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HER2‑low breast cancer shows 
a lower immune response 
compared to HER2‑negative cases
Nadine S. van den Ende1, Marcel Smid2, Annemieke Timmermans2, 
Johannes B. van Brakel1,3, Tim Hansum1,4, Renée Foekens2, Anita M. A. C. Trapman2, 
Bernadette A. M. Heemskerk‑Gerritsen2, Agnes Jager2, John W. M. Martens2 & 
Carolien H. M. van Deurzen1*

Currently, the human epidermal growth factor receptor 2 (HER2) status of breast cancer is classified 
dichotomously as negative or positive to select patients for HER2-targeted therapy. However, with the 
introduction of novel treatment options, it is important to get more insight in the biology of cancers 
with low HER2 expression. Therefore, we studied several clinicopathologic characteristics in relation 
to the level of HER2 expression (HER2- versus HER2low). We used a well-documented cohort of breast 
cancer patients (n = 529), with available tissue microarrays and Affymetrix mRNA expression data. 
HER2 status was scored as negative (immunohistochemistry 0) or low (immunohistochemistry 1 + or 
2 + without amplification). We associated HER2 status with several clinicopathologic characteristics, 
gene-expression data and survival, stratified for estrogen receptor (ER) status. Overall, breast cancers 
were scored as HER2- (n = 429) or HER2low (n = 100). Within the ER+ cohort (n = 305), no significant 
associations were found between the HER2 groups and clinicopathologic features. However, HER2low 
tumors showed several differentially expressed genes compared to HER2- cases, including genes 
that are associated with worse outcome and depletion of immunity. In ER- cases (n = 224), HER2low 
status was significantly associated with increased regional nodal positivity, lower density of tumor 
infiltrating lymphocyte and a lower protein expression of Ki-67 and EGFR compared to HER2- cases. 
After multivariate analysis, only density of tumor infiltrating lymphocytes remained significantly 
associated with HER2low status (P = 0.035). No difference in survival was observed between HER2low 
and HER2- patients, neither in the ER+ nor ER- cohort. In conclusion, our data suggests that HER2low 
breast cancer is associated with a lower immune response compared to HER2- breast cancer.

Abbreviations
ER	� Estrogen receptor
ERBB2	� Erythroblastic oncogene B
HER2	� Human epidermal growth factor 2
IHC	� Immunohistochemistry
ISH	� in situ Hybridization
(s)TIL	� (Stromal) tumor infiltrating lymphocyte

Breast cancer treatment decisions are based, amongst other patient- and tumor characteristics, on the expression 
of the estrogen receptor (ER), the progesterone receptor (PR) and the human epidermal growth factor receptor 
2 (HER2)1. HER2 is a protein encoded by the erythroblastic oncogene B (ERBB2) gene2. Amplification of the 
oncogene, leading to overexpression of the HER2 protein, plays a role in the development of different breast 
cancer subtypes by promoting the growth of cancer cells3.

In daily clinical practice, the HER2 status of breast cancer is classified dichotomously as either negative or 
positive to select patients for HER2-targeted therapy. This is usually determined via immunohistochemistry 
(IHC) and in situ hybridization (ISH)4. IHC protein expression is classified as negative (0), weak or partial (1 +), 
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moderate (2 +) or strongly positive (3 +) according to international guidelines4. Cases with negative (0) or weak 
expression (1 +) are considered HER2-negative (HER2-) and patients with strong expression (3 +) are considered 
as HER2-positive (HER2+). Cases with a moderate protein expression (2 +) need an additional reflex test, like 
an ISH assay to differentiate between HER2- (ISH without amplification) or HER2+ (ISH with amplification).

Currently, HER2+ patients are eligible for targeted treatment against the HER2 receptor, while patients with-
out HER2 amplification will not receive HER2 blockade treatment5. With the introduction of novel HER2-target-
ing agents in recent years, including antibody–drug conjugates, the clinical relevance of the HER2 classification 
system is shifting, since patients with low levels of HER2 expression (HER2low) could also have a therapeutic 
benefit from these agents3,6. Antibody–drug conjugates are delivered inside cancer cells by targeting the few 
HER2 receptors on the cells6,7. An advantage of these drugs is that there is a high antibody–drug ratio, thus 
multiple cytotoxic agents are bound to one antibody molecule8. The payload of these drugs is membrane perme-
able, making it possible to trigger the release of the cytotoxic agent and killing adjacent cells that do not express 
the HER2 receptor via the bystander effect6,7,9. A phase Ib study by Modi et al. showed that 37% of the patients 
with HER2low metastatic breast cancer had a partial response after treatment with trastuzumab-deruxtecan10.

The HER2low category represents tumors with an IHC score of 1 + or 2 + without amplification. According 
to this definition, HER2- only includes those patients with an IHC score of 0. In HER2low breast cancer cases, 
the number of receptors is low compared to cases with HER2 amplification11. Overall, it is estimated that around 
55% of all breast cancers is HER2low5,7. Hence, it is important to gain more insight in the biology of cancers with 
low HER2 expression since this subgroup might be of clinical relevance.

Since HER2low is a relatively new term, data with respect to the clinicopathologic characteristics and the 
prognostic impact of HER2low breast cancer is limited. Previous research indicated that HER2low tumors are 
more often ER+ and that they tend to have a higher histologic grade and a higher proliferation rate compared to 
HER2- tumors7,12,13. Study results on the prognostic impact are thus far inconsistent7,14,15.

To further understand the biology of the HER2low group, various biomarkers need to be analyzed. So far, an 
analysis of a PAM50 assay (including 50 breast cancer-related genes) of 3600 patients by Schettini et al. elucidated 
that hormone receptor positive/HER2low tumors had a higher ERBB2 expression level than HER2- tumors5. 
Several studies showed that stromal tumor infiltrating lymphocytes (TILs) have a prognostic and predictive 
value in breast cancer, where a higher density of TILs is correlated with a better outcome16–18. High numbers of 
TILs are associated with triple negative and HER2+ breast cancer. However, it is unknown whether there is a 
difference in the density of TILs between HER2- and HER2low breast cancer.

Therefore, the aim of this study was to analyze whether there is a relation between several clinicopathologic 
characteristics, including TILs, a large gene expression dataset and HER2 expression (HER2- versus HER2low), 
stratified for ER status.

Results
General patient and tumor characteristics.  From the 720 tumor samples within the cohort, cases 
with missing (invasive tumor) tissue or missing hormone receptor data (n = 101) were excluded. Furthermore, 
HER2+ samples (n = 90) were excluded resulting in a final dataset of 529 samples with either HER2- or HER-
2low breast cancer. Several patient and tumor characteristics of these 529 patients were analyzed and com-
pared between the HER2- and the HER2low cancers (Table 1). Overall, this cohort included 305 patients with 
ER+ tumors (58%) and 224 with ER- tumors (42%). Most tumors were HER2- (n = 429, 81%), the remaining 
100 tumors (19%) were HER2low. In total, 98 patients received adjuvant chemotherapy (e.g., anthracyclines, or 
anthracycline-containing therapy) and 66 patients received adjuvant hormonal therapy (e.g., tamoxifen, LHRH/
tamoxifen) according to historical procedures in the Netherlands.

Clinicopathologic differences between HER2‑ and HER2low breast cancer.  The median number 
of HER2 copies (n = 2), as determined by SISH, was similar in both groups. However, HER2low tumors had a 
significantly higher HER2 copy number compared to HER2- tumors (P ≤ 0.001;   Fig. 1A), in both ER+ and ER- 
tumors. In the ER+ cohort, there was no significant association between any of the clinicopathologic features 
between HER2- and HER2low breast cancer, except for the HER2 copy numbers. The level of ER expression by 
immunohistochemistry (% of positive tumor cells) was not different between ER+HER2- and ER+HER2low 
cases (P = 0.54; t-test).

Within the ER- cohort, HER2low breast cancer was significantly associated with increased regional nodal 
positivity, lower density of TILs and a lower expression of Ki-67 and epidermal growth factor receptor (EGFR) 
compared to HER2- cases (P < 0.001, P = 0.034, P = 0.031 and P = 0.046 respectively; Table 1). To analyze which 
of these four characteristics are independently associated with the HER2 status, a multivariate logistic regres-
sion analysis was performed for the ER- cohort. After multivariate analysis, only the density of TILs remained 
significantly associated with HER2low status (P = 0.035).

Gene expression differences between HER2‑ and HER2low breast cancer.  Overall, HER2low 
cases had a higher mRNA expression of ERBB2 compared to HER2- cases (P < 0.001; Fig. 1B). There was no 
significant difference in expression of ER-pathway-related genes, neither in the ER+ cohort (ER+HER2- versus 
ER+HER2low) nor the ER- cohort (ER-HER2- versus ER-HER2low). From the 5000 most variably expressed 
genes, five probe-sets (4 unique genes) showed significantly higher gene-expression levels (FDR P < 0.05) in the 
HER2low group compared to the HER2- group, within the ER+ cohort (Fig. 2). The four genes were ERBB2, Era 
Like 12S Mitochondrial RRNA Chaperone 1 (ERAL1), Mediator Complex Subunit 24 (MED24) and Post-GPI 
Attachment to Proteins Phospholipase 3 (PGAP3) genes. The higher expression level effect was also visually seen 
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Characteristic

ER+ (n = 305, 58%)

P-valuea univariate

ER- (n = 224, 42%)

P-valuea univariate
P-value 
multivariate

HER2- (n = 238, 
78%)

HER2low (n = 67, 
22%)

HER2- (n = 191, 
85%)

HER2low (n = 33, 
15%)

Age

Median in yr (range) 52 (23–88) 55 (32–81) 0.370b 52 (22–89) 53 (37–76) 0.387b

Age ≤ 50 99 (42%) 24 (36%) 0.320c 86 (45%) 13 (39%) 0.476c

Age > 50 117 (49%) 38 (57%) 90 (47%) 18 (55%)

Unknown 22 (9%) 5 (7%) 15 (8%) 2 (6%)

Menopausal stage 0.652c 0.375c

Premenopausal 101 (42.5%) 31 (46%) 89 (47%) 13 (39%)

Postmenopausal 115 (48.5%) 31 (46%) 87 (45%) 18 (55%)

Unknown 22 (9%) 5 (8%) 15 (8%) 2 (6%)

Tumor size 0.777d 0.106c

 ≤ 2 cm (T1) 82 (34.5%) 28 (42%) 58 (30%) 6 (18%)

 > 2 — ≤ 5 cm (T2) 115 (48%) 31 (46%) 103 (54%) 19 (58%)

 > 5 cm (T3) 9 (4%) 2 (2.5%) 8 (4%) 5 (15%)

(T4) 6 (2.5%) 1 (1.5%) 5 (3%) 1 (3%)

Unknown (Tx) 26 (11%) 5 (8%) 17 (9%) 2 (6%)

Nodal status 0.440d 0.005d 0.375

Node negative 140 (59%) 43 (64%) 124 (65%) 14 (42%)

Node positive 73 (31%) 19 (28%) 51 (27%) 17 (51%)

Unknown 41 (10%) 5 (8%) 16 (8%) 2 (6%)

Distant metastasis status 0.307d 0.580d

Metastasis negative 208 (87.5%) 62 (92.5%) 170 (89%) 31 (94%)

Metastasis positive 8 (3.5%) 0 (0%) 6 (3%) 0 (0%)

Unknown 22 (9%) 5 (7.5%) 15 (8%) 2 (6%)

Histologic subtype 0.295d 0.134d

Ductal 183 (77%) 54 (80.5%) 153 (80%) 25 (76%)

Lobular 15 (6%) 1 (1.5%) 11 (6%) 3 (9%)

Other 38 (16%) 10 (15%) 25 (13%) 3 (9%)

Unknown 2 (1%) 2 (3%) 2 (1%) 2 (6%)

Histologic grade 0.851d 0.661d

1 53 (22%) 14 (21%) 21 (11%) 3 (9%)

2 89 (37%) 27 (40%) 52 (27%) 11 (33%)

3 94 (40%) 24 (36%) 116 (61%) 17 (52%)

Unknown 2 (1%) 2 (3%) 2 (1%) 2 (6%)

Mitotic activity count 0.814b 0.327b

Median (range) 8 (0–94) 8 (0–49) 16 (0–112) 15 (0–67)

Stromal TIL percentage 0.077d 0.034d 0.035

Low (≤ 10) 168 (71%) 52 (78%) 121 (63%) 27 (82%)

Intermediate 
(11 — 60) 45 (19%) 5 (7.5%) 38 (20%) 2 (6%)

High (> 60) 8 (3%) 1 (1.5%) 5 (3%) 3 (9%)

Unknown 17 (7%) 9 (13%) 27 (14%) 1 (3%)

Progesterone receptor 0.755d 0.666d

Negative 56 (23.5%) 17 (25%) 182 (95%) 32 (97%)

Positive 182 (76.5%) 50 (75%) 9 (5%) 1 (3%)

Ki-67 (IHC) 0.655d 0.031d 0.145

 < 10% 92 (39%) 25 (37%) 63 (33%) 13 (39.5%)

11 – 25% 47 (19.5%) 16 (24%) 43 (22%) 11 (33.5%)

 > 26% 56 (23.5%) 13 (19.5%) 51 (27%) 2 (6%)

Unknown 43 (18%) 13 (19.5%) 34 (18%) 7 (21%)

EGFR (IHC) 0.207d 0.009d 0.402

 < 1% 202 (85%) 61 (91%) 136 (71%) 31 (94%)

 > 1% 31 (13%) 5 (7.5%) 51 (27%) 2 (6%)

Unknown 5 (2%) 1 (1.5%) 4 (2%) 0 (0%)

HER2 copy numbers (SISH) 0.001d  < 0.001d

0 — ≤ 2 168 (70.5%) 39 (58%) 125 (65%) 16 (48.5%)

Continued
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Characteristic

ER+ (n = 305, 58%)

P-valuea univariate

ER- (n = 224, 42%)

P-valuea univariate
P-value 
multivariate

HER2- (n = 238, 
78%)

HER2low (n = 67, 
22%)

HER2- (n = 191, 
85%)

HER2low (n = 33, 
15%)

 > 2 — < 6 33 (14%) 22 (33%) 20 (11%) 13 (45.5%)

Unknown 37 (15.5%) 6 (9%) 46 (24%) 2 (6%)

Vascular invasion 0.089d 0.220d

No 178 (75%) 41 (61%) 141 (74%) 20 (61%)

Yes 57 (24%) 22 (33%) 47 (24.5%) 11 (33%)

Unknown 3 (1%) 4 (6%) 3 (2%) 2 (6%)

Table 1.   Baseline clinicopathologic characteristics of patients with HER2- versus HER2low breast cancer. 
a Unknown values are excluded from analysis. b Mann-Whitney U-test. c Chi-square test. d Fisher’s exact test.

Figure 1.   HER2 IHC expression (HER2- versus HER2low) versus HER2 copy number determined by ISH (A) 
and versus mRNA ERBB2 expression (B). Association between the number of HER2 copies and the level of 
mRNA ERBB2 expression (C). SISH = silver-enhanced in situ hybridization.
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within the ER- cohort, although none of these four genes showed a statistically significant difference in expres-
sion between HER2- and HER2low cancers.

Interdependence of these genes was analyzed by assessing their chromosomal location. Both MED24 and 
PGAP3 are located on the same amplicon as ERBB2. PGAP3 (chr17:39,671,122–39,688,057) is located directly 3’ 
from ERBB2 (chr17:39,700,064–39,728,658) and they are both located on the 17q12 cytogenetic band. MED24 
(chr17:40,019,104–40,054,408) is located around 400 kb 5’ from ERBB2 on cytogenetic band 17q21.1. ERAL1 
(chr17:28,855,016–28,861,061) is located on cytogenetic band 17q11.2, 3’ of ERBB2. Furthermore, the Pearson 
correlation coefficient was calculated to evaluate the relation between the ERBB2 gene and the other genes. 
The ERBB2/ERAL1 correlation was 0.370 for the ER+ cases and 0.294 for ER- cases. The correlation between 
ERBB2 and MED24 was 0.464 and 0.260, for ER+ and ER- respectively. For PGAP3, two significant probe-sets 
were found and the correlation was 0.606 (ER+) and 0.552 (ER-) for ERBB2/PGAP3(55616_at) and 0.688 (ER+) 
and 0.687 (ER-) for ERBB2/PGAP3(221811_at). Additionally, it was shown that there is a trend that the level of 
ERBB2 expression increased when more HER2 copies (determined by SISH) were present (P < 0.001; Fig. 1C). 
However, no statistical significance was found between the mRNA ERBB2 expression levels and the HER2 copy 
numbers (P = 0.573).

Functional pathway enrichment in HER2‑ and HER2low breast cancer.  To gain more insight in 
the biological difference between HER2- and HER2low breast cancer, a more global gene-expression analysis 
was performed. For this analysis, all differentially expressed genes with an uncorrected univariate p-value below 
0.05 were collected and analyzed for enriched shared biology. In total, 1197 genes for the ER+ cohort and 977 
genes for the ER- cohort differentiated significantly between the HER2 groups. Functional annotation clustering 
of the significant genes within the ER+ cohort revealed an immune related cluster with an enrichment score of 
10.93. Within this cluster, a gene ontology biological process pathway was found related to the adaptive immune 
response (P = 6.8E-10) and involved 31 genes (Supplementary Table 1). Furthermore, another immune related 
gene ontology biological process pathway was detected, independent of the immune cluster. This pathway was 
presented with the name immune response and involved 69 genes (P = 1.5E-15; Supplementary Table 2). The 
expression levels of these genes were higher in the HER2- group compared to the HER2low group. Some poten-
tial interesting genes retrieved from these pathways are known to contribute to an increased immunity, for 
example by regulating T-cell activation or by improving T-cell proliferation or helping with T-cell mediated 
killing. Within the ER- cohort, no enriched immunity pathways were detected.

Survival data of patients with HER2‑ versus HER2low breast cancer.  From the data set of 529 
patients, additional patients were excluded based on missing clinical data (n = 44), receiving adjuvant systemic 
therapy (n = 115), positive nodal or distant metastasis status at diagnosis (n = 52), leading to a survival analysis 
of 318 patients. Median follow-up was 82 months for the ER+ cases and 64 months for the ER- cases. Regarding 
overall survival, the Kaplan–Meier survival curves were not significantly different for patients with HER2- and 
HER2low breast cancer, neither within the ER+ cohort nor in the ER- cohort (P = 0.295 and- P = 0.618 respec-
tively; Fig. 3). Furthermore, there were no differences regarding disease free survival (P = 0.664 for ER+ cases and 
P = 0.391 for ER- cases) and metastasis free survival (P = 0.615 for ER+ cases and P = 0.941 for ER- cases) between 
patients with HER2- and HER2low breast cancer (Kaplan–Meier curves not shown).

Figure 2.   Heat map of genes with a significant different expression level according to the HER2 protein 
expression (HER2- versus HER2low) and ER status. The red color represents a relatively high level of gene-
expression where a green color represents a relatively low level of gene-expression. It is shown that all genes 
have a higher median expression level in the HER2low cohort compared to the HER2- cohort. This figure was 
obtained with the use of the heatmapper expression tool from http://​www.​heatm​apper.​ca/​expre​ssion/.

http://www.heatmapper.ca/expression/
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Discussion
With the introduction of novel antibody drug conjugates, which can also target tumors with low levels of HER2 
expression, there is a need for a more granular HER2 classification system instead of a dichotomous division in 
either negative or positive. We aimed to analyze whether HER2low primary breast cancers are different compared 
to HER2- tumors with respect to clinicopathologic characteristics, gene-expression and survival. In this study, 
we excluded HER2+ cases since this breast cancer subtype is already known to have a distinct biology.

Overall, most breast cancers were scored as HER2- in our study (n = 429). The remaining patients (n = 100) 
were HER2low. This finding is in contrast with previous literature, reporting that around 55% of all breast cancers 
is HER2low3,7. This difference could be explained by the relatively large proportion of ER- cases in our study and/
or the use of breast cancer tissue from a historical cohort.

HER2low breast cancers showed a significant higher number of HER2 copies and a higher ERBB2 gene-
expression compared to HER2- tumors, which is in line with previous studies5,15. Within the ER+ cohort (n = 305), 
gene-expression analyses showed that HER2low tumors showed several differentially expressed genes compared 
to HER2- cases. This included ERBB2, ERAL1, MED24 and PGAP3, which were all higher expressed in the HER-
2low group. Based on genomic co-localization and the correlation coefficients of ERBB2, MED24 and PGAP3, 
the higher expression levels are likely the result of amplification of a common chromosomal region. For ERAL1, 
expression levels show little support for this co-amplification indicating that it is likely regulated otherwise. Previ-
ous research has shown that most of these genes are linked to worse prognosis for breast cancer patients. MED24 
has been reported to have a function in the growth of breast cancer cells19. PGAP3 was identified as a promotor 
of growth and metastasis in triple negative breast cancer20. ERAL1 is a mitochondrial RNA chaperone which 
has not been associated with breast cancer prognosis before21. However, ERAL1 is involved in the formation of 
the 28S small mitochondrial ribosomal protein (MRPS28) and that protein has been shown to be involved with 
breast cancer proliferation and metastasis22. In this ER+ cohort, pathway analyses additionally showed enrich-
ment of immune-related genes in the HER2- group compared to the HER2low group.

In ER- cases (n = 224), HER2low status was significantly associated with increased regional nodal positiv-
ity, lower density of TILs and a lower protein expression of Ki-67 and EGFR compared to HER2- cases. After 
multivariate analysis, only density of TILs remained significantly associated with HER2low status. This suggests 
that ER-/HER2- tumors have a more basal-like profile compared to ER-/HER2low tumors23,24. In line with the 
ER+ cohort, gene-expression analyses of the ER- cohort also showed a trend toward higher expression of ERAL1, 
MED24 and PGAP3 for the HER2low cases, although this was not significant. No enriched immunity pathways 
were detected within the ER- cohort.

Literature regarding HER2low in relation to gene-expression is very scarce. Schettini et al. analyzed a set of 
55 genes of which 34 showed a significant difference between HER2low and HER2- breast cancer within the 
ER+ cohort5. In our study, no genes (after correcting for multiple testing) were found to be statistically significant 
within the ER- cohort, which is in line with Schettini et al. who also did not find any significant differences in 
genes within the ER- group. Furthermore, HER2- tumors were more enriched in immune-related genes, which is 
concordant with the study of Schettini et al. reporting that HER2- tumors are more basal-like, using the PAM50 
assay, than HER2low tumors. The higher expression of EGFR in ER-HER2- tumors compared to ER-HER2low 
tumors in the univariate analysis of our study also supports a more basal-like TNBC aspect of HER2- cases25,26.

Overall, our results suggest that HER2low breast cancer is associated with a limited immune response com-
pared to HER2- breast cancer, as shown by the gene-expression data of the ER+ cohort and the TIL-score of the 
ER- cohort. Several previous studies reported that high levels of TILs are associated with a higher probability 
of treatment response and an improved outcome18,27,28. In our study, no difference in survival was observed 
between these two HER2 groups, neither in the ER+ nor in the ER- cohort. Previous literature is inconsistent 
with respect to outcome. In line with our findings, various studies reported no difference in overall survival 

Figure 3.   Kaplan Meier curves of overall survival according to HER2 status within the ER+ cohort (A) and the 
ER- cohort (B).
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between HER2- and HER2low breast cancer patients5,15,29. Denkert et al. reported that ER+/HER2low breast 
cancers have a lower pathological complete response rate after neoadjuvant chemotherapy compared to ER+/
HER2- cancers14. Furthermore, they concluded that patients with HER2low breast cancer have a better prognosis 
compared to HER2- cases, in the ER- cohort. Other previous studies reported that HER2low is associated with 
worse prognosis, in ER+ breast cancer7,30.

This is the first study that analyzes the HER2low status of breast cancer in relation to the density of TILs 
and a large gene-expression dataset. Furthermore, we used a well-documented cohort of patients. Since ER 
expression is regarded as a key-factor for tumor biology and outcome, we stratified for ER status5. However, this 
study also has some limitations. First, the dataset was based on a historical multicenter cohort of patients for 
which gene-expression data was generated for different research questions31–34. Although it is a cohort with a 
long follow-up period, there was a relatively large proportion of dropout, resulting in a relatively short median 
follow-up time. Especially for the ER+ cohort it is known that longer follow-up time is needed to detect disease 
recurrence35. Besides, this could have influenced the tissue quality and thus the HER2 protein expression levels, 
as reflected in the relatively low proportion of HER2low cases in our series36–38. However, this would rather result 
in an underestimation of our findings, since the HER2- cases might include some HER2low cases of which the 
HER2 protein expression levels have decreased slightly. Finally, scoring of HER2 status and density of TILs was 
performed according to international guidelines, but inter-observer variability has been reported39–42. In addi-
tion, HER2 expression was scored on TMAs, so heterogeneity of the tumors could not be completely depicted. 
Future mechanistic studies could elucidate the mechanism of poor immune infiltration into HER2low tumors.

In summary, in the ER+ cohort, we observed that HER2low tumors had a different gene-expression pattern 
compared to HER2- cancers, including genes that are associated with depletion of immunity. In ER- cases, 
HER2low cancers had a lower density of TILs compared to HER2- cases. Although immunity is regarded as an 
important prognostic factor in breast cancer, we did not observe a difference in survival between HER2low and 
HER2- patients, neither in the ER+ nor in the ER- cohort. Future research based on large, more recent cohorts 
of patients, could further elucidate the clinical relevance of HER2low in relation to immunity.

Methods
General patient and tumor characteristics.  This retrospective study was based on a well-documented 
cohort of primary breast cancer patients, for whom cancer tissues were available on tissue microarrays and 
Affymetrix data was known. Patients were diagnosed between 1982 and 2003 in multiple centers across the 
Netherlands. Coded leftover patient material was used in accordance with the Code of Conduct of the Federa-
tion of Medical Scientific Societies in the Netherlands43. According to these national guidelines, this work was 
not subject to the Medical Research Involving Human Subjects Act (WMO; METC 02.593).

In total, formalin-fixed-paraffin-embedded breast cancer tissue of 720 tumors were analyzed. Clinical data 
and tumor characteristics were partly collected from medical charts and pathology reports. This included age, 
menopausal status, pTNM classification, treatment and outcome data (overall survival, disease free survival 
and metastasis free survival). Central pathology review of whole sections was performed to assess histologic 
grade, histologic subtype, vascular invasion, mitotic activity index and density of TILs. Histologic grading was 
determined using the Nottingham modified Bloom and Richardson scoring system44. The percentage of stro-
mal TILs was scored on hematoxylin and eosin-stained whole slides according to the recommendations of the 
International TILs Working Group45,46. Figure 4 illustrates examples of breast cancers with a low, intermediate 
or high density of TILs.

Tissue microarray scoring.  Breast cancer tissues of all patients was available in triplicate on tissue micro-
arrays. Sections of 4 µm were cut (Micron HM340E) and mounted on Superfrost plus slides (Menzel-Glaser, 
Braunschweig, Germany). Protein expression of ER, PR, HER2, Ki-67 and EGFR on invasive tumor cells was 
scored manually by two observers in a central lab47. The ER and PR status was reported as negative or posi-
tive, using a cut off at 10% stained cells, according to the Dutch treatment guidelines48. The Ki-67 expression 
for this cohort was categorized as low (≤ 10%), intermediate (11–25%) or high (≥ 26%)49–51. For this study, tis-
sue microarrays were immunohistochemically stained with the 4B5 anti-HER-2/neu antibody (Ventana Bench-
Mark ULTRA, ROCHE), using cell lines and human tissues as internal controls. The VM NanoZoomer 2.0-HT 

Figure 4.   Representative images of breast cancers with a low (A), intermediate (B) or high (C) density of 
stromal TILs (Hematoxylin and eosin staining at a 60× magnification).
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(Hamamatsu Photonics K.K.) was used to digitize the slides. HER2 status was scored according to the most 
recent guidelines from The American Society of Clinical Oncology/College of American Pathologists (ASCO/
CAP)4. HER2- breast carcinomas were defined by an IHC score of 0, whereas HER2low carcinomas were defined 
by an IHC score of 1 + or 2 + without amplification (Fig.  5). HER2+ was assigned according to international 
guidelines as IHC 2 + with amplification or IHC 3 +3.

HER2 silver-enhanced in situ hybridization (SISH) was performed using the VENTANA HER2 Dual ISH 
DNA Probe Cocktail assay (Ventana BenchMark ULTRA, ROCHE). A HER2 copy number of < 6 per cell was 
considered HER2 non-amplified and ≥ 6 copies per cell was considered as HER2-amplified4. The triplicate IHC 
and ISH scores were combined to a final HER2 score, using the core with the highest level of expression in case 
of discrepancy. Patients without assessable invasive tumor tissue were excluded.

Statistical analysis.  The statistical analysis was performed using IBM SPPS Statistics version 26. The Pear-
son Chi-square or Fisher’s exact tests were used to investigate differences between HER2- and HER2low cases 
for the categorical variables, stratified for ER status. For the continuous variables a Mann–Whitney U-test was 
performed. A linear trend test was performed for the categorical variables with a minimum of 4 categories. Mul-
tivariate logistic regression analysis was performed to analyze whether relevant, univariate significant, variables 
were independently associated with HER2 status. For survival analysis, overall survival, disease free survival and 
metastasis free survival were used as endpoints. The overall survival was defined as the time from diagnosis to 
date of death or the last date where the patients were known to be alive. Disease free survival was defined as the 
time from diagnosis to the date of disease recurrence, last follow-up or death (of any cause). Disease recurrence 
was defined by a positive biopsy within either the ipsilateral breast or axillary nodes. Metastasis free survival was 
defined as the time from diagnosis to the date of distant disease recurrence, last follow-up or death. With the use 
of the Mantel-Cox method, Kaplan–Meier curves of the survival data were visualized. Differences in outcome 
between the HER2 subgroups were evaluated by Log-rank tests, where a two-sided p-value below 0.05 was con-
sidered as statistically significant.

Gene-expression levels were derived from existing in-house data; samples were run on both U133A and HGU-
133Plus2.0 chips. The samples were previously described and are available via the Gene Expression Omnibus 
(http://​www.​ncbi.​nlm.​nih.​gov/​geo/) with accession codes GSE2034, GSE5327, GSE12276 and GSE2783031–34. 
Raw data were normalized using fRMA and samples from both platforms were combined using probe-sets 
common to both chip-types52. ComBat was used to correct for batch effects resulting from using data of two 
different platforms53.

Next, the top 5000 most variable (highest standard deviation) genes were used for further analysis. Differen-
tially expressed genes were identified using the non-parametric Mann–Whitney U-test in STATA v14 (StataCorp, 
Houston, USA). Chromosome locations of the genes were retrieved via http://​genome.​ucsc.​edu and cytogenetic 
band locations were retrieved from www.​genec​ards.​org. An overview of the expression of the genes is presented 
with the use of heatmapper.ca expression tool. Furthermore, a functional pathway analysis was performed using 
DAVID bioinformatics resources 6.8, to investigate the global role of differentially expressed genes for HER2low 
breast cancer and analyzed for enriched shared biology54,55.

Ethics approval and consent to participate.  This work was approved and need of informed consent 
was waived by the Medical Ethics Committee of the Erasmus MC (MEC 02.953). This Medical Ethics Committee 
of the Erasmus MC approved that the rules laid down in the Medical Research Involving Human Subjects Act 
do not apply to this work. Therefore, there was no need for an informed consent. The study was performed in 
accordance with the Declaration of Helsinki.

Data availability
The datasets used and analyzed during this study are available by Corresponding author on reasonable request.

Figure 5.   A schematic overview of HER2 scoring in breast cancer, as used in this study. Breast carcinomas 
are considered HER2- if the IHC score is 0. An IHC score 1 + or 2 + without HER2 amplification (after ISH) 
is categorized as HER2low. Breast cancers with an IHC score of 2 + with amplification (after ISH) or 3 + are 
HER2+ (80× magnification). ISH = in situ hybridization.

http://www.ncbi.nlm.nih.gov/geo/
http://genome.ucsc.edu
http://www.genecards.org
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