IL-13
activity [45], blocking the initial collagen production during an inflammatory response [46,47], and
ameliorating the progression of established fibrotic disease [48,49].

Furthermore, in principle, it is believed that the pathogenesis of fibrogenic and fibroprogressive
diseases is importantly driven by the transforming growth factor-β1 (TGF-β1) [50], a cytokine that
can be synthesized by diverse cells, including keratinocytes, fibroblasts, monocytes, macrophages,
chondrocytes, platelets, epithelial cells and some T cells [43,51]. Nevertheless, clinical and functional
assessment of the role of TGF-β1 in podoconiosis appears to disrupt the paradigm, hypothesizing
that podoconiosis-susceptible individuals have low expression of TGF-β1 [42]. Implicating the
possible fibrogenic role of the pathology-induced B cell infiltration in podoconiosis, a subset of
B cells comprising IL-10-producing regulatory B cells, termed B10, has been recently identified in an
analogous silica-induced lung fibrosis known as pneumoconiosis or silicosis [52]. B10 is silica-inducible
and may suppress inflammation, while exacerbating fibrosis by inhibiting Th1 response, modulating
the Th balance, promoting Treg induction and secreting IL-10 [52].

3. Immunological Role of Hookworm Co-Infection in Podoconiosis

Modulation of the human immune responses by hookworms is an adaptation strategy to ensure
prolonged survival within the host. Ancylostoma hookworms may modulate host cellular immune
responses through multiple mechanisms, such as reduced mitogen-mediated lymphocyte proliferation,
impaired antigen presentation/processing and relative reductions in CD4+ T-cell populations in the
spleen and mesenteric lymph nodes [53]. Studies on experimental and natural human infections
with hookworms have observed that the infection triggers strong Th2 cytokines (especially IL-4, IL-5,
IL-9 and IL-13), regulatory IL-10 and TGF-β1 responses [54–58]. Release of the Th1 IFN-γ and IL-2
may also be induced [56]. However, progressive suppression of the IFN-γ response with increasing
worm burden has been observed [54]. Similarly, the high frequency of circulating monocytes with a
regulatory profile thatpromotes the down-modulation of the proinflammatory response was observed
in N. americanus-infected individuals [59]. Infection with N. americanus may not affect the levels of
IL-4 and arginase-1 (Arg-1) expression by the M2 macrophages, although it results inhigher numbers
of CD206+CD23+IL-10+ monocytes [59]. Conversely, hookworm infection does not seem to affect
the frequency of Tregs (CD4+CD25hiFOXP3+). However, suppressive activity of the Tregs differs
between infected and uninfected individuals as the Tregs suppress production of the proinflammatory
IFN-γ in infected individuals [60] (Figure 1). Arg-1 and CD206 (mannose receptor) are expressed
markers of the tissue repair M2 macrophages [61]. CD206 majorly functions in M2 phagocytosis
activity and resolution of inflammation, while Arg-1 may be strongly associated with the development
of fibrosis [43,61] by mediating the conversion of arginine to polyamines and hydroxyproline, which
directly contribute to ECM synthesis [62].

Additionally, percutaneous penetration by hookworm L3 larvae causes skin rashes and intensely
itchy, erythematous, papulovesicular lesions localized to the site of entry. However, a creeping
eruption known as cutaneous larva migrans is caused by the human skin-invading/resident zoonotic
hookworm species [19,24,63]. The dermatitis occurs as a result of a strong, localized Th2 response
characterized by an eosinophil-rich inflammatory infiltrate induced by the invasive larvae [64,65].
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Therefore, this may possibly contribute partly to the skin damage or exacerbation of fibrosis in the
mineral particle-induced elephantiasis.

Figure 1. Possible immunological interrelation during podoconiosis and hookworm co-infection.
Hookworm infection stimulates the activation of CD4+ T cells, induces downregulation and
upregulation of the Th1 and Th2 responses respectively, and upregulates the suppressive activity
of the regulatory T cells (Tregs) that reduce IFN-γ expression. Progressive retardation in IFN-γ
levels with increasing worm burden and the induced increase in regulatory CD206+ and/or IL-10+

monocytes/macrophages may ameliorate inflammation but the upregulated Th2 (such as IL-4 and
IL-13) response promotes fibrosis. Iron deficiency anemia caused by heavy hookworm burden may
result in reduced IL-2 secretion, reduced number of macrophages and reduced CD4+ T-cell count or
activity, but the impact of these outcomes in the pathology of podoconiosis appears elusive.

Heavy hookworm infection causes IDA, which may adversely affect the immune system.
Generally, studies have emphasized that IDA significantly impairs the integrity of both innate and
cell-mediated immunity. For instance, the immune system requires iron for monocyte-macrophage
differentiation [66]. Its deficiency may affect leukocyte phagocytic functions [67] and reduce neutrophil
count and phagocytic activity [66]. Although the reduction in macrophage or monocyte count may
reduce ECM deposition and ameliorate fibrosis [38], it has also been demonstrated that reduced
monocyte-derived macrophages may orchestrate diffuse fibrotic development [68]. IDA may also
cause reduced lymphocyte population [67]. Specifically, IDA was observed to cause significantly low
CD4+ T-cell levels and decreased the ratio of mature T lymphocytes (CD4+:CD8+) [69]. The reductions
were attributed to the decreased lymphocytic production of IL-2 [69] which serves as a T-cell growth
factor and induces clonal T-cell proliferationin principle [51] (Figure 1). Conversely, a recent study
observed an insignificant difference in CD4+ and CD4+:CD8+ levels between IDA and non-IDA human
groups [70] and it has been suggested that IDA may cause functional defects of T cells rather than
quantitative defects [66]. From these contrasting reports, it may be suggested that IDA causes functional
and/or numerical defects in T cells (Figure 1), although this could possibly depend on some factors
yet unknown. Nevertheless, high Ancylostoma hookworm burden has been found to be associated
with severe IDA and concomitant depletion of CD4+ T cells in animal models [53], but the effect of
CD4+ T-cell depletion on fibrogenesis appears controversial (Figure 1). While the depletion of CD4+ T
cells may dampen fibroblast differentiation and subsequent ECM accumulation, thereby attenuating
fibrosis [71], it has also been shown that reduced CD4+ T cells during human immunodeficiency virus
and hepatitis C virus (HIV/HCV) co-infection may promote hepatic fibroprogression [72,73].
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4. Conclusions

The involvement of concomitant hookworm infection in the development and progression of
podoconiosis seems dynamic. Although co-occurrence with light, moderate or heavy hookworm
infection has the potential to attenuate inflammatory responses, it may also contribute to fibrogenesis.
Nevertheless, the possible impact of IDA-established hookworm infection in podoconiosis fibrogenesis
and fibroprogression appears to still be inconclusive. Considering the high occurrence of
hookworm infection and/or IDA among podoconiosis patients, deworming and iron-rich nutrient
supplementation were recommended in addition to the basic podoconiosis treatment for patients
living under resource-poor conditions to improve their well-being [28]. It is conceivable from
the present review that the iron supplementation approach might not be applicable to patients,
who are at either early or advanced clinical stages of the disease, as it may result inprovoked or
exaggerated fibrotic responses. Podoconiosis-unaffected individuals, who are iron-deficient and living
in at-risk areas, would be more eligible for iron supplementation. It is imperative to emphasize
that iron deficiency can solely influence podoconiosis, but the fact that IDA-causal hookworms are
predominant in podoconiosis patients makes it of more parasitological than mere nutritional or dietary
importance. Finally, since the impact of hookworm co-infection in the pathology of podoconiosis is
still not conclusively clear, we recommend diagnosing hookworm infections in podoconiosis-affected
individuals, who respond poorly to the basic podoconiosis treatment, followed by proper deworming
in applicable cases and preventive deworming of individuals living in co-endemic areas.
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