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A B S T R A C T   

The COVID-19 posed a serious threat to human life and health, and SARS-CoV-2 Mpro has been considered as an 
attractive drug target for the treatment of COVID-19. Herein, we report 2-(furan-2-ylmethylene)hydrazine-1- 
carbothioamide derivatives as novel inhibitors of SARS-CoV-2 Mpro developed by in-house library screening and 
biological evaluation. Similarity search led to the identification of compound F8–S43 with the enzymatic IC50 
value of 10.76 μM. Further structure-based drug design and synthetic optimization uncovered compounds F8–B6 
and F8–B22 as novel non-peptidomimetic inhibitors of Mpro with IC50 values of 1.57 μM and 1.55 μM, respec-
tively. Moreover, enzymatic kinetic assay and mass spectrometry demonstrated that F8–B6 was a reversible 
covalent inhibitor of Mpro. Besides, F8–B6 showed low cytotoxicity with CC50 values of more than 100 μM in 
Vero and MDCK cells. Overall, these novel SARS-CoV-2 Mpro non-peptidomimetic inhibitors provide a useful 
starting point for further structural optimization.   

1. Introduction 

The outbreak of coronavirus infectious disease 2019 (COVID-19), 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2), has been recognized as a serious threat to human life and health 
[1–3]. As of March 27, 2021, the disease has caused over 480 million 
people infections with more than 6 million deaths globally [4]. 
SARS-CoV-2 is a positive-strand RNA enveloped beta-coronavirus, and 
similar to severe acute respiratory syndrome coronavirus (SARS-CoV) 
and Middle East respiratory syndrome coronavirus (MERS-CoV), con-
taining genome encodes non-structural proteins including main protease 
(Mpro, also known as 3-chymotrypsin-like protease, 3CLpro), papain-like 
protease (PLpro), helicase, and RNA-dependent RNA polymerase (RdRp) 
[5,6]. Among them, Mpro is a key enzyme in the viral life cycle, which is 
involved in the virus’ replication process, and results in the maturation 
of at least 12 non-structural proteins [7–9]. Furthermore, the highly 

conserved Mpro in coronavirus and the absence of closely related ho-
mologs in humans make Mpro an attractive target for the discovery of 
broad-spectrum antiviral drugs [10,11]. 

To date, there is only one Mpro inhibitor on market, although a series 
of SARS-CoV-2 Mpro inhibitors have been identified (Fig. 1) [10,12]. 
Among them, the organoselenium derivative 1 (Ebselen), was first 
disclosed as a covalent inhibitor of SARS-CoV-2 Mpro by screening the 
approved drugs and drug candidates [13]. It is reported that Ebselen 
could inhibit SARS-CoV-2 Mpro activity with an IC50 value of 0.67 μM, 
and SARS-CoV-2 in Vero cells with an EC50 value of 4.67 μM13. A variety 
of significant peptidomimetic inhibitors of SARS-CoV-2 Mpro have been 
reported, including compound 2 (N3), 3 (13b), 4 (11a), 5 (Boceprevir), 
6 (GC-376), 7 (MI-09), and 8 (PF-07321332), which exhibited high 
SARS-CoV-2 Mpro inhibitory activity and SARS-CoV-2 inhibition at 
micromolar to sub-micromolar levels [13–21]. Furthermore, 
PF-07321332 was approved for mild and moderate symptoms caused by 
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SARS-CoV-2 infection by US Food and Drug Administration (FDA), and 
PF-07321332 was combined with protease inhibitor and cytochrome 
P450 3A4 (CYP3A4) inactivator ritonavir to reduce its metabolism by 
CYP3A4 [21]. 

Although the peptidomimetic inhibitors are highly effective against 
SARS-CoV-2 Mpro, the stability of hydrolase limited the application of 
these inhibitors [21–24]. In contrast, the non-peptidomimetic inhibitors 
are less developed [25,26]. Su et al. and Liu et al. simultaneously re-
ported that compound 9 (Baicalein) was a non-peptidomimetic inhib-
itor of SARS-CoV-2 Mpro with the enzymatic inhibitory ability and 
antiviral activity both at micromolar levels [27,28]. Meanwhile, com-
pound 10, an N-substituted isatin derivative, was identified as a potent 
non-peptidomimetic inhibitor of SARS-CoV-2 Mpro, with an IC50 value of 
0.045 μM29. Furthermore, compound 11 (Masitinib), an orally 
bioavailable tyrosine kinase inhibitor, was revealed as a potent inhibitor 
of SARS-CoV-2 Mpro, with an IC50 value of 2.50 μM, through screening a 
library of 1900 clinically safe drugs [30]. Masitinib could block the 
replication of coronavirus in the lungs and nose of SARS-CoV-2 infected 
mice [30]. Moreover, Kneller and coworkers reported that compound 12 
(HL-3-68) exhibited SARS-CoV-2 Mpro inhibitory activity, with an IC50 
value of 0.29 μM, through X-ray/neutron crystallography guided drug 
design [31]. Additionally, compound 13 (Jun8-76-3A) was discovered 
as a non-peptidomimetic inhibitor of SARS-CoV-2 Mpro by the modifi-
cation of known Mpro inhibitor ML188 [32]. Overall, the chemical di-
versity of the identified non-peptidomimetic inhibitors is still highly 
limited. Therefore, it is urgent to develop novel non-peptidomimetic 
inhibitors against SARS-CoV-2 Mpro for the broad-spectrum antiviral 
drug candidate discovery, especially the new scaffold inhibitors that 
were not reported in previous coronavirus studies. 

Herein, we report the identification of 2-(furan-2-ylmethylene)hy-
drazine-1-carbothioamide derivatives as novel non-peptidomimetic in-
hibitors of SARS-CoV-2 Mpro by screening our in-house library and 
subsequent similarity search. Interestingly, compound F8 was disclosed 
with the dissociation constant (KD) value of 27.7 μM, by surface plasmon 
resonance (SPR) assay, which also exhibited an IC50 value of 21.28 μM 
by enzymatic assay. Further two-dimensional similarity search based on 
the structure of compound F8 led to the identification of a series of 2- 
(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel 

SARS-CoV-2 Mpro inhibitors. Among them, the most potent compound, 
F8–S43, exhibited the IC50 value of 10.76 μM against SARS-CoV-2 Mpro. 
Then, three rounds of optimization based on the structure-based drug 
design and synthetic modification discovered compounds F8–B6 and 
F8–B22 as non-peptidomimetic inhibitors of Mpro with IC50 values of 
1.57 μM and 1.55 μM, respectively. Moreover, enzymatic kinetic and 
mass spectrometry studies demonstrated that F8–B6 was a reversible 
covalent inhibitor of Mpro. Besides, F8–B6 exhibited no obvious cyto-
toxicity in Vero and MDCK cells with CC50 values over 100 μM. 
Furthermore, the structure-activity relationship (SAR) of the newly 
identified scaffold was discussed, which provided useful guidance for 
further chemical optimization. 

2. Results and discussion 

2.1. Identification of novel Mpro inhibitors by screening in-house library 

To discover novel SARS-CoV-2 Mpro inhibitors, especially the new 
chemical structures that were not previously reported in coronavirus 
study, an in-house library was screened by SPR assay (Fig. 2A). As drawn 
in Fig. 2B, compound F8 showed the high possibility as a new inhibitor 
of SARS-CoV-2 Mpro, with the KD value of 27.7 μM. The further enzy-
matic assay demonstrated that compound F8 inhibited SARS-CoV-2 Mpro 

activity with an IC50 value of 21.28 μM (Fig. 2C). Similarity analysis of 
compound F8 showed that it is not similar to any of the previously re-
ported SARS-CoV-2 Mpro inhibitors with the Tanimoto coefficient below 
0.14 (Fig. 2D). All of these indicated that the identified non- 
peptidomimetic inhibitor F8 expanded the chemical space of SARS- 
CoV-2 Mpro inhibitors and provided a useful starting point for further 
structural optimization. 

2.2. Similarity search and preliminary SAR study 

To investigate SAR and find more potent inhibitors of this new 
scaffold, a two-dimensional similarity search was performed based on 
the chemical structure of compound F8. A total of 70 compounds were 
captured and purchased from the ChemDiv and SPECS commercial da-
tabases. As exhibited in Table 1, the replacement of the 3-carboxyl 

Fig. 1. Chemical structures of represented inhibitors of SARS-CoV-2 Mpro.  

X. Dou et al.                                                                                                                                                                                                                                     



European Journal of Medicinal Chemistry 238 (2022) 114508

3

phenyl group of F8 with a 3-trifluoromethyl phenyl group (F8–S1), a 2- 
carboxyl phenyl group (F8–S2), a 2-nitro-4-methoxy phenyl group 
(F8–S3), a 4-nitrophenyl group (F8–S4), a 3-methyl-4-nitrophenyl 
group (F8–S5), or a 2,3-dimethyl-4-nitrophenyl (F8–S6), led to a 
decrease of potency, indicating that the 3-carboxyl phenyl group of F8 
was essential for maintaining SARS-CoV-2 Mpro inhibitory activity. 
Furthermore, the replacement of the R1 group of F8 with a 10-methyl-
acridin-9(10H)-one moiety (F8–S7 to F8–S16), or a poly-substituted 
pyridine ring (F8–S17 to F8–S20), the inhibitory ability of Mpro was 
decreased. Meanwhile, the replacement of the R1 group with a 1,2,5- 
oxadiazol-3-amine group (F8–S22), or a 1-methyl-1H-tetrazol-5-amine 
group (F8–S24), produced no significant effect on inhibitory potency. 
Besides, the introduction of the large hydrophobic substituents group 
(F8–S25, F8–S26, F8–S28 to F8–S39), was not conducive to the main-
tenance of inhibitory ability, which indicated that the R1 group of F8 
was more suitable for small substituents. Notably, the replacement of a 
urea linker with a thiourea linker was likely to improve the inhibitory 
potency (F8–S40 to F8–S43). Among them, the most potent compound, 
F8–S43, displayed an IC50 value of 10.76 μM against SARS-CoV-2 Mpro 

(Fig. S1). 
As shown in Table S1, the replacement of the thiourea linker of 

F8–S43 with a hydrazine linker (F8–S44 to F8–S48), an imine linker 
(F8–S49 to F8–S52), or a double bond linker (F8–S53 to F8–S65) led to 
the decrease of inhibitory potency, suggesting that the thiourea linker 
might be a good skeleton for these newly identified inhibitors. As for the 
right moiety of F8, the removal of the benzene ring resulted in the loss of 
potency (F8–S66 to F8–S70), indicating that the benzene ring of F8 was 
likely to play a hydrophobic role in the binding pocket of SARS-CoV-2 

Mpro. As displayed in Table 2, the replacement of the 4-nitrophenyl 
group of F8–S43 with a 4-bromobenzenyl group (F8–S43–S1), led to 
the remarkable loss of inhibitory activity, and the reduction of the vol-
ume of the R1 group was beneficial to the preservation of inhibitory 
activity (F8–S43–S2, IC50 = 8.08 μM; F8–S43–S3, IC50 = 9.69 μM). 
Notably, the replacement of the thiourea linker to urea or guanidine 
linker decreased the inhibitory potency (F8–S43–S4 to F8–S43–S6), 
indicating that the thiourea linker was very important for the mainte-
nance and improvement of the potency. To study the SAR of the right 
moiety, the hydrophobic substituent of the left moiety and the thiourea 
linker were fixed according to the structure of F8–S43. As drawn in 
Table S2, the decrease of the hydrophobic volume of the right moiety 
was not conducive to the maintenance of activity (F8–S43–S11 to 
F8–S43–S32). All in all, these results indicate that the newly identified 
scaffold expanded the chemical diversity of SARS-CoV-2 Mpro inhibitors, 
which could serve as a starting point for subsequent structural 
optimization. 

2.3. Rational design and synthetic optimization 

2.3.1. Structure-based design of newly identified scaffold 
To guide the structural optimization of the newly identified scaffold, 

the representative compound F8–S43 was docked into the catalytic site 
of the SARS-CoV-2 Mpro (PDB ID, 7JU7) [30]. As shown in Fig. 3A, 
compound F8–S43 was embedded into the catalytic site of SARS-CoV-2 
Mpro and occupied the S1 and S2 sites, while the S1′, S3, and S4 sites 
were not filled with F8–S43. Furthermore, the 4-nitrophenyl moiety of 
F8–S43 was located at the S1 site and formed a hydrogen bond with 

Fig. 2. The discovery of SARS-CoV-2 Mpro inhibitors. (A) Screen the in-house library through SPR assay. (B) The chemical structure and KD value of compound F8. 
(C) The dose-dependent curve of F8 against SARS-CoV-2 Mpro. (D) The similarity analysis of compound F8 with known SARS-CoV-2 Mpro inhibitors. 
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Table 1 
The chemical structures and enzymatic activities of the 43 analogs of F8. 

Compounds R [1] X R [2] Inhibition 
% (50 μM) 
a 

IC50 ±

SD 
(μM) a 

Tideglusib – – – 98.6 0.30 ±
0.02 

F8 O 65.0 21.28 
± 0.89 

F8–S1 O 25.5 N.T. b 

F8–S2 O 41.7 N.T. 

F8–S3 O <20.0 N.T. 

F8–S4 O 30.1 N.T. 

F8–S5 O 42.9 N.T. 

F8–S6 O <20.0 N.T. 

F8–S7 O 21.3 N.T. 

F8–S8 O 26.8 N.T. 

F8–S9 O 54.5 N.T. 

F8–S10 O 55.4 N.T. 

F8–S11 O 22.5 N.T. 

F8–S12 O <20.0 N.T. 

F8–S13 O <20 N.T. 

F8–S14 O 30.0 N.T. 

F8–S15 O 24.1 N.T.  

Table 1 (continued ) 

Compounds R [1] X R [2] Inhibition 
% (50 μM) 
a 

IC50 ±

SD 
(μM) a 

F8–S16 O 26.0 N.T. 

F8–S17 O 37.3 N.T. 

F8–S18 O 36.2 N.T. 

F8–S19 O 32.9 N.T. 

F8–S20 O 38.3 N.T. 

F8–S21 O 31.2 N.T. 

F8–S22 O 70.9 25.02 
± 1.11 

F8–S23 O 34.5 N.T. 

F8–S24 O 86.0 17.50 
± 1.65 

F8–S25 O 45.3 N.T. 

F8–S26 O 22.4 N.T. 

F8–S27 O 29.4 N.T. 

F8–S28 O 44.6 N.T. 

F8–S29 O 33.7 N.T. 

F8–S30 O 35.1 N.T. 

F8–S31 O 35.8 N.T. 

F8–S32 O 24.2 N.T. 

F8–S33 O <20.0 N.T. 

F8–S34 O <20.0 N.T. 

F8–S35 O 62.8 N.T. 

F8–S36 O 23.3 N.T. 

F8–S37 O <20.0 N.T. 

(continued on next page) 
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His163, and the furan ring was deeply buried in the S2 site and had a π-π 
stacking interaction with the imidazole of His41 (Fig. 3B and Fig. S2). 
Meanwhile, the thiourea linker of F8–S43 formed two hydrogen bonds 
to the backbone carbonyl of Cys44, so the removal or replacement of the 
thiourea linker led to the loss of inhibitory ability. Besides, the right 
moiety of F8–S43 was located at the solvent-exposed area and formed a 
hydrogen bond with Ser46. As drawn in Fig. 3C, the removal of the 
dihydro-2H-pyrazol-2′-one moiety of F8–S43 had no impact on enzy-
matic inhibition in the aforementioned similarity search study, so the 
solvent-exposed region of this scaffold was structurally modified to 
improve the inhibitory potency of SARS-CoV-2 Mpro, followed by S1 and 
S2 pockets occupied moieties. 

2.3.2. Synthesis of target compounds 
The target compounds F8-A1 to F8-A9 were synthesized as illus-

trated in Scheme 1. Briefly, we synthesized the intermediates (15) from 
appropriate aryl boronic acid (14) with 5-bromofuran-2-carbaldehyde 
through Pd(PPh3)4 catalyzed Suzuki-Miyaura cross-coupling reaction 
[33]. Then, corresponding intermediates (15) reacted with substituted 
thiosemicarbazide to produce imine linkage (F8-A1 to F8-A9) through 
modification of published procedures or known methods [34,35]. 

The synthetic routes of the target compounds F8–B1 to F8–B13 were 
described in Scheme 2. The building blocks (17 and 19) were prepared 
following previously described procedures [33]. Shortly, the starting 

Table 1 (continued ) 

Compounds R [1] X R [2] Inhibition 
% (50 μM) 
a 

IC50 ±

SD 
(μM) a 

F8–S38 O 23.0 N.T. 

F8–S39 O 38.3 N.T. 

F8–S40 S 85.1 10.88 
± 0.16 

F8–S41 S 51.4 N.T. 

F8–S42 S 55.9 N.T. 

F8–S43 S 95.0 10.76 
± 0.48  

a Data are presented as geometric mean values of at least two independent 
runs. 

b Not tested. 

Table 2 
The chemical structures and enzymatic activities of the 10 analogs of F8–S43. 

Compounds R [1] X R [2] Inhibition% (50 μM) a IC50 ± SD (μM) a 

Tideglusib – – – 98.6 0.30 ± 0.02 
F8–S43 S 95.0 10.76 ± 0.48 

F8–S43–S1 S 27.7 N.T. b 

F8–S43–S2 NH2 S 81.6 8.08 ± 0.38 

F8–S43–S3 NH2 S 81.1 9.69 ± 0.45 

F8–S43–S4 NH2 O <20.0 N.T. 

F8–S43–S5 NH 20.1 N.T. 

F8–S43–S6 NH 28.7 N.T. 

F8–S43–S7 S 28.4 N.T. 

F8–S43–S8 S 34.2 N.T. 

F8–S43–S9 S 30.2 N.T. 

F8–S43–S10 S <20.0 N.T.  

a Data are presented as geometric mean values of at least two independent runs. 
b Not tested. 
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Fig. 3. Predicted binding mode of compound F8–S43. (A) The binding pattern of compound F8–S43 with SARS-CoV-2 Mpro in surface and 2D diagram (B). Hydrogen 
bonds are represented by yellow lines. Images depicting the proposed binding modes were generated using PyMOL software. (C) The design of newly identified SARS- 
CoV-2 Mpro inhibitors. 

Scheme 1. Synthetic Route of Compounds F8-A1 to F8-A9. Reagents and conditions: (a) 5-bromofuran-2-carbaldehyde, Pd(PPh3)4, K2CO3, PhMe/EtOH/H2O, 90 ◦C, 
overnight; (b) R1NH2CSNHNH2, MeOH, 50 ◦C, 4 h. 
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material 5-iodofuran-2-carbaldehyde (16) or (5-formylfuran-2-yl) 
boronic acid (18) reacted with (4-carbamoylphenyl)boronic acid or 
substituted bromobenzene to form corresponding intermediates (17 and 
19) through Suzuki-Miyaura cross-coupling reaction. Then, the alde-
hyde group of intermediates (17 and 19) condensed with the amino 
group of thiosemicarbazide to form the imine linkage giving the target 
compounds (F8–B1 to F8–B13). 

As drawn in Scheme 3, the synthetic methods of F8–B14 to F8–B21 
were similar to the aforementioned synthesis of compounds F8–B1 to 
F8–B13. Simply, 5-bromofuran-2-carbaldehyde (20) reacted with cor-
responding aryl boronic acid to form intermediates (21), then the newly 
prepared intermediates condensed with thiosemicarbazide to give target 
compounds F8–B14 to F8–B21. Moreover, the intermediate (23), 5-ben-
zylfuran-2-carbaldehyde, was synthesized by the starting material 5- 
(hydroxymethyl)furan-2-carbaldehyde (22) reacted with benzene 
through substitution reaction following previously described procedures 
[36]. Then, the intermediate (23) was condensed with thio-
semicarbazide to give the target compound F8–B22. 

As shown in Scheme 4, the synthetic methods of F8–C1 to F8–C4 
were similar to the aforesaid synthesis of compounds F8–B1 to F8–B13. 
Briefly, the appropriate aryl bromides (24) reacted with (4-carbamoyl-
phenyl)boronic acid to form intermediates (25) through Suzuki-Miyaura 
cross-coupling reaction. Then, the corresponding intermediates 
condensed with thiosemicarbazide to give target compounds F8–C1 to 
F8–C4. All of the synthesized target compounds were characterized by 
1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS) 
experiments as single substances. 

2.3.3. Biological evaluation and SAR study 
The synthesized target compounds were evaluated through aforesaid 

enzymatic assay, and the results were summarized in Table 3. To 
investigate the SAR of the solvent-exposed region of the newly identified 
scaffold, the other regions were fixed with the same substituents. 
Notably, with the replacement of the 3-carboxyl phenyl group of F8-A1 
with a 4-carboxyl phenyl group (F8-A2), the inhibitory potency was 
maintained. Furthermore, the introduction of hydrophobic substituents, 
including methyl, 4-chlorophenyl, 3-trifluoromethyl phenyl, and 
cyclohexyl amino groups (F8-A3 to F8-A9), led to decreased inhibitory 
ability. Thus, the R1 group of this scaffold was fused with a hydrogen 
atom, and the R2 group was further structural modified to enhance the 
inhibitory ability and explore explicit SAR. 

As for the phenyl moiety of the newly identified scaffold (Table 4), 
the replacement of 4-carboxyl phenyl group of F8-A2 with a 4-amide 
phenyl group (F8–B1), a 4-sulfonyl phenyl group (F8–B2), or a phenyl 
group (F8–B3), resulted in moderate improve in inhibitory activity. 
When the benzene ring had multiple substituents (F8–B4 to F8–B14), 
the polar substituents, including carboxyl group, hydroxyl group, and 
methoxy group, were favorable to maintain or promote the inhibitory 
ability. Among them, the 3-hydroxy-4-carboxyl phenyl group 
substituted compound F8–B6 exhibited good activity, with the IC50 
value of 1.57 μM (Fig. S1). Whereas the replacement of the 4-carboxyl 
phenyl group of F8-A2 with a 3, 4-dichlorobenzyl group (F8–B15), led 
to the loss of inhibitory potency, which meant that the phenyl moiety of 
the newly identified scaffold was not suitable to be replaced by a 
completely hydrophobic substituent. Furthermore, this moiety was 

Scheme 2. Synthetic Route of Compounds F8–B1 to F8–B13. Reagents and conditions: (a) (4-carbamoylphenyl)boronic acid, Pd(PPh3)4, K2CO3, PhMe/EtOH/H2O, 
90 ◦C, overnight; (b) Thiosemicarbazide, MeOH, 50 ◦C, 4 h; (c) Substituted bromobenzene, Pd(PPh3)2Cl2, Na2CO3, MeCN/H2O, 90 ◦C, overnight; or substituted 
bromobenzene, Pd(PPh3)4, K2CO3, PhMe/EtOH/H2O, 90 ◦C, overnight; or Substituted bromobenzene, Pd(PPh3)2Cl2, 2 M Na2CO3, DME/EtOH, 60 ◦C, overnight. 

Scheme 3. Synthetic Route of Compounds F8–B14 to F8–B22. Reagents and conditions: (a) Corresponding aryl boronic acid, Pd(PPh3)4, K2CO3, PhMe/EtOH/H2O, 
90 ◦C, overnight; (b) Thiosemicarbazide, MeOH, 50 ◦C, 4 h; (c) benzene, trifluoromethanesulfonic acid, r.t. 
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compatible with pyridine or substituted pyridine rings (F8–B16 to 
F8–B17). Intriguingly, the naphthalene ring substitution was not 
conducive to the preservation of inhibitory activity (F8–B18 to 
F8–B19), while the quinoline ring did not affect the potency (F8–B20 to 
F8–B21). Therefore, the aforementioned moiety might be more suitable 
for nitrogen heterocyclic replacement. Notably, the replacement of the 
4-carboxyl phenyl group of F8-A2 with a benzyl group (F8–B22), led to 
the enhancement of potency, and the compound F8–B22 displayed an 
IC50 value of 1.55 μM (Fig. S1), which potency was 13-fold more than 
the initial compound F8. 

To investigate the furan ring moiety of the newly identified scaffold, 
the benzene ring moiety was designed to fix with the benzyl group, as 
the compound F8–B22 displayed an IC50 value of 1.55 μM. However, the 
designed compounds were difficult to synthesize, so the furan ring 
moiety was optimized with the 4-carboxyl phenyl group replacement. As 
drawn in Table 5, the replacement of 2,5-position substituted furan ring 
of F8-A2 with a 2,4-position substituted furan ring (F8–C1), a 2,5-posi-
tion substituted thiophene ring (F8–C2), or a 1,3-position substituted 
benzene ring (F8–C3), let to maintain or improve inhibitory potency. 

Whereas, the 1,4-position substituted benzene ring (F8–C4) was not 
conducive to the preservation of inhibitory activity, indicating that the 
furan ring moiety acted as an important connecting linker and prefer to 
three atomic lengths. It is noteworthy that the introduction of a sub-
stituent to the furan, thiophene, or benzene ring might be beneficial to 
the improvement of activity, however the synthesis was too difficult to 
achieve. Thus, we are trying to perform scaffold hopping based on this 
scaffold to improve the synthetic accessibility and inhibitory potency in 
the future. 

Meanwhile, the mechanism of action of these newly identified in-
hibitors was investigated through enzymatic kinetic and mass spec-
trometry assays. As exhibited in Fig. 4A and B, the Lineweaver-Burk plot 
with different F8–B6 concentrations yielded an intercept at the X-axis, 
indicating that F8–B6 is a non-competitive inhibitor of SARS-CoV-2 
Mpro. Moreover, prolonged incubation of SARS-CoV-2 Mpro with 
F8–B6 exhibited a time-dependent increase of inhibition activity 
(Figs. S3A–3C). The addition of dithiothreitol (DTT) could reverse the 
inhibitory effect of F8–B6 (Fig. S3D). Further liquid chromatography- 
tandem mass spectrometry (LC-MS/MS) analysis demonstrated that 
F8–B6 covalently bonded to SARS-CoV-2 Mpro (Fig. 4C), which was 
similar to the previously reported covalent inhibitor Ebselen [13], with 
more than one F8–B6 can be covalently bonded to the dimer of Mpro. 
Notably, thiacetazone moiety was identified as a covalent warhead to 
cystine in previous work [37,38], and this was consistent with the above 
SAR that the introduction of thiacetazone moiety led to the increase of 
inhibitory activity. However, the specific covalent mechanism still 
needed to be further studied. In addition, reversibility assay of F8–B6 to 
SARS-CoV-2 Mpro revealed that the ultrafiltration of inhibitor could 
recover enzymatic activity to a certain extent (Fig. 4D), which indicated 
that F8–B6 is a reversible inhibitor. Overall, the enzymatic kinetic and 
mass spectrometry studies demonstrated that F8–B6 is a reversible co-
valent inhibitor of SARS-CoV-2 Mpro. Interestingly, during the review 
process of this manuscript, Xu and coworkers reported that thio-
semicarbazone is a promising scaffold for the inhibition of SARS-CoV-2 
Mpro activity [39]. Besides, thiosemicarbazones are also well-known 
inhibitors of human Cathepsins. Pandey and coworkers reported that 
thiosemicarbazones derivatives are inhibitors of Cathepsin B, H, and L 
through a multi-target approach [40]. Notably, Cathepsin L is a key host 
cysteine protease utilized by coronaviruses for cell entry and is a 
promising drug target for novel antivirals against [41,42]. Thus, the 
selectivity of compounds F8–B6 and F8–B22 against Cathepsin L was 
investigated through previously reported method [43], and the results 
demonstrated that compounds F8–B6 and F8–B22 exhibited moderate 
inhibition of Cathepsin L, with the IC50 values of 16.33 μM and 8.09 μM, 
respectively (Fig. S4). 

Meanwhile, two compounds F8–B6 and F8–B22, with good SARS- 
CoV-2 Mpro inhibitory abilities, were further evaluated for their cyto-
toxic activities in Vero and MDCK cells by MTT assay. As drawn in 
Fig. 5A and B, both compounds F8–B6 and F8–B22 exhibited low 
cytotoxicity, and F8–B6 showed the CC50 values more than 100 μM in 
Vero and MDCK cells, while F8–B22 displayed the CC50 values around 
100 μM in Vero cells, and above 100 μM in MDCK cells. 

Scheme 4. Synthetic Route of Compounds F8–C1 to F8–C4. Reagents and conditions: (a) (4-carbamoylphenyl)boronic acid, Pd(PPh3)4, K2CO3, PhMe/EtOH/H2O, 
90 ◦C, overnight; (b) Thiosemicarbazide, MeOH, 50 ◦C, 4 h. 

Table 3 
The chemical structures and enzymatic activities of F8-A1 to F8-A9. 

Compounds R [1] R [2] Inhibition% (50 
μM) a 

IC50 ± SD 
(μM) a 

F8-A1 
(F8–S40) 

H 3- 
COOH 

85.1 10.88 ± 0.16 

F8-A2 H 4- 
COOH 

89.4 17.53 ± 3.98 

F8-A3 3- 
COOH 

22.2 N.T. b 

F8-A4 4- 
COOH 

39.5 N.T. 

F8-A5 3- 
COOH 

43.8 N.T. 

F8-A6 4- 
COOH 

27.5 N.T. 

F8-A7 3- 
COOH 

43.0 N.T. 

F8-A8 4- 
COOH 

38.6 N.T. 

F8-A9 4- 
COOH 

37.3 N.T.  

a Data are presented as geometric mean values of at least two independent 
runs. 

b Not tested. 
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3. Conclusion 

In the current work, a series of 2-(furan-2-ylmethylene)hydrazine-1- 
carbothioamide derivatives were identified as non-peptidomimetic in-
hibitors of SARS-CoV-2 Mpro through screening an in-house library by 
SPR and enzymatic assays. Further similarity search led to the identifi-
cation of compound F8–S43, which exhibited an IC50 value of 10.76 μM 
against SARS-CoV-2 Mpro. Then, three rounds of optimization based on 
the structure-based drug design and synthetic modification discovered 
compounds F8–B6 and F8–B22 as non-peptidomimetic inhibitors of 
Mpro with IC50 values of 1.57 μM and 1.55 μM, respectively. Moreover, 
enzymatic kinetic and mass spectrometry analysis demonstrated that 
F8–B6 was a reversible covalent inhibitor of Mpro. Besides, F8–B6 dis-
played no obvious cytotoxicity in Vero and MDCK cells. Taken together, 
this chemical series may serve as a good starting point for the further 
optimization of SARS-CoV-2 Mpro non-peptidomimetic inhibitors. 

4. Experimental section 

4.1. Chemistry 

General method. Synthesis reagents and solvents were obtained from 
commercial suppliers and used without further purification. Charac-
terizations of compounds are provided in the Supporting Information. 
1H and 13C NMR spectra were recorded on Bruker (400 MHz) in-
struments, using dimethyl sulfoxide (DMSO‑d6) as solvents. Chemical 
shifts are given in parts per million (ppm) downfield from tetrame-
thylsilane (δ) as the internal standard in deuterated solvent and coupling 
constants (J) are in Hertz (Hz). Data are reported as follows: chemical 
shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q =
quartet, dd = doublet of doublet, ddd = doublet of doublet of doublet, dt 
= doublet of triplet, m = multiplet, bs = broad signal), and coupling 
constants. High-resolution mass spectra were recorded on a Bruker Apex 
IV FTMS mass spectrometer using electrospray ionization (ESI). All 
compounds tested in biological assays were >95% pure. 

4.1.1. General procedure A 
A schlenk tube was charged with 5-bromofuran-2-carbaldehyde (1 

Table 4 
The chemical structures and enzymatic activities of F8–B1 to F8–B22. 

Compounds R [1] Inhibition% (50 μM) a IC50 ± SD (μM) a 

F8-A2 89.4 17.53 ± 3.98 

F8–B1 94.2 4.00 ± 0.25 

F8–B2 98.5 5.39 ± 0.14 

F8–B3 100.0 4.05 ± 0.26 

F8–B4 100.6 8.14 ± 1.14 

F8–B5 98.5 4.69 ± 0.34 

F8–B6 102.2 1.57 ± 0.08 

F8–B7 89.0 32.53 ± 2.33 

F8–B8 84.4 40.59 ± 1.06 

F8–B9 93.6 25.39 ± 2.05 

F8–B10 97.2 10.0 ± 0.50 

F8–B11 79.8 N.T. b 

F8–B12 114.8 9.09 ± 1.05 

F8–B13 106.6 4.14 ± 0.16 

F8–B14 102.5 5.81 ± 0.07 

F8–B15 49.8 N.T. 

F8–B16 95.4 7.09 ± 0.51 

F8–B17 97.4 8.76 ± 0.75 

F8–B18 73.2 N.T. 

F8–B19 54.1 N.T. 

F8–B20 92.3 10.40 ± 2.20 

F8–B21 88.9 10.30 ± 0.70 

F8–B22 100.1 1.55 ± 0.08  

a Data are presented as geometric mean values of at least two independent 
runs. 

b Not tested. 

Table 5 
The chemical structures and enzymatic activities of F8–C1 to F8–C4. 

Compounds Ar Inhibition% (50 μM) a IC50 ± SD (μM) a 

F8-A2 89.4 17.53 ± 3.98 

F8–C1 90.9 24.56 ± 0.70 

F8–C2 95.1 5.78 ± 0.30 

F8–C3 99.2 5.44 ± 0.16 

F8–C4 64.0 N.T. b  

a Data are presented as geometric mean values of at least two independent 
runs. 

b Not tested. 
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mmol), corresponding boronic acid (1.2 mmol), tetrakis(triphenyl-
phosphine)palladium (0.05 mmol), and potassium carbonate (3 mmol). 
The vessel was evacuated and backfilled with argon. A mixed solvent of 
Toluene/EtOH/H2O (5/5/2 mL) was added. Then the schlenk tube was 
heated to 90 ◦C overnight. After cooling to room temperature, the re-
action mixture was concentrated and diluted with water, filtered and the 
filtrate was adjusted to pH 2 with 2 N HCl. The precipitate was filtered 
and dried in vacuo to give the crude products without further 
purification. 

4.1.2. General procedure B 
A schlenk tube was charged with (5-formylfuran-2-yl)boronic acid 

(1.5 mmol), substituted bromobenzene (1 mmol), Pd(PPh3)2Cl2 (0.05 
mmol), and sodium carbonate (2 mmol). The vessel was evacuated and 
backfilled with argon. A mixed solvent of MeCN/H2O (4/1.3 mL) was 
added. Then the schlenk tube was heated to 60 ◦C overnight. After 
cooling to room temperature, the reaction mixture was concentrated and 
diluted with water, filtered and the filtrate was adjusted to pH 2 with 2 N 
HCl. The precipitate was filtered and dried in vacuo to give the crude 
products without further purification. 

Fig. 4. Michaelis-Menten kinetics analysis (A) and Lineweaver-Burk plot (B) of SARS-CoV-2 Mpro in presence or absence of F8–B6. (C) The liquid chromatograph- 
mass spectrometer of SARS-CoV-2 Mpro with F8–B6. (D) Reversibility assay of the inhibition ability of F8–B6 against SARS-CoV-2 Mpro. 

Fig. 5. The cytotoxicity of compounds F8–B6 and F8–B22 in Vero (A) and MDCK cells (B).  
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4.1.3. General procedure C 
A mixture of (5-formylfuran-2-yl)boronic acid (1.5 mmol), 

substituted bromobenzene (1 mmol), Pd(PPh3)2Cl2 (0.05 mmol) in 
DME/EtOH (3/3 mL), and 2 M aqueous Na2CO3 (3 mL, 6 mmol of 
Na2CO3) was flushed with nitrogen for 3 min and heated at 60 ◦C 
overnight under nitrogen atmosphere. The solvents were removed under 
reduced pressure, the residue was dissolved in water, the mixture ob-
tained was filtered through Celite, and the filtrate was adjusted to pH 2 
with 2 N HCl. The precipitate was filtered and dried in vacuo to give the 
crude products without further purification. 

4.1.4. General procedure D 
To a solution of the corresponding aldehyde (1.0 mmol) in MeOH 

(5.0 mL) was added thiosemicarbazide or substituted thiosemicarbazide 
(1.05 mmol). The mixture was heated to 50 ◦C and stirred for 4 h. The 
residue was recrystallized from ethanol, and the precipitate was filtered 
and dried in vacuo to give target compounds. 

4.1.5. (E)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)- 
2-((5-(4-nitrophenyl)furan-2-yl)methylene)hydrazine-1-carbothioamide 
(F8–S43) 

Compound F8–S43 was purchased from commercial database. Red-
dish brown solid. 1H NMR (400 MHz, DMSO‑d6) δ 12.05 (s, 1H), 9.21 (s, 
1H), 8.27 (d, J = 8.9 Hz, 2H), 8.09 (s, 2H), 8.07 (s, 1H), 7.52 (t, J = 7.8 
Hz, 2H), 7.47 (d, J = 3.6 Hz, 1H), 7.38 (dt, J = 8.4, 1.1 Hz, 2H), 
7.36–7.30 (m, 1H), 7.24 (d, J = 3.7 Hz, 1H), 3.12 (s, 3H), 2.19 (s, 3H). 
13C NMR (100 MHz, DMSO‑d6) δ 178.70, 162.73, 154.95, 152.84, 
151.43, 146.73, 135.70, 135.67, 132.34, 129.57, 126.67, 125.12, 
124.85, 123.94, 116.30, 113.06, 109.85, 36.36, 11.66. HRMS (ESI) [M 
+ H] + calcd for C23H21N6O4S: 477.1345; found: 477.1341. 

4.1.6. (E)-3-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)benzoic 
acid (F8-A1) 

Following the general procedures A and D, compound F8-A1 was 
obtained in 42% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.18 (s, 1H), 11.53 (s, 1H), 8.29 (s, 2H), 8.07 (d, J = 7.6 Hz, 1H), 8.00 
(s, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.79 (s, 1H), 7.57 (t, J = 7.6 Hz, 1H), 
7.24 (d, J = 3.6 Hz, 1H), 7.11 (d, J = 3.6 Hz, 1H). 13C NMR (100 MHz, 
DMSO‑d6) δ 178.18, 167.43, 153.97, 149.98, 132.40, 132.11, 130.33, 
129.84, 129.22, 128.54, 124.82, 115.54, 109.70. HRMS (ESI) [M − H]- 

calcd for C13H10N3O3S− : 288.0448; found: 288.0442. 

4.1.7. (E)-4-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)benzoic 
acid (F8-A2) 

Following the general procedures A and D, compound F8-A2 was 
obtained in 59% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.00 (s, 1H), 11.56 (s, 1H), 8.33 (s, 1H), 8.02–7.90 (m, 5H), 7.83 (s, 
1H), 7.27 (d, J = 3.6 Hz, 1H), 7.10 (d, J = 3.6 Hz, 1H). 13C NMR (100 
MHz, DMSO‑d6) δ 178.25, 167.35, 153.85, 150.44, 133.67, 132.14, 
130.44, 130.22, 124.29, 115.78, 110.93. HRMS (ESI) [M − H]- calcd for 
C13H10N3O3S− : 288.0448; found: 288.0442. 

4.1.8. (E)-3-(5-((2-(methylcarbamothioyl)hydrazono)methyl)furan-2-yl) 
benzoic acid (F8-A3) 

Following the general procedures A and D, compound F8-A3 was 
obtained in 62% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.19 (s, 1H), 11.56 (s, 1H), 8.40–8.32 (m, 1H), 8.30 (s, 1H), 8.07 (d, J 
= 7.6 Hz, 1H), 8.01 (s, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.8 Hz, 
1H), 7.25 (d, J = 3.6 Hz, 1H), 7.08 (d, J = 3.6 Hz, 1H), 3.03 (d, J = 4.4 
Hz, 3H). 13C NMR (100 MHz, DMSO‑d6) δ 177.93, 167.42, 153.94, 
150.10, 132.08, 132.05, 130.35, 129.83, 129.22, 128.54, 124.84, 
115.41, 109.77, 31.37. HRMS (ESI) [M − H]- calcd for C14H12N3O3S− : 
302.0605; found: 302.0601. 

4.1.9. (E)-4-(5-((2-(methylcarbamothioyl)hydrazono)methyl)furan-2-yl) 
benzoic acid (F8-A4) 

Following the general procedure, compound F8-A4 was obtained in 
51% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 13.01 (s, 
1H), 11.61 (s, 1H), 8.34 (q, J = 4.6 Hz, 1H), 8.03–7.90 (m, 5H), 7.28 (d, 
J = 3.6 Hz, 1H), 7.09 (d, J = 3.6 Hz, 1H), 3.05 (d, J = 4.4 Hz, 3H). 13C 
NMR (100 MHz, DMSO‑d6) δ 177.97, 167.33, 153.79, 150.56, 133.66, 
131.75, 130.43, 130.22, 124.24, 115.54, 110.97, 31.37. HRMS (ESI) [M 
− H]- calcd for C14H12N3O3S− : 302.0605; found: 302.0600. 

4.1.10. (E)-3-(5-((2-((4-chlorophenyl)carbamothioyl)hydrazono)methyl) 
furan-2-yl)benzoic acid (F8-A5) 

Following the general procedures A and D, compound F8-A5 was 
obtained in 74% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
12.97 (s, 1H), 12.01 (s, 1H), 10.05 (s, 1H), 8.33 (s, 1H), 8.12 (s, 1H), 
8.08 (d, J = 7.8 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 8.4 Hz, 
2H), 7.59 (t, J = 7.6 Hz, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 3.6 
Hz, 1H), 7.24 (d, J = 3.6 Hz, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 
176.09, 167.40, 154.29, 149.87, 138.48, 133.14, 132.09, 130.28, 
129.87, 129.72, 129.31, 128.61, 128.49, 127.54, 124.91, 116.16, 
109.87. HRMS (ESI) [M − H]- calcd for C19H13ClN3O3S− : 398.0372; 
found: 398.0366. 

4.1.11. (E)-4-(5-((2-((4-chlorophenyl)carbamothioyl)hydrazono)methyl) 
furan-2-yl)benzoic acid (F8-A6) 

Following the general procedures A and D, compound F8-A6 was 
obtained in 51% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.02 (s, 1H), 12.03 (s, 1H), 10.03 (s, 1H), 8.12 (s, 1H), 8.00 (d, J = 8.4 
Hz, 2H), 7.95 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.8 Hz, 2H), 7.43 (d, J =
8.8 Hz, 2H), 7.33 (d, J = 3.6 Hz, 1H), 7.25 (d, J = 3.6 Hz, 1H). 13C NMR 
(100 MHz, DMSO‑d6) δ 176.22, 167.32, 154.19, 150.36, 138.47, 133.60, 
132.95, 130.47, 130.32, 129.86, 128.49, 127.86, 124.35, 116.32, 
111.12. HRMS (ESI) [M − H]- calcd for C19H13ClN3O3S− : 398.0372; 
found: 398.0361. 

4.1.12. (E)-3-(5-((2-((3-(trifluoromethyl)phenyl)carbamothioyl) 
hydrazono)methyl)furan-2-yl)benzoic acid (F8-A7) 

Following the general procedures A and D, compound F8-A7 was 
obtained in 35% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
12.11 (s, 1H), 10.23 (s, 1H), 8.33 (s, 1H), 8.15 (s, 1H), 8.12–8.03 (m, 
2H), 7.98–7.87 (m, 2H), 7.65–7.53 (m, 3H), 7.31–7.21 (m, 2H). 13C 
NMR (100 MHz, DMSO‑d6) δ 176.15, 167.40, 154.41, 149.86, 140.33, 
133.51, 132.12, 130.26, 129.84, 129.71, 129.64, 129.33, 129.29 (d, J =
31.9 Hz), 128.60, 124.95, 124.54 (q, J = 273.3 Hz), 122.11 (d, J = 4.0 
Hz), 122.03, 116.24, 109.87. 19F NMR (376 MHz, DMSO‑d6) δ − 61.11. 
HRMS (ESI) [M − H]- calcd for C20H13F3N3O3S− : 432.0635; found: 
432.0623. 

4.1.13. (E)-4-(5-((2-((3-(trifluoromethyl)phenyl)carbamothioyl) 
hydrazono)methyl)furan-2-yl)benzoic acid (F8-A8) 

Following the general procedures A and D, compound F8-A8 was 
obtained in 51% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.01 (s, 1H), 12.13 (s, 1H), 10.20 (s, 1H), 8.18–7.89 (m, 7H), 7.68–7.52 
(m, 2H), 7.34 (d, J = 3.6 Hz, 1H), 7.27 (d, J = 3.6 Hz, 1H). 13C NMR 
(100 MHz, DMSO‑d6) δ 176.21, 167.35, 154.31, 150.32, 140.26, 133.54, 
133.29, 130.44, 130.37, 129.79, 129.56, 129.21, 124.50 (q, J = 273.4 
Hz), 124.29, 122.27 (d, J = 4.0 Hz), 122.04, 116.31, 110.98. 19F NMR 
(376 MHz, DMSO‑d6) δ − 61.15. HRMS (ESI) [M − H]- calcd for 
C20H13F3N3O3S− : 432.0635; found: 432.0627. 

4.1.14. (E)-4-(5-((2-(cyclohexylcarbamothioyl)hydrazono)methyl)furan- 
2-yl)benzoic acid (F8-A9) 

Following the general procedures A and D, compound F8-A9 was 
obtained in 74% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.01 (s, 1H), 11.58 (s, 1H), 8.13–7.78 (m, 6H), 7.30 (d, J = 3.6 Hz, 1H), 
7.16 (d, J = 3.6 Hz, 1H), 4.28–4.08 (m, 1H), 2.01–1.05 (m, 10H). 13C 
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NMR (100 MHz, DMSO‑d6) δ 175.93, 167.30, 153.89, 150.50, 133.61, 
132.04, 130.48, 130.24, 124.22, 115.65, 111.06, 52.97, 32.24, 25.54, 
25.24. HRMS (ESI) [M − H]- calcd for C19H20N3O3S− : 370.1231; found: 
370.1225. 

4.1.15. (E)-4-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl) 
benzamide (F8–B1) 

Following the general procedures B and D, compound F8–B1 was 
obtained in 44% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.54 (s, 1H), 8.31 (s, 1H), 8.05 (s, 1H), 8.02–7.81 (m, 6H), 7.43 (s, 1H), 
7.24 (d, J = 3.6 Hz, 1H), 7.09 (d, J = 3.6 Hz, 1H). 13C NMR (100 MHz, 
DMSO‑d6) δ 178.18, 167.78, 154.16, 150.10, 133.78, 132.32, 132.22, 
128.65, 124.08, 115.86, 110.30. HRMS (ESI) [M − H]- calcd for 
C13H11N4O2S− : 287.0608; found: 287.0604. 

4.1.16. (E)-2-((5-(4-sulfamoylphenyl)furan-2-yl)methylene)hydrazine-1- 
carbothioamide (F8–B2) 

Following the general procedures B and D, compound F8–B2 was 
obtained in 63% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.57 (s, 1H), 8.34 (s, 1H), 8.09–7.76 (m, 6H), 7.42 (s, 2H), 7.28 (d, J =
3.6 Hz, 1H), 7.11 (d, J = 3.6 Hz, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 
178.23, 153.41, 150.46, 143.45, 132.77, 132.04, 126.82, 124.59, 
115.77, 110.99. HRMS (ESI) [M − H]- calcd for C12H11N4O3S2

− : 
323.0278; found: 323.0275. 

4.1.17. (E)-2-((5-phenylfuran-2-yl)methylene)hydrazine-1- 
carbothioamide (F8–B3) [44,45] 

Following the general procedures C and D, compound F8–B3 was 
obtained in 24% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.50 (s, 1H), 8.33–8.25 (m, 1H), 7.97 (s, 1H), 7.87–7.81 (m, 2H) 7.78 
(s, 1H), 7.47–7.41 (m, 2H), 7.38–7.30 (m, 1H), 7.12 (d, J = 3.6 Hz, 1H), 
7.07 (d, J = 3.6 Hz, 1H). 

4.1.18. (E)-4-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)-3- 
fluorobenzoic acid (F8–B4) 

Following the general procedures A and D, compound F8–B4 was 
obtained in 51% yield. Orange red solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.33 (s, 1H), 11.60 (s, 1H), 8.36 (s, 1H), 8.11 (t, J = 8.0 Hz, 1H), 8.01 
(s, 1H), 7.93–7.71 (m, 3H), 7.20–7.09 (m, 3H).13C NMR (100 MHz, 
DMSO‑d6) δ 178.35, 166.32 (d, J = 2.5 Hz), 158.00 (d, J = 252.1 Hz), 
150.58, 147.97 (d, J = 3.4 Hz), 131.95 (d, J = 7.8 Hz), 131.79, 126.75 
(d, J = 1.9 Hz), 126.26 (d, J = 3.1 Hz), 121.76 (d, J = 11.9 Hz), 117.16 
(d, J = 22.5 Hz), 115.59, 114.91 (d, J = 12.3 Hz). 19F NMR (376 MHz, 
DMSO‑d6) δ − 113.32. HRMS (ESI) [M − H]- calcd for C13H9FN3O3S− : 
306.0354; found: 306.0347. 

4.1.19. (E)-4-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)-3- 
methylbenzoic acid (F8–B5) 

Following the general procedures B and D, compound F8–B5 was 
obtained in 56% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
12.97 (s, 1H), 11.56 (s, 1H), 8.32 (s, 1H), 8.01 (s, 1H), 7.95 (d, J = 8.2 
Hz, 1H), 7.89–7.75 (m, 3H), 7.14 (d, J = 3.6 Hz, 1H), 7.04 (d, J = 3.6 Hz, 
1H), 2.53 (s, 3H). 13C NMR (100 MHz, DMSO‑d6) δ 178.23, 167.43, 
153.33, 149.90, 134.80, 132.91, 132.76, 132.26, 130.00, 127.58, 
127.07, 115.43, 113.80, 22.29. HRMS (ESI) [M − H]- calcd for 
C14H12N3O3S− : 302.0605; found: 302.0597. 

4.1.20. (E)-4-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)-2- 
hydroxybenzoic acid (F8–B6) 

Following the general procedures A and D, compound F8–B6 was 
obtained in 73% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.56 (s, 1H), 8.31 (s, 1H), 7.98 (s, 1H), 7.87 (s, 1H), 7.81 (d, J = 8.0 Hz, 
1H), 7.45–7.34 (m, 2H), 7.28 (d, J = 3.6 Hz, 1H), 7.09 (d, J = 3.6 Hz, 
1H). 13C NMR (100 MHz, DMSO‑d6) δ 178.22, 172.05, 161.99, 153.45, 
150.60, 136.16, 132.09, 131.42, 115.75, 115.32, 112.49, 112.02, 
111.65. HRMS (ESI) [M − H]- calcd for C13H10N3O4S− : 304.0398; found: 

304.0394. 

4.1.21. (E)-4-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)-2- 
chlorobenzoic acid (F8–B7) 

Following the general procedures A and D, compound F8–B7 was 
obtained in 83% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.36 (s, 1H), 11.57 (s, 1H), 8.31 (s, 1H), 8.06–7.77 (m, 5H), 7.31 (d, J 
= 3.6 Hz, 1H), 7.08 (d, J = 3.6 Hz, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 
178.27, 166.61, 152.36, 150.78, 133.68, 133.44, 132.32, 132.05, 
129.98, 125.85, 122.65, 115.79, 111.76. HRMS (ESI) [M − H]- calcd for 
C13H9ClN3O5S− : 322.0059; found: 32.0053. 

4.1.22. (E)-3-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)-2- 
chlorobenzoic acid (F8–B8) 

Following the general procedures C and D, compound F8–B8 was 
obtained in 53% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.54 (br, 1H), 11.56 (s, 1H), 8.32 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 8.00 
(s, 1H), 7.82 (s, 1H), 7.63 (dd, J = 8.0, 1.8 Hz, 1H), 7.52 (t, J = 7.6 Hz, 
1H), 7.33 (d, J = 3.6 Hz, 1H), 7.14 (d, J = 3.6 Hz, 1H). 13C NMR (100 
MHz, DMSO‑d6) δ 178.30, 167.77, 150.56, 149.94, 135.47, 132.05, 
130.65, 129.45, 129.26, 127.96, 127.01, 115.12, 114.65. HRMS (ESI) 
[M − H]- calcd for C13H9ClN3O3S− : 322.0059; found: 322.0059. 

4.1.23. (E)-5-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)-2- 
chlorobenzoic acid (F8–B9) 

Following the general procedures A and D, compound F8–B9 was 
obtained in 50% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.61 (s, 1H), 11.54 (s, 1H), 8.30 (s, 1H), 8.13 (s, 1H), 8.03–7.91 (m, 
2H), 7.83 (s, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 3.6 Hz, 1H), 7.09 
(d, J = 3.6 Hz, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 178.22, 166.96, 
152.92, 150.19, 132.98, 132.15, 131.65, 130.95, 128.96, 127.81, 
125.91, 115.72, 110.31. HRMS (ESI) [M − H]- calcd for C13H9ClN3O3S− : 
322.0059; found: 322.0059. 

4.1.24. (E)-3-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)-4- 
chlorobenzoic acid (F8–B10) 

Following the general procedures C and D, compound F8–B10 was 
obtained in 73% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.34 (s, 1H), 11.60 (s, 1H), 8.38 (d, J = 2.1 Hz, 1H), 8.33 (s, 1H), 8.04 
(s, 1H), 7.85 (dd, J = 8.4, 2.1 Hz, 1H), 7.78 (s, 1H), 7.68 (d, J = 8.4 Hz, 
1H), 7.34 (d, J = 3.6 Hz, 1H), 7.20 (d, J = 3.6 Hz, 1H). 13C NMR (100 
MHz, DMSO‑d6) δ 178.32, 166.64, 150.43, 150.05, 133.93, 132.30, 
131.82, 130.68, 129.98, 129.03, 128.37, 114.58, 114.26. HRMS (ESI) 
[M − H]- calcd for C13H9N3O3S− : 322.0059; found: 322.0057. 

4.1.25. (E)-3-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)-2- 
methoxybenzoic acid (F8–B11) 

Following the general procedures C and D, compound F8–B11 was 
obtained in 59% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.14 (s, 1H), 11.54 (s, 1H), 8.31 (s, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.00 
(s, 1H), 7.81 (s, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 
7.11 (s, 2H), 3.79 (s, 3H). 13C NMR (100 MHz, DMSO‑d6) δ 178.17, 
167.60, 155.87, 150.57, 149.05, 132.21, 130.84, 130.10, 127.46, 
124.60, 124.41, 116.02, 113.14, 61.64. HRMS (ESI) [M − H]- calcd for 
C14H12N3O4S− : 318.0554; found: 318.0549. 

4.1.26. (E)-5-(5-((2-carbamothioylhydrazono)methyl)furan-2-yl)-2- 
hydroxybenzoic acid (F8–B12) 

Following the general procedures A and D, compound F8–B12 was 
obtained in 67% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.48 (s, 1H), 8.25 (s, 1H), 8.14 (d, J = 2.4 Hz, 1H), 8.00–7.92 (m, 2H), 
7.74 (s, 1H), 7.07–6.98 (m, 3H). 13C NMR (100 MHz, DMSO‑d6) δ 
178.04, 171.94, 161.37, 154.31, 149.03, 132.64, 131.79, 125.98, 
121.69, 118.40, 115.84, 113.94, 107.60. HRMS (ESI) [M − H]- calcd for 
C13H10N3O4S− : 304.0398; found: 304.0394. 
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4.1.27. (E)-2-((5-(3-cyano-4-hydroxyphenyl)furan-2-yl)methylene) 
hydrazine-1-carbothioamide (F8–B13) 

Following the general procedures A and D, compound F8–B13 was 
obtained in 52% yield. Pale brown solid. 1H NMR (400 MHz, DMSO‑d6) 
δ 11.49 (s, 1H), 11.43 (s, 1H), 8.27 (s, 1H), 8.10 (d, J = 2.4 Hz, 1H), 
7.99–7.90 (m, 2H), 7.81 (s, 1H), 7.13–6.97 (m, 3H). 13C NMR (100 MHz, 
DMSO‑d6) δ 178.07, 160.43, 153.52, 149.07, 132.16, 130.84, 129.19, 
122.12, 117.25, 116.99, 116.13, 107.94, 100.05. HRMS (ESI) [M − H]- 

calcd for C13H9N4O2S− : 285.0452; found: 285.0448. 

4.1.28. (E)-2-((5-(3,4-dimethoxyphenyl)furan-2-yl)methylene)hydrazine- 
1-carbothioamide (F8–B14) 

Following the general procedures A and D, compound F8–B14 was 
obtained in 71% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.47 (s, 1H), 8.24 (s, 1H), 7.97 (s, 1H), 7.75 (s, 1H), 7.38 (d, J = 9.2 Hz, 
1H), 7.34 (s, 1H), 7.08–6.97 (m, 3H), 3.84 (s, 3H), 3.79 (s, 3H). 13C NMR 
(100 MHz, DMSO‑d6) δ 178.01, 155.40, 149.62, 149.52, 148.77, 132.57, 
122.98, 117.44, 115.97, 112.47, 108.26, 107.47, 56.17, 56.02. HRMS 
(ESI) [M + H]+ calcd for C14H16N3O3S+: 306.0907; found: 306.0906. 

4.1.29. (E)-2-((5-(3,4-dichlorophenyl)furan-2-yl)methylene)hydrazine-1- 
carbothioamide (F8–B15) 

Following the general procedures A and D, compound F8–B15 was 
obtained in 63% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.55 (s, 1H), 8.31 (s, 1H), 8.08 (s, 1H), 7.96 (s, 1H), 7.87 (s, 1H), 7.81 
(d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 3.6 Hz, 1H), 
7.08 (d, J = 3.6 Hz, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 178.25, 
152.37, 150.29, 132.40, 131.94, 131.60, 130.71, 130.50, 125.90, 
124.44, 115.86, 110.73. HRMS (ESI) [M − H]- calcd for C12H8Cl2N3OS− : 
311.9771; found: 311.9767. 

4.1.30. (E)-2-((5-(pyridin-4-yl)furan-2-yl)methylene)hydrazine-1- 
carbothioamide (F8–B16) 

Following the general procedures A and D, compound F8–B16 was 
obtained in 72% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.60 (s, 1H), 8.60 (d, J = 5.2 Hz, 2H), 8.36 (s, 1H), 7.99 (s, 1H), 7.87 (s, 
1H), 7.76 (d, J = 5.2 Hz, 2H), 7.41 (d, J = 3.6 Hz, 1H), 7.19 (d, J = 3.6 
Hz, 1H) 13C NMR (100 MHz, DMSO‑d6) δ 178.36, 152.14, 151.11, 
150.72, 136.44, 131.84, 118.24, 115.41, 112.49. HRMS (ESI) [M − H]- 

calcd for C11H9N4OS− : 245.0497; found: 245.0502. 

4.1.31. (E)-2-((5-(6-fluoropyridin-3-yl)furan-2-yl)methylene)hydrazine- 
1-carbothioamide (F8–B17) 

Following the general procedures A and D, compound F8–B17 was 
obtained in 61% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.54 (s, 1H), 8.73 (d, J = 2.4 Hz, 1H), 8.42–8.27 (m, 2H), 7.97 (s, 1H), 
7.92–7.80 (m, 1H), 7.26 (dd, J = 8.8, 2.4 Hz, 1H), 7.20 (d, J = 3.6 Hz, 
1H), 7.06 (d, J = 3.6 Hz, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 178.24, 
162.76 (d, J = 234.7 Hz), 151.26, 150.12, 143.68 (d, J = 15.5 Hz), 
137.89 (d, J = 7.9 Hz), 131.90, 124.85 (d, J = 4.4 Hz), 115.68, 110.45 
(d, J = 37.9 Hz), 109.96. 19F NMR (376 MHz, DMSO‑d6) δ − 69.11. 
HRMS (ESI) [M − H]- calcd for C11H8FN4OS− : 263.0408; found: 
263.0403. 

4.1.32. (E)-2-((5-(naphthalen-1-yl)furan-2-yl)methylene)hydrazine-1- 
carbothioamide (F8–B18) 

Following the general procedures A and D, compound F8–B18 was 
obtained in 79% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.56 (s, 1H), 8.40 (d, J = 8.0 Hz, 1H), 8.30 (s, 1H), 8.08 (s, 1H), 
8.02–7.99 (m, 2H), 7.89 (dd, J = 7.2, 1.2 Hz, 1H), 7.74 (s, 1H), 
7.64–7.56 (m, 3H), 7.21 (d, J = 3.2 Hz, 1H), 7.11 (d, J = 3.2 Hz, 1H) 13C 
NMR (100 MHz, DMSO‑d6) δ 178.20, 154.42, 149.96, 134.04, 132.70, 
129.70, 129.64, 129.19, 127.73, 127.34, 126.87, 126.72, 125.99, 
125.30, 115.12, 112.67. HRMS (ESI) [M − H]- calcd for C16H13N3OS− : 
294.0701; found: 294.0703. 

4.1.33. (E)-2-((5-(naphthalen-2-yl)furan-2-yl)methylene)hydrazine-1- 
carbothioamide (F8–B19) 

Following the general procedures A and D, compound F8–B19 was 
obtained in 45% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.57 (s, 1H), 8.37 (s, 1H), 8.34 (s, 1H), 8.06–7.79 (m, 6H), 7.60–7.48 
(m, 2H), 7.25 (d, J = 3.6 Hz, 1H), 7.13 (d, J = 3.6 Hz, 1H). 13C NMR 
(100 MHz, DMSO‑d6) δ 178.16, 155.05, 149.79, 133.53, 133.00, 132.38, 
129.03, 128.59, 128.19, 127.38, 127.29, 126.91, 122.77, 115.91, 
109.55. HRMS (ESI) [M − H]- calcd for C16H12N3OS− : 294.0707; found: 
294.0705. 

4.1.34. (E)-2-((5-(quinolin-7-yl)furan-2-yl)methylene)hydrazine-1- 
carbothioamide (F8–B20) 

Following the general procedures A and D, compound F8–B20 was 
obtained in 56% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.62 (s, 1H), 8.86 (dd, J = 4.0, 2.0 Hz, 1H), 8.47–8.34 (m, 3H), 8.17 
(dd, J = 8.8, 2.0 Hz, 1H), 8.03 (d, J = 9.8 Hz, 2H), 7.92–7.83 (m, 1H), 
7.53 (dd, J = 8.4, 4.0 Hz, 1H), 7.28 (d, J = 3.6 Hz, 1H), 7.13 (d, J = 3.6 
Hz, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 178.21, 154.33, 151.12, 
150.16, 147.77, 136.61, 132.29, 130.11, 128.60, 127.82, 126.33, 
122.75, 122.66, 115.83, 110.22. HRMS (ESI) [M − H]- calcd for 
C15H11N4OS− : 295.0659; found: 295.0654. 

4.1.35. (E)-2-((5-(quinolin-3-yl)furan-2-yl)methylene)hydrazine-1- 
carbothioamide (F8–B21) 

Following the general procedures A and D, compound F8–B21 was 
obtained in 71% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
11.60 (s, 1H), 9.39 (s, 1H), 8.72 (s, 1H), 8.37 (s, 1H), 8.11–7.97 (m, 3H), 
7.89 (s, 1H), 7.75 (t, J = 7.6 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.42 (d, J 
= 3.6 Hz, 1H), 7.17 (d, J = 3.6 Hz, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 
178.25, 152.57, 150.48, 147.60, 147.20, 132.02, 130.20, 129.70, 
129.33, 128.81, 127.92, 127.90, 123.38, 115.74, 110.60. HRMS (ESI) 
[M − H]- calcd for C15H11N4OS− : 295.0659; found: 295.0654. 

4.1.36. (E)-2-((5-benzylfuran-2-yl)methylene)hydrazine-1- 
carbothioamide (F8–B22) 

5-hydroxymethyl-2-furfuraldehyde (0.31 g, 2.45 mmol) was added 
to the mixture of TfOH (4 mL) and benzene (0.28 mL) in an ice bath. The 
reaction mixture was stirred at room temperature for 2 h. The mixture 
was poured into water (30 mL), and extracted with chloroform (3 × 30 
mL). The combined extracts were washed with water, the saturated 
aqueous solution of NaHCO3, water again, and dried over Na2SO4. The 
solvent was removed under reduced pressure, and the residue was 
subjected to chromatographic separation on silica gel to give interme-
diate 5-(phenylmethyl)furan-2-carbaldehyde 0.1 g, yielding 21%. Then 
following the general procedure D, compound F8–B22 was obtained in 
42% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 11.38 (s, 
1H), 8.17 (s, 1H), 7.89 (s, 1H), 7.55 (s, 1H), 7.37–7.19 (m, 5H), 6.88 (d, 
J = 3.6 Hz, 1H), 6.26 (d, J = 3.6 Hz, 1H), 4.02 (s, 2H). 13C NMR (100 
MHz, DMSO‑d6) δ 177.98, 157.32, 148.87, 138.02, 133.07, 129.08, 
129.01, 127.03, 114.52, 109.71, 34.18. HRMS (ESI) [M − H]- calcd for 
C13H12N3OS− : 258.0707; found: 258.0699. 

4.1.37. (E)-4-(5-((2-carbamothioylhydrazono)methyl)furan-3-yl)benzoic 
acid (F8–C1) 

Following the general procedures A and D, compound F8–C1 was 
obtained in 25% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
12.96 (s, 1H), 11.53 (s, 1H), 8.45 (s, 1H), 8.30 (s, 1H), 8.03–7.92 (m, 
3H), 7.81–7.65 (m, 3H), 7.53 (s, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 
178.35, 167.45, 151.23, 142.77, 135.97, 132.41, 130.44, 129.88, 
127.55, 125.95, 111.02. HRMS (ESI) [M − H]- calcd for C13H10N3O3S− : 
288.0448; found: 288.0447. 

4.1.38. (E)-4-(5-((2-carbamothioylhydrazono)methyl)thiophen-2-yl) 
benzoic acid (F8–C2) 

Following the general procedures A and D, compound F8–C2 was 
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obtained in 51% yield. Yellowish solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.02 (s, 1H), 11.56 (s, 1H), 8.27 (s, 1H), 8.22 (s, 1H), 7.98 (d, J = 8.0 
Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 4.0 Hz, 1H), 7.64 (s, 1H), 
7.50 (d, J = 4.0 Hz, 1H). 13C NMR (100 MHz, DMSO‑d6) δ 178.09, 
167.25, 144.26, 139.89, 137.66, 137.51, 132.33, 130.70, 130.41, 
126.43, 125.82. HRMS (ESI) [M − H]- calcd for C13H10N3O2S− : 
304.0220; found: 304.0215. 

4.1.39. (E)-3’-((2-carbamothioylhydrazono)methyl)-[1,1′-biphenyl]-4- 
carboxylic acid (F8–C3) 

Following the general procedures A and D, compound F8–C3 was 
obtained in 23% yield. White solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.00 (br, 1H), 11.52 (s, 1H), 8.27 (s, 1H), 8.22 (s, 1H), 8.18 (s, 1H), 
8.13 (s, 1H), 8.03 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 8.0 Hz, 2H), 7.79–7.74 
(m, 2H), 7.52 (t, J = 7.4 Hz, 1H) 13C NMR (100 MHz, DMSO‑d6) δ 
178.52, 167.59, 144.13, 142.40, 139.90, 135.50, 130.34, 130.27, 
129.88, 128.72, 128.03, 127.48, 125.61. HRMS (ESI) [M − H]- calcd for 
C15H13N3O2S− : 298.0650; found: 298.0656. 

4.1.40. (E)-4’-((2-carbamothioylhydrazono)methyl)-[1,1′-biphenyl]-4- 
carboxylic acid (F8–C4) 

Following the general procedures A and D, compound F8–C4 was 
obtained in 12% yield. White solid. 1H NMR (400 MHz, DMSO‑d6) δ 
13.01 (s, 1H), 11.52 (s, 1H), 8.26 (s, 1H), 8.10 (d, J = 5.1 Hz, 2H), 8.03 
(d, J = 8.4 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 
7.77 (d, J = 8.4 Hz, 2H). 13C NMR (100 MHz, DMSO‑d6) δ 178.47, 
167.56, 143.92, 142.08, 140.46, 134.60, 130.45, 130.32, 128.44, 
127.62, 127.24. HRMS (ESI) [M − H]- calcd for C15H13N3O2S− : 
298.0650; found: 298.0653. 

4.2. Reagents and compounds 

Tideglusib was purchased from Topscience Co. Ltd. SARS-CoV-2 
Mpro fluorescent substrate Dabcyl-KTSAVLQSGFRKM-E(Edans)-NH2 
was synthesized by GL (Shanghai) Biochem Ltd. (Shanghai, China). 
Compounds used for SARS-CoV-2 Mpro inhibitors screening were pur-
chased from ChemDiv (https://www.chemdiv.com/) and SPECS 
(https://www.specs.net/) commercial databases. 

4.3. Cloning, expression, and purification of SARS-CoV-2 Mpro 

The full-length gene encoding SARS-CoV-2 Mpro was synthesized for 
Escherichia coli (E. coli) expression (Hienzyme Biotech). The expression 
and purification of SARS-CoV-2 Mpro were carried out using the reported 
protocol [29]. 

4.4. SPR assay 

The SPR assay was used to analyze the interaction between SARS- 
CoV-2 Mpro with compounds on a Biacore 8 K instrument (GE Health-
care). SARS-CoV-2 Mpro was immobilized on a sensor chip (CM5) via 
Amine Coupling Kit (GE Healthcare, Buckinghamshire, UK) at levels of 
approximately 10,000 response units (RU). The first flow channel 
without immobilized protein was set as a reference, and the compounds 
were injected at the concentration of 50 μM for screening and 0.2 
μM–100 μM for binding study in a period of 60 s. Dissociation was 
measured for 100–200 s at a flow rate of 30 μL/min using the following 
assay running buffer: 10 mM phosphate buffer containing 2.7 mM KCl, 
137 mM NaCl, and 0.05% surfactant P20 (pH 7.5). All of the data were 
analyzed through Biacore evaluation software (8 K version 1.0), and the 
curve was fitted with a 1:1 kinetics binding model. 

4.5. Enzymatic assay of SARS-CoV-2 Mpro 

A fluorescent substrate Dabcyl-KTSAVLQSGFRKM-E(Edans)-NH2 
(GL Biochemistry Ltd) and assay buffer (40 mM PBS, 100 mM NaCl, 1 

mM EDTA, 0.1% Triton 100, pH 7.3) was used for the inhibition assay. 
For the preliminary screening and IC50 measurements, 0.5 μM protease 
was incubated with inhibitor at room temperature for 30 min, and then 
the reaction was initiated by adding 20 μM substrate. The fluorescence 
signal generated by the cleavage of the substrate was monitored for 20 
min at an emission wavelength of 460 nm with excitation at 360 nm 
using a plate reader (Synergy, Biotek). IC50 values were fitted with the 
Hill1 function of Origin 2018. For the enzymatic kinetic assay, 0.5 μM 
SARS-CoV-2 Mpro was pre-incubated with DMSO or F8–B6 for 3 h and 
different concentrations of the fluorescent substrate were added to 
initiate the reaction. Data was collected from three replicates and curve- 
fitted by Origin 2018. For the DTT assay, 0.5 μM SARS-CoV-2 Mpro was 
premixed with 400 mM DTT or H2O. Then, the protease solution was co- 
preincubated with DMSO or inhibitor at various concentrations for 30 
min. Enzyme activity was tested and data was collected from three 
replicates. For time-dependent inhibitory measurement, various con-
centrations of inhibitors were pre-incubated with SARS-CoV-2 Mpro at a 
different time at room temperature before the addition of fluorescent 
substrate. 

4.6. Mass spectrometry 

2 μM protease was co-incubated with 15 μM F8–B6 on ice for 3 h. 
Then, the complex solution was analyzed by Quadrupole-TOF LC-MS/ 
MS System (Vion, Waters). Raw data of mass signal was deconvoluted to 
obtain the total mass of the protein. 

4.7. Enzymatic reversibility assay 

SARS-CoV-2 Mpro (10 μM) was incubated with 100 μM F8–B6 for 
180 min and divided into four parts which were ultra-filtrated for 
different times. In each time of ultrafiltration, an equal volume of buffer 
used in the enzyme activity assay was added into the protease solution 
and ultra-filtrated together for 5 min at 4 ◦C, 12,000 rpm. Protease left 
on the upper layer of Millipore was collected and diluted to the final 
concentration of 0.5 μM and enzyme activity was tested. All data were 
collected from three replicates to obtain average enzymatic activities 
and error bars. 

4.8. Cathepsin L inhibition assay 

The inhibition assay of Cathepsin L was performed as previously 
reported method [41,43]. Briefly, compounds F8–B6 and F8–B22 were 
tested using the commercial Cathepsin L Inhibitor Assay Kit (Abcam, 
Cat# ab197012). And the known Cathepsin L inhibitor FF-FMK was 
used as the positive compound. 

4.9. Cell culture 

Vero cells were cultured in (MEM, M&C Gene Technology, Beijing, 
China) and MDCK cells were cultured in Minimum Essential Medium 
Dulbecco’s modified Eagle’s medium (DMEM, M&C Gene Technology, 
Beijing, China), supplemented with 10% fetal bovine serum (FBS) (PAN 
Seratech, Aidenbach, Germany) and 100 U/mL penicillin/streptomycin 
(P/S), and maintained in a humidified atmosphere of 95% air and 5% 
CO2. 

4.10. Cell viability assay 

MTT assay was performed to examine the cell viability of the newly 
identified SARS-CoV-2 Mpro inhibitors. Vero and MDCK cells were 
seeded in 96-well plates. After 18 h incubation, SARS-CoV-2 Mpro in-
hibitors were added to each well. Corresponding vehicles were simul-
taneously added for blank well. Cell viability was determined 48 h after 
drug treatment. 
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4.11. Molecular docking 

All of the chemical structures were processed using the LigPrep 
module in Schrödinger 10.2 software (Schrodinger, LLC, NY, USA) [46]. 
The OPLS3 force field was adopted to perform energy minimization. 
Default settings were used for all other parameters. The crystallographic 
structures of the Mpro in complex with inhibitors were retrieved from the 
RCSB Protein Data Bank (PDB) and crystal structures (PDB IDs: 7JUJ) 
were prepared by the Protein Preparation Wizard module in Schrödinger 
10.2 software. Default settings were used for all parameters based on the 
OPLS3 force field. The molecular docking was performed using the Glide 
module with XP (extra precision) in Schrödinger 10.2 software with 
default settings for all other parameters [47,48]. 

4.12. Similarity search 

The similarity search was performed using Pipeline Pilot 8.5 of 
Accelrys. The similarities were calculated through the Tanimoto coef-
ficient based on the fingerprint ECFP_6 of each structure. Then, 70 an-
alogs of compound F8 and 32 analogs of compound F8–S43 were 
captured and purchased for biological evaluation. 
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SARS-CoV severe acute respiratory syndrome coronavirus 
MERS-CoV Middle East respiratory syndrome coronavirus 
Mpro Main protease 
3CLpro 3-chymotrypsin-like protease 
PLpro papain-like protease 
RdRp RNA-dependent RNA polymerase 
FDA US Food and Drug Administration 
CYP3A4 cytochrome P450 3A4 
KD dissociation constant 
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IC50 half-maximal inhibitory concentration 
SAR structure-activity relationship; 
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HRMS high-resolution mass spectrometry 
PDB protein data bank 
RU response units 
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CC50 half-maximal cytotoxic concentration 
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