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RESEARCH
A Single-Cell Atlas of Tumor-Infiltrating Immune
Cells in Pancreatic Ductal Adenocarcinoma
Hao Wang1,2,‡, Lu Chen3,‡, Lisha Qi3, Na Jiang1, Zhibin Zhang4, Hua Guo3,
Tianqiang Song3, Jun Li5, Hongle Li5, Ning Zhang3,6,*, and Ruibing Chen1,*
Pancreatic ductal adenocarcinoma (PDAC) is one of the
most lethal malignancies with limited treatment options.
To guide the design of more effective immunotherapy
strategies, mass cytometry was employed to characterize
the cellular composition of the PDAC-infiltrating immune
cells. The expression of 33 protein markers was examined
at the single-cell level in more than two million immune
cells from four types of clinical samples, including PDAC
tumors, normal pancreatic tissues, chronic pancreatitis
tissues, and peripheral blood. Based on the analyses, we
identified 23 distinct T-cell phenotypes, with some cell
clusters exhibiting aberrant frequencies in the tumors.
Programmed cell death protein 1 (PD-1) was extensively
expressed in CD4+ and CD8+ T cells and coexpressed with
both stimulatory and inhibitory immune markers. In addi-
tion, we observed elevated levels of functional markers,
such as CD137L and CD69, in PDAC-infiltrating immune
cells. Moreover, the combination of PD-1 and CD8 was
used to stratify PDAC tumors from The Cancer Genome
Atlas database into three immune subtypes, with S1 (PD-
1+CD8+) exhibiting the best prognosis. Further analysis
suggested distinct molecular mechanisms for immune
exclusion in different subtypes. Taken together, the single-
cell protein expression data depicted a detailed cell atlas
of the PDAC-infiltrating immune cells and revealed clini-
cally relevant information regarding useful cell phenotypes
and targets for immunotherapy development.

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal
disease with a 5-year survival rate of 7% (1). PDAC is currently
the third leading cause of cancer-related mortality and pre-
dicted to be the second by the year of 2030 (2). Most patients
with PDAC are diagnosed with unresectable or metastatic
disease. Despite achieving a better understanding of the
genomic nature of PDAC in the past decade (3–5), effective
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therapies, especially for the advanced disease, are still
lacking.
PDAC neoplasms are characterized by a prominent des-

moplastic reaction with a dense fibrotic stroma (1, 6). Extra-
cellular matrix (ECM) components and nonneoplastic cells,
including fibroblastic, vascular, and immune cells, occupy the
majority of the tumor mass and form a complex and dynamic
tumor microenvironment (TME) (1, 7). Desmoplasia is
considered the biophysical barrier for T-cell infiltration (8, 9).
However, a recent study indicates that stromal markers do not
correlate with a paucity in T-cell accumulation, suggesting
that the interaction between desmoplasia and the immune
landscape in PDAC is more complex than previously recog-
nized (10). T cells are the dominant immune cell types in the
TME of PDAC (11, 12). High levels of CD4+ and CD8+ T cells in
the tumor nests (Tn) and the proximity of cytotoxic T cells to
cancer cells are both associated with prolonged survival
(10, 11). Furthermore, increasing evidence has demonstrated
the intertumoral and intratumoral heterogeneity of the infil-
trating T lymphocyte subpopulations (10, 13). However, a
detailed understanding of the immune composition of PDAC is
still lacking.
Substantial evidence indicates that the function of PDAC-

infiltrating T cells is attenuated by immune-suppressive cells,
such as CD4+ forkhead box P3 (FoxP3)+ regulatory T cells
(Treg), M2 tumor-associated macrophages, and myeloid-
derived suppressor cells (9, 14–16). Moreover, immune
checkpoints are expressed in “exhausted” T cells in response
to chronic antigen exposure and suppress the antitumor
effects. Inhibiting these immune checkpoints can reactivate T
cells to eliminate cancer cells. Immune checkpoint blockade,
for example, anti–programmed cell death protein 1 (PD-1)/
programmed cell death receptor ligand 1 and anti–cytotoxic T
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An Immune Cell Atlas of PDAC
lymphocyte (CTL)–associated protein 4 (CTLA-4), has gained
remarkable successes in some cancers, such as melanoma
and lung cancer (17, 18). However, single-agent immune
checkpoint inhibitors for the treatment of PDAC have been
disappointing to date (19, 20), likely because of the highly
immunosuppressive TME, low infiltration, and recognition by
effector T cells caused by low neoantigen burden in PDAC
(21–23). Therefore, combination strategies that can
completely activate antitumor T-cell responses are urgently
needed. The exploration of the complex and heterogeneous
immune landscape may provide insights for developing mul-
tiagent immunotherapies with improved antitumor efficacy.
To gain an in-depth understanding of the immune contex-

ture of PDAC, especially the T-cell compartment, we con-
ducted immunohistochemistry (IHC) and single-cell mass
cytometry analyses on specimens from 14 patients, including
12 PDAC patients and two patients diagnosed with chronic
pancreatitis (CP). First, the level and localization of tumor-
infiltrating T cells in the 14 collected tissue samples were
examined with IHC. Next, mass cytometry was employed to
analyze the expression of 33 immune markers in cells from the
collected specimens. All collected samples were examined by
IHC; however, few cells were obtained from PDAC tumors
P11–P14 because of the low level of immune infiltration and/or
the small size of these tissues; therefore, these four tumors
were not used for mass cytometry analysis. In total, we were
able to detect more than two million immune cells in 21
samples from ten patients, including eight treatment-naïve
PDAC tumor samples, two CP tissues, nine peripheral blood
mononuclear cell (PBMC) samples, a normal adjacent (Nadj)
tissue from a CP patient, and a Nadj tissue from a PDAC
patient (supplemental Table S1). The collected data were used
to investigate the immune composition in the TME of PDAC,
and the correlation between immune checkpoint molecules
and other immune markers in single cells was also investi-
gated. To further understand the immune landscape of PDAC
in a larger patient population, we exploited the transcriptomic
data of PDAC tumors from The Cancer Genome Atlas (TCGA),
and the results showed that immune infiltration was highly
relevant to the prognosis of PDAC, and different mechanisms
were involved for immune exclusion in different immune sub-
types of patients.
EXPERIMENTAL PROCEDURES

Clinical Samples

Surgical specimens from 12 treatment-naïve PDAC patients and
two patients with CP were obtained from Tianjin Medical University
Cancer Institute and Hospital. The CP samples were used as a non-
tumorigenic pancreatic tissue reference to provide information
regarding the differential pathological roles of tissue-resident immune
cells. Whole blood samples were collected into sodium heparin tubes,
and PBMCs were obtained by gradient centrifugation. PBMCs could
represent the immune background of the patients and were employed
as the control in the mass cytometry analysis. Given that the major
2 Mol Cell Proteomics (2022) 21(8) 100258
portion of the specimens was needed for pathological examination,
we were only able to collect Nadj pancreatic tissues from two patients.
Tumor grades were histologically determined by an experienced
pathologist (supplemental Table S1). The studies in this work abide by
the Declaration of Helsinki principles. All protocols were reviewed and
approved by the Medical Ethics Committee at the Tianjin Medical
University Cancer Institute and Hospital (bc2020049).

Antibodies

The antibodies (Abs) used for IHC staining were as follows: anti-
CD3 (catalog no.: ab5690; Abcam), anti-CD8 (catalog no.: ZA-0508;
ZSBio), and anti-rabbit immunoglobulin G-horseradish peroxidase
(catalog no.: PV-6001; ZSBio). Metal-conjugated Abs used for mass
cytometry were purchased from Fluidigm or in house labeled
(supplemental Table S2). Ab labeling was performed using the Max-
PAR antibody conjugation kit (Fluidigm) according to manufacturer’s
instructions. The concentration of each Ab was assessed after metal
conjugation using a Nanodrop (Thermo Scientific). Conjugated Abs
were titrated for optimal concentration for use.

IHC Staining

IHC staining was performed as previously described (24). In brief,
formalin-fixed paraffin-embedded tissue blocks were cut into 5-μm
slides and placed in an oven at 65 ◦C for 2 h. Xylene and graded
concentrations of ethanol were used for sequential washing of the
sections. Endogenous peroxidase activity and nonspecific staining
were blocked by 3% H2O2 for 15 min and 3% bovine serum albumin
(Roche) for 1 h. Incubation with the primary Abs was performed at
room temperature for 30 min and then at 4 ◦C overnight. Tissue
samples were washed with PBS three times and stained with the
secondary Ab (1:200 dilution) at 37 ◦C for 1 h and then visualized by
3,3-diaminobenzidine staining, counterstained with 10% Mayer’s he-
matoxylin solution, dehydrated, mounted, dried, and examined under
microscope.

Immunohistochemical stainings were assessed by experienced
gastrointestinal pathologists blinded to the clinical information.
Immune cell scores were calculated by counting the positive cells of
indicated markers at 200× magnification from representative areas of
Nadj, tumor margin (Tm), Tn surroundings, and Tn. Immune cell
enrichment areas were used to represent the overall immune infiltra-
tion of the specimen. For specimens with multiple immune cell
enrichment areas, immune cell scores were represented by the
average value of the counts. Both intraepithelial and intrastromal
immune cell infiltrates of the representative areas were included in cell
count.

Single-Cell Suspension Preparation

Tissues collected in surgery were immediately placed in ice-cold
Dulbecco's modified Eagle's medium containing 1% penicillin/strep-
tomycin. Tissues were delivered to laboratory within half an hour and
processed to single-cell suspensions using the Tumor Dissociation Kit
(Miltenyi). Briefly, tissues were minced into small pieces with scissors
(~1 mm), incubated for 60 min in the enzyme mixture, filtered through a
70-μm cell strainer (Miltenyi), and washed in PBS twice. Then, the cells
were labeled with cisplatin (Fluidigm), fixed, and cryopreserved in 10%
dimethyl sulfoxide for subsequent analysis.

Peripheral blood samples were collected in heparin-containing
tubes, mixed 1:1 with PBS, layered over Histopaque-1077 (Sigma),
and centrifuged at 400g for 30 min at 25 ◦C. PBMCs were isolated
from the interface between the Histopaque and the plasma. The
collected cells were washed twice with PBS and processed similarly
as the tissue samples before cryopreservation.
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Ab Staining

For each patient, cells from each tissue were labeled with a unique
barcode by incubating with CD45 Abs conjugated to distinct metal
isotopes before pooling. In detail, each cell sample was first incubated
with Fc receptor blocking solution (BioLegend), labeled with CD45 Ab,
and washed in cell stain buffer (Fluidigm) for three times. Then sam-
ples from each patient were pooled into one tube. Pooled samples
were labeled with 27 cell surface and five intracellular markers
according to manufacturer’s instructions. Cells were washed twice in
cell stain buffer and resuspended in 1 ml of nucleic acid Intercalator-Ir
buffer (125 nM Intercalator-Ir in fix and perm buffer [Fluidigm]) over-
night at 4 ◦C. Cells were then washed once in cell stain buffer, once in
PBS, and twice in water and diluted to 0.5 × 106 cells ml−1 in H2O
containing 10% of EQ Four Element Calibration Beads (Fluidigm) for
subsequent mass cytometry data acquisition.

Mass Cytometry Data Acquisition and Preprocessing

The samples were analyzed on a CyTOF2 mass cytometry (Fluid-
igm) equipped with a SuperSampler fluidics system (Victorian Airships)
at an event rate of <500 events per second. After acquisition, data
variability between samples was calibrated by bead-based normali-
zation in the CyTOF software, and all data were collected as .fcs files.
Then the .fcs files were loaded into FlowJo (version: v10, BD Bio-
sciences) to deconvolute the CD45-based barcoding and gated to
exclude residual normalization beads, debris, doublets, and cisplatin-
positive dead cells. All data were imported to R (version: 3.5.3) using
the flowCore (version: 2.0.0) R/Bioconductor package, and signal in-
tensities for each channel were arcsinh transformed with a cofactor of
5 (x_transf = asinh [x/5]) for subsequent clustering and high-
dimensional analyses.

Mass Cytometry Data Clustering and Statistical Analysis

To balance the number of cells in each sample, 40,000 cells were
randomly selected from each sample, and all cells were included when
less than 40,000 cells were detected. Barnes–Hut implementation of t-
distributed stochastic neighbor embedding (tSNE) in Rtsne (version:
0.15) R package was used to visualize the high-dimensional data in
two dimensions. Clustering analysis was conducted using the Phe-
noGraph algorithm with parameter k = 30 implemented in Rpheno-
graph (version: 0.99.1) R package. To visualize the relative expression
and define the positive status of each marker, the expression was
normalized between 0 and 1 to the 99th percentile, and the top
percentile was set to 1, and the positive cutoff of each marker was 0.6.
tSNE plots and heatmaps were displayed using the ggplot2 (version:
3.3.0) and ComplexHeatmap (version: 2.4.2) R package. Relative dif-
ference of population frequency, correlation analysis between the
expression of markers, and paired tests of marker expression in PD-1-
positive and PD-1-negative cells were all performed in R (version:
3.5.3) and specified in the corresponding figure legends.

TCGA Data Analysis

RNA sequencing data and clinical information for 146 PDAC sam-
ples were obtained from TCGA using the TCGAbiolinks (version:
2.16.0) R/Bioconductor package. “Immune score,” which represents
the infiltration level of immune cells in the tumor sites of the TCGA-
PDAC samples, was calculated using the ESTIMATE algorithm
(https://bioinformatics.mdanderson.org/estimate/). Nonsynonymous
mutation counts per Mb of the TCGA samples were analyzed using
FireBrowse (http://firebrowse.org/), which provides access to analyze
data obtained from TCGA. The stratification of the TCGA sample was
conducted by two steps. First, we defined the “immune desert” sub-
type according to the minimum one-third “Immune score.” Then, the
remaining samples with PD-1 and CD8 greater than their 33rd
percentile are defined as the “CD8+PD-1+ immune” subtype, and the
remainder of samples was allocated to the “CD8-PD-1-immune”
subtype. Gene set variation analysis (GSVA) was performed to identify
the pathway alterations across the three TCGA-PDAC subtypes using
the R/Bioconductor package GSVA (version: 1.36.0). Gene sets for
GSVA were obtained from the MSigDB database C2-canonical path-
ways (version: 7.1). The TCGA-PDAC gene expression matrix was
subjected to the GSVA algorithm to calculate GSVA scores for each
gene set with at least ten overlapping genes. The significance of the
enrichment of the TCGA-PDAC subtypes was estimated using a
simple linear model and moderated with the F-statistic by the R/Bio-
conductor package limma (version: 3.44.1). Log-rank tests and
Kaplan–Meier survival curves were applied to compare the overall
survival among the TCGA-PDAC subtypes using R package survival
(version: 3.1.12) and survminer (version: 0.4.6).

Experimental Design and Statistical Rationale

The mass cytometry (CyTOF2) experiments were performed on
single-cell suspensions obtained from eight treatment-naïve PDAC
tumor samples, two CP tissues, nine PBMC samples, one Nadj tissue
from a CP patient, and one Nadj tissue from a PDAC patient. Statis-
tical analysis was conducted by using the Wilcoxon rank-sum test,
and p < 0.05 was considered to be statistically significant. All statis-
tical analyses were performed using R (version: 3.5.3).

RESULTS

Mass Cytometry Profiling of Tumor-Infiltrating Immune
Cells in Pancreatic Samples

In this study, we collected freshly resected tissues from 12
treatment-naïve patients diagnosed with PDAC and two pa-
tients with CP (supplemental Table S1). The level of T
lymphocyte infiltration in the collected tissues was first
examined by IHC against both CD3 and CD8. We observed
marked interpatient variability in the density of the infiltrated T
cells, and tumors from several patients, for example, P11,
P13, and P14, exhibited low T-cell numbers, consistent with a
“cold tumor” phenotype (Fig. 1A, supplemental Fig. S1A). In
addition, we observed a decreasing gradient of CD8+ CTLs
and total T-cell numbers across Tm, Tn surroundings, and Tn,
showing an exclusion distribution pattern (Fig. 1A). Tumor
tissues exhibited higher density of T cells, and even the Tn
showed more abundant T cells compared with the Nadj tis-
sues (p < 0.01, Fig. 1A). Moreover, the two CP tissues were
enriched with T cells, exhibiting a comparable level of T-cell
infiltration to the tumor samples (supplemental Table S3).
To further investigate the cellular composition of the infil-

trated immune cells, we performed a multiscale mass
cytometry analysis on the resected tissues and isolated
PBMCs from these patients. To simultaneously analyze the
immune compartments of the pathological tissues, the Nadj
tissues, and the peripheral blood samples, we barcoded these
three different types of samples with anti-CD45 Abs conju-
gated to distinct metal isotopes before the samples were
pooled (25). Next, the pooled single-cell suspension samples
were stained with additional 32 Abs and then analyzed by
mass cytometry (Fig. 1B and supplemental Table S2). The Ab
panel was designed to focus on the functional diversity of T
Mol Cell Proteomics (2022) 21(8) 100258 3
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FIG. 1. Investigation of the immune landscape of PDAC. A, representative IHC images stained against CD3 and CD8 from different regions
of a PDAC tumor (left panel; scale bar, 100 mm). Line graphs showing the T-cell density scores in tumors from all the enrolled PDAC patients.
Paired Wilcoxon test was used for statistical analysis (*p < 0.05, **p < 0.01). B, workflow of the mass cytometry experiments. Different types of
samples from one patient were stained with anti-CD45 conjugated with different isotopes and then combined for mass cytometry analysis. For
PDAC tumors without paired Nadj or PBMC sample from the same patient, two anti-CD45 antibodies conjugated with different isotopes were
employed for the barcoding. See also supplemental Figs. S1 and S2 and supplemental Tables S1–S3. IHC, immunohistochemistry; Nadj, normal
adjacent tissue; PBMC, peripheral blood mononuclear cell; PDAC, pancreatic ductal adenocarcinoma; St, stroma; TEC, tumor epithelial cell
nest; Tm, tumor margin; Tn, tumor nest; Tns, tumor nest surrounding.

An Immune Cell Atlas of PDAC
cells. Given that a large portion of the specimens was reserved
for pathological examination and few immune cells existed in
the adjacent normal tissue, we were only able to obtain
enough cells for the mass cytometry analysis from two normal
tissues in this study, including one from a PDAC patient and
one from a CP patient. In addition, few cells were obtained
from PDAC patients P11–P14, therefore mass cytometry data
were acquired only for two CP patients (P1 and P2) and eight
PDAC patients (P3–P10). Of note, the data of Nadj and CP
samples were included for reference; however, they should be
treated with caution because of the small sample size. After
debarcoding and quality control by manual gating strategy
(supplemental Fig. S1B), we detected approximately 200,000
tumor-infiltrating immune cells and more than 1,800,000
PBMCs for the subsequent analysis (supplemental Fig. S1C).
Multidimensional scaling analysis revealed significant inter-
patient heterogeneity for both PDAC-infiltrating immune cells
and PBMC samples, while the immune composition of the two
CP samples was highly similar to each other (supplemental
Fig. S1D). To address the discrepancies in total numbers of
cells per sample, 40,000 cells were randomly selected from
each sample for the downstream analysis, and all cells were
included when less than 40,000 cells were detected.
4 Mol Cell Proteomics (2022) 21(8) 100258
Correlation analysis of marker frequencies showed that the
randomly selected cells exhibited good consistency, sug-
gesting that the random sampling could decently represent
the whole sample (supplemental Fig. S1, E and F). Meanwhile,
technical replicate analysis of a PBMC sample demonstrated
high reproducibility of the mass cytometry experiments
(supplemental Fig. S2).

The Single-Cell Immune Landscape of PDAC

To visualize the expression of markers in all the measured
immune cells (CD45+), the dimensionality reduction algorithm
tSNE (26, 27) was applied to generate two-dimensional graphs
for each marker (Fig. 2A and supplemental Fig. S3A). The
distribution of cells from individual samples in the tSNE plot
was shown in supplemental Fig. S3B. To precisely map the
diverse cell phenotypes, we employed the PhenoGraph clus-
tering algorithm (28), which was widely used for the clustering
of high-dimensional single-cell data, and identified 29 indi-
vidual cell clusters (Fig. 2B and supplemental Fig. S3C).
Marker expression profiles assigned these clusters to four
main immune compartments, including T cells, B cells, NK
cells, and mononuclear phagocytes (MPs) (Fig. 2, C and D,
supplemental Fig. S3D and supplemental Table S4).
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An Immune Cell Atlas of PDAC
T cells were detected as the most abundant cell population
in the PDAC TME with a mean frequency of 56% (Fig. 2E),
consistent with previous reports (10, 11). The mean frequency
of T cells in PBMCs (44%) was slightly lower compared with
that in the tumors with large interpatient variability in both
types of samples. Moreover, the mean percentage of T cells
was considerably higher in the two CP samples (89%)
(Fig. 2E). It should be noted that different numbers of cells
from individual samples were used for the analysis
(supplemental Table S5).
Frequencies of the other immune cells were lower

compared with T cells in PDAC. The mean frequency of NK
cells was 0.8%, significantly lower compared with that in
PBMC samples (6.6%) (Fig. 2E). We observed that the
Mol Cell Proteomics (2022) 21(8) 100258 5
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frequency of CD95+ NK cells in PDAC tumors was markedly
higher compared with PBMCs (supplemental Fig. S3E). CD95
is a prototypic death receptor both in and outside the immune
system (29). Our data suggested that the CD95-mediated
apoptosis may contribute to the depletion of PDAC-
infiltrating NK cells. B cells constituted approximately 5% of
the detected immune cells in PDAC tumors, comparable to
that in CP tissues and peripheral blood, and its frequency was
higher in the adjacent normal tissues from one of the PDAC
patients (Fig. 2E). Interestingly, we observed that the tumor-
infiltrating B cells expressed higher levels of CC chemokine
receptor 5 (CCR5) compared with B cells in PBMC samples
(supplemental Fig. S3F). CCR5 is not expressed in normal B
cells but has been associated with the migration and prolif-
eration of pathological B cells (30, 31). The results indicated
that CCR5 may play a role in regulating the infiltration and
biological functions of B cells in the TME of PDAC.
The mean frequency of MPs in PDAC was 7.5%, with

marked interpatient viability, ranging from 1.04% to 24.3%
(Fig. 2E). The percentage of PDAC-infiltrating MPs was lower
compared with T cells in majority of the investigated samples,
which was consistent with observations in an earlier study
(11). PhenoGraph clustering analysis revealed seven sub-
populations of MPs in the analyzed samples, among which
cluster 27 expressing CD14 and HLA-DR and partially
expressing the 4-1BB ligand (CD137L) predominated the MP
population in PDAC and exhibited an increased frequency
compared with blood (Fig. 2F). Cells in cluster 27 also broadly
expressed cytokines transforming growth factor beta and
interleukin-17A (supplemental Fig. S3G). This phenotype
showed great variability between patients. In one PDAC
sample, cluster 27 constituted 22% of all immune cells, and its
mean frequency was 4% among all eight samples. CD137L is
expressed by antigen-presenting cells, and its interaction with
its receptor delivers a potent active antitumor immune
response in some cancers; therefore, its agonists are currently
being exploited as potential immunotherapeutic reagents
(32, 33). Our data suggested the potential therapeutic benefit
to target CD137L in some PDAC patients.

The Heterogeneous Phenotypes of PDAC-Infiltrating T
Cells

Next, we performed tSNE and PhenoGraph analyses
focusing on T cells to exhaustively map the diverse T-cell
phenotypes (Fig. 3, A and B). This approach led to the iden-
tification of 23 T-cell subsets, including ten CD4+ subsets,
nine CD8+ subsets, and four double-negative subsets (Fig. 3,
B and C). CD4+ and CD8+ T cells accounted for 50% and 46%
of all T cells across tumors, respectively. No statistically sig-
nificant difference was observed for the percentage of CD4+ T
cells among different types of specimens, and the two CP
samples contained higher percentage of CD8+ T cells
compared with PBMCs (supplemental Fig. S4A). In addition,
we found that the double-negative T cells accounted for 4% of
6 Mol Cell Proteomics (2022) 21(8) 100258
all T cells in PDAC tumors, which was slightly lower than that
in PBMCs (supplemental Fig. S4A). The frequency of cluster
T17 composed of γδ T cells was elevated in PDAC, but these
cells accounted for a small proportion of the T compartment.
Daley et al. (12) previously reported that the γδ T-cell popu-
lation constituted ~40% of tumor-infiltrating T cells in PDAC;
however, our data and several previous reports did not
confirm their findings (10, 13).
To further explore T-cell subset diversity, we manually an-

notated the PhenoGraph clusters based on the expression of
characteristic markers and defined eight major classes of T
cells (Fig. 3, C–E and supplemental Fig. S4, B and C). Effector
memory (EM) CD4+ T cells (CD4+ EM, CCR7lowCD45RO+)
accounted for 18% of T cells on average in PDAC tumors,
lower compared with PBMCs (Fig. 3E and supplemental
Fig. S4B). Five subsets of CD4+ EM were identified, exhibit-
ing great heterogeneity among physiological sample types
(Fig. 3F). For example, subsets T6 and T8 were significantly
more abundant in PBMCs compared with PDAC (Fig. 3F).
Furthermore, the frequency of subset T23 with low expression
of chemokine receptors and adhesion molecules was elevated
in PDAC and CP samples (Fig. 3F and supplemental Fig. S4D).
T23 cells may be in a quiescent and nonfunctional state given
that chemokine receptors and adhesion molecules play key
roles in lymphocyte trafficking and biological activities (34, 35).
As expected, CD4+ naïve cells (CCR7+CD45ROlow) were rarely
observed in the PDAC TME and the CP samples (Fig. 3E and
supplemental Fig. S4B).
CD4+ PD-1+ T cells accounted for 20% of all T cells in

PDAC. Greater than 40% of CD4+ T cells were PD-1+ in PDAC
tumors, markedly higher compared with PBMCs (<1%)
(Fig. 3E and supplemental Fig. S4B). All the analyzed PDAC
samples exhibited high frequency of PD-1 in the CD4+ pop-
ulation, ranging from 16% to 74% (Fig. 3, E and F). Cluster
T14 was the major phenotype of the PD-1+CD4+ T-cell pop-
ulation in PDAC with significantly higher frequency compared
with CP and blood samples (Fig. 3F). This broad expression of
PD-1 in CD4+ T cells was not observed in previous studies of
lung, kidney, and breast cancers (25, 36, 37) and may repre-
sent a unique characteristic of PDAC.
Tregs (T19) were identified based on the expression of

CD4+, FoxP3+, and CD127low (Fig. 3C). Tregs were signifi-
cantly enriched in PDAC TME compared with PBMC and CP
samples with an average percentage of 9% across PDAC
samples (Fig. 3E and supplemental Fig. S4B), which was
consistent with previous reports (13, 14). In addition, we
observed a lower percentage of Treg in CP samples compared
with the PBMCs, suggesting an uncontrolled immune reaction
in the inflamed tissues (Fig. 3E). Furthermore, Treg cells
expressed higher levels of inhibitory checkpoint CTLA-4,
costimulatory checkpoints inducible T-cell costimulatory
(ICOS), and tumor necrosis factor receptor superfamily
member 4 (OX40) compared with the other subsets of CD4+

cells in PDAC (supplemental Fig. S4D).
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An Immune Cell Atlas of PDAC
CD8+ cells are the major immune cell compartment in TME
that exhibit antitumor activity (38). Our data showed that CTLs
in PDAC were mainly composed of three classes, including
effector (CD8+ Eff, CCR7lowCD45RA+), EM (CD8+ EM,
CCR7lowCD45RO+), and PD-1+ phenotypes (Fig. 3E and
supplemental Fig. S4B). CD8+ naïve cells were rarely observed
in PDAC samples, and the CD8+ EM phenotype was the
largest compartment of CTLs in PDAC with a mean frequency
of 40%, followed by PD-1+ cells with mean frequency of 38%
(Fig. 3, E and F and supplemental Fig. S4B). Within the three
observed CD8+ EM subsets, cluster T1 with relatively lower
CD44 expression compared with the other two CD8+ EM
clusters was significantly more abundant in PDAC compared
with PBMCs and exhibited the highest frequency in the CP
samples (Fig. 3F).
PD-1 was expressed in 38% CTLs in the PDAC tumors,

indicating an exhausted status of PDAC-infiltrating CTLs
(Fig. 3, E and F and supplemental Fig. S4B). Two PD-1+

subsets were observed, including T11 with relatively lower
PD-1 expression and T21 with higher PD-1 expression (Fig. 3F
and supplemental Fig. S4D). T11 dominated the PD-1+ CTL
population with an increasing trend from PBMCs to tumor
adjacent normal tissues followed by PDAC tumors, and the
frequencies of PD-1+ CTL greatly varied across tumors
(Fig. 3F). PD-1 expression is a prerequisite for the clinical
application of PD-1 blockade therapy (39, 40). The observed
extensive expression of PD-1 in both CD4+ and CD8+ com-
partments suggested a potential benefit of blocking PD-1 for
PDAC treatment, but the significant interpatient heterogeneity
of PD-1+ cells indicated the need for individualized treatment.
To investigate the heterogeneity of immune cell signatures

across PDAC and PBMC samples, the frequencies of different
T-cell subsets from individual patients were plotted, revealing
increased variability across PDAC tumors compared with
PBMC samples, especially for the CD8+ T-cell clusters
(supplemental Fig. S4E). Furthermore, the Kullback–Leibler
divergence of individual sample composition relative to the
mean composition was computed for the different T-cell
compartments. The results showed that PDAC samples
exhibited significantly increased divergence in CD8+ T cells
compared with PBMC samples (supplemental Fig. S4F).

The Expression of Immune Checkpoint Molecules on
PDAC-Infiltrating T Cells

To further reveal the functional state of PDAC-infiltrating T
cells at the single-cell level, we examined the expression of a
frequencies of the subsets of T cells in Nadj, CP, PBMC, and PDAC sam
panel) and CD8+ (right panel) T cells in Nadj, CP, PBMC, and PDAC sa
quantile, upper bound = 75% quantile, lower whisker = the smallest obs
range (IQR), and upper whisker = the largest observation less than or equ
statistical analysis (*p < 0.05, **p < 0.01, ***p < 0.001). Statistical analysis
CP, chronic pancreatitis; DN, double negative; Nadj, normal adjacent tissu
adenocarcinoma; TIL, tumor infiltrating lymphocyte; TME, tumor microen
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group of functional markers, such as immune checkpoint
molecules. Inhibitory checkpoint molecules are typically
overexpressed in tumor-infiltrating lymphocytes and widely
exploited as therapeutic targets in immunotherapies (41). Of
the four examined inhibitory checkpoint molecules, PD-1 was
the only molecule significantly overexpressed in PDAC-
infiltrating T cells (Fig. 4, A and B and supplemental
Fig. S5A). CTLA-4, T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3), and lymphocyte-activation gene 3
(LAG-3) all exhibited low expression on PDAC-infiltrating T
cells in our data.
The expression of costimulatory checkpoint molecules,

such as ICOS, CD27, and OX40, has not been previously
studied in PDAC. Here, we found that these three cos-
timulatory molecules were expressed in tumor-infiltrating T
cells with mean frequencies of 10%, 5%, and 8% (Fig. 4A).
The frequencies of ICOS and OX40 were slightly increased in
PDAC compared with the CP and PBMC samples, but the
difference was statistically insignificant. Interestingly, the
proportion of OX40+ cells in the CD4+ compartment was
significantly increased in PDAC tumors compared with
PBMCs (supplemental Fig. S5A). Furthermore, we found that
the expression of the major histocompatibility complex class II
cell surface receptor HLA-DR, a marker of activated T cells
(42), was significantly elevated in both CD4+ and CD8+ PDAC-
infiltrating T cells compared with the other samples (Fig. 4A
and supplemental Fig. S5A). Collectively, our data showed
that the inhibitory checkpoints other than PD-1 were
expressed at very low levels in PDAC-infiltrating immune cells,
whereas some of the costimulatory molecules, such as OX40,
were elevated.

The Expression of Functional Markers on PDAC-Infiltrating
T Cells

Next, we examined the expression of several chemokine
receptors, adhesion molecules, and other functional markers
on T cells. Chemokine receptors CCR4, CCR5, and CXCR3
exhibited significantly increased expression on PDAC-
infiltrating T cells compared with circulating T cells (Fig. 4C
and supplemental Fig. S5B). Meanwhile, similar proportions of
T cells positive for adhesion molecules CD11A (integrin alpha-
L) and CD44 (CD44 antigen) were noted in PDAC tumors and
PBMCs (Fig. 4C and supplemental Fig. S5B). In addition, the
data showed that the percentage of CD57+ CTLs in the PDAC
TME was considerably reduced compared with blood (Fig. 4C
and supplemental Fig. S5, B and C). CD57 was originally
ples. F, frequencies of the indicated PhenoGraph clusters of CD4+ (left
mples. E and F, boxplot center lines = median, lower bound = 25%
ervation greater than or equal to the lower hinge − 1.5 × interquartile
al to the upper hinge + 1.5 × IQR. Wilcoxon rank-sum test was used for
was not performed on Nadj samples. See also supplemental Fig. S4.
e; PBMC, peripheral blood mononuclear cell; PDAC, pancreatic ductal
vironment; tSNE, t-distributed stochastic neighbor embedding.



FIG. 4. The expression of functional markers on PDAC-infiltrating T cells. A, box plots displaying the percentage of immune checkpoint
molecules in the T cells from Nadj, CP, PBMC, and PDAC samples. B, tSNE plots showing the expression of PD-1 in T cells. C, box plots
displaying the percentage of other functional markers in the T cells. For A and C, boxplot center lines = median, lower bound = 25% quantile,
upper bound = 75% quantile, lower whisker = the smallest observation greater than or equal to the lower hinge − 1.5 × interquartile range (IQR),
and upper whisker = the largest observation less than or equal to the upper hinge + 1.5 × IQR. Wilcoxon rank-sum test was used for statistical
analysis (*p < 0.05, **p < 0.01, ***p < 0.001). D, histograms displaying the expression of indicated markers on Treg cells. E, tSNE plots showing
the expression of CD69 in T cells. F, histograms showing the expression of PD-1 and CD69 on cells from the PD-1+ clusters. G, scatterplot
showing the correlation between the expression of CD69 and PD-1 in PDAC-infiltrating T cells. The Pearson correlation coefficient and p value
are indicated, and the fitted line is shown in blue. Statistical analysis was not performed on Nadj samples. See also supplemental Fig. S5. CP,
chronic pancreatitis; Nadj, normal adjacent tissue; PBMC, peripheral blood mononuclear cell; PD-1, programmed cell death protein 1; PDAC,
pancreatic ductal adenocarcinoma; Treg, regulatory T cell; tSNE, peripheral blood mononuclear cell.
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designated as a marker for end-stage and senescent T cells
(43), and increased numbers of CD8+CD57+ T cells were
observed in the TME of several types of tumors (44). However,
a recent study reported that some CD8+CD57+ T cells could
ultimately differentiate into cells subset with high perforin and
killing activity (45). Our results suggested that the roles of
CD57 required further evaluation in PDAC.
In addition, the proportion of CD95+ (apoptosis antigen 1)

cells was significantly increased in PDAC tumors compared
with PBMC and CP samples for both of the CD4+ and CD8+

T-cell compartments (Fig. 4C and supplemental Fig. S5, B and
D). CD95 is the prototypic death receptor (29), and apoptosis
of T cells induced by CD95/CD95L is an important mechanism
for maintaining peripheral tolerance and the termination of an
ongoing immune response (46, 47). Our results suggest that
CD95-mediated apoptosis of T cells may contribute to the
immunosuppressive environment of PDAC. Meanwhile, Tregs,
which were upregulated in PDAC, expressed high levels of
CD95 (Fig. 4D). Weiss et al. (48) reported that Tregs resisted
CD95-mediated apoptosis by FoxP3-mediated suppression of
CD95L expression, and our data suggested that similar
mechanism may also exist in PDAC.
Moreover, CD69+ cells accounted for 24% of PDAC-

infiltrating T cells, which was considerably increased
compared with PBMCs, and the extensive expression of CD69
was observed in both CD4+ and CD8+ T-cell compartments
(Fig. 4, C and E and supplemental Fig. S5B). CD69 is
commonly used as a marker for T-cell activation (49) and is
elevated in TME as a direct HIF-1α target gene induced by
hypoxia (50). CD69 was recently associated with the
exhaustion of tumor-infiltrating T cells (51). Interestingly, we
observed that CD69 was coexpressed with PD-1 in clusters
T14, T11, T21, T10, and T17 (Fig. 4F). The expression of these
two molecules positively correlated with each other in PDAC-
infiltrating T cells with a correlation coefficient of 0.39 (Fig. 4G).
The results suggested that CD69 may be involved in PDAC-
infiltrating T-cell exhaustion.
Our data revealed PD-1 as the most highly expressed im-

mune checkpoint molecule in the TME of PDAC. To further
explore the regulatory mechanisms associated with PD-1, we
studied its correlation with all the examined immune markers
at the single-cell level. The expression of the majority of the
functional markers was elevated in PD-1+ cells, including
chemokine receptors CXCR3, CCR4, and CCR5; adhesion
molecules CD11A and CD44; costimulatory immune check-
point molecules OX40 and ICOS; coinhibitory immune
checkpoint molecule CTLA-4; T-cell activation markers HLA-
DR, CD69, and CD45RO; T-cell exhaustion marker CD57;
death receptor CD95; and cytokines interleukin-17A and
transforming growth factor beta (Fig. 5 and supplemental
Fig. S6). The results suggested a complex and intertwined
coordination between different immune regulatory mecha-
nisms in PD-1+ T cells. Finally, CCR7 and CD127, markers for
10 Mol Cell Proteomics (2022) 21(8) 100258
naïve T cells, were the only two markers that exhibited
significantly decreased expression in PD-1+ cells (Fig. 5).
The Transcriptomic Immune Characteristics of PDAC

As described previously, IHC staining showed significant
variability in the levels of T-cell infiltration among PDAC
patients, with some tumors exhibiting sparse T-cell staining
and some tumors showing relatively high T-cell density. The
following single-cell analysis by mass cytometry further
revealed the cellular composition diversity of the PDAC-
filtrating immune cells. To better probe the immune land-
scape of PDAC and its correlation with other components of
the TME in a larger sample set, we analyzed the RNA
sequencing data of 146 PDAC bulk samples from TCGA
(https://gdc.cancer.gov/).
First, correlation analysis showed that the majority of the

investigated immune markers were coexpressed with PD-1 at
the transcript level, such as CD11A, CD69, CTLA-4, and ICOS
(Fig. 6A and supplemental Fig. S7A). Although several previ-
ous studies have utilized TCGA data for molecular subtyping
of PDAC (52–54), the clinical implication of the combination of
PD-1 and CD8 expression has not been investigated. Here, we
stratified the PDAC samples from TCGA based on their
immune scores predicted by ESTIMATE (55) and then defined
three immune-based PDAC subtypes, including S1 (CD8+PD-
1+ immune, n = 61), S2 (CD8lowPD-1low immune, n = 41), and
S3 (immune desert, n = 44). CD8 and PD-1 were both
expressed in S1, and their expression decreased in the order
of S1, S2, to S3 (Fig. 6B). Other immune markers that were
coexpressed with PD-1 as demonstrated by both mass
cytometry analyses and transcriptomics, such as CD11A,
CD69, CTLA-4, and ICOS, exhibited a similar trend (Fig. 6B).
Furthermore, GSVA indicated that S1 was markedly

enriched in immune-related pathways, such as CTL, T helper,
CTLA-4, and PD-1 signaling (Fig. 6, C and D and
supplemental Table S6). Immune-related gene products,
such as granzyme B (GZMB) and perforin-1 (PRF1), were
significantly more abundant in S1 (Fig. 6D). Survival analysis
showed that S1 patients with high expression of CD8 and
PD-1 exhibited better prognosis compared with the other two
subgroups (Fig. 6E and supplemental Table S7). In addition,
the S2 subtype exhibited reduced immune cell infiltration
compared with S1, especially for the T cell–related pathways
(Fig. 6, C and D). However, medium-level enrichment in
monocyte- and B cell–related pathways was observed for S2
(Fig. 6, C and D). Intriguingly, S2 was highly enriched in ECM-
related pathways, such as collagen formation, collagen
degradation, syndecan interactions, and cell–ECM in-
teractions, suggesting a more active desmoplastic reaction in
this subtype. The data indicated that the relatively lower
immune infiltration in S2 compared with S1 may be caused
by ECM exclusion.

https://gdc.cancer.gov/
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PD-1, programmed cell death protein 1.

An Immune Cell Atlas of PDAC
Moreover, around 30% of the PDAC tumors from TCGA
database designated as subtype S3 showed the lowest level
of immune infiltration, and this “immune desert” phenotype
was also observed in some of our samples by IHC staining
(supplemental Fig. S1A). The S3 samples exhibited both low
levels of ECM and immune infiltration, suggesting that the low
immune infiltration in these patients may not be caused by
desmoplasia. In addition, we calculated the mutational load for
the three subtypes of PDAC using the nonsynonymous mu-
tation counts (supplemental Fig. S7B), and the results showed
that the S2 and S3 samples exhibited higher mutational loads
compared with S1 samples, which was opposite to the widely
accepted concept that large mutational burdens generate
neoantigens for T-cell recognition and subsequently lead to
increased recruitment of CTL (56). McGrail et al. (57) recently
proposed that the DNA damage response protein ATM may
be responsible for the immune filtration in the cancers driven
by recurrent copy number alterations instead of recurrent
mutations, such as pancreatic cancer. Indeed, we found that
S2 and S3 samples exhibited reduced ATM expression levels
compared with S1 samples (supplemental Fig. S7C). This
observation may explain the paucity of immune cells in S3
samples. Moreover, S3 samples were highly enriched in
proliferation-related pathways, such as cell cycle checkpoints,
Mol Cell Proteomics (2022) 21(8) 100258 11
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cyclin A/B1/B2-associated events during G2/M transitions,
PTC1 (protein patched homolog 1) pathway, and PLK1
(serine/threonine-protein kinase PLK1) pathway, whereas
immune- and stroma-related genes were significantly inhibited
in S3 samples compared with the other two subtypes (Fig. 6,
C and D). Cell cycle–regulated genes, such as CDK1 and
CDC25A, were highly expressed in S3 samples, and treat-
ments targeting these molecules may provide therapeutic
benefits for the S3 patients. Taken together, the data showed
the diversity of the immune landscape in PDAC patients and
revealed potential drug targets for patients in different
subgroups.
Altogether, the results suggest that a subset of PDAC

patients with relatively high abundance of PD-1+CD8+ T cells
have better prognosis, and different mechanisms may exist for
tumors with low immune cell infiltration. Moreover, the
molecule-subtyping method presented here may provide
valuable insights for prognosis and the design of personalized
treatment strategies for individual PDAC patients with different
molecular features.
DISCUSSION

Immune cells in the TME play important roles in regulating
tumorigenesis and tumor progression (58). With the success
of immune checkpoint blockade in various cancers, immune
cells, especially T cells, have become the focus of anticancer
immunotherapy development. To better understand the
composition of PDAC-infiltrating immune cells, we performed
single-cell mass cytometry analyses on different types of
pancreatic samples, and the results revealed heterogeneous
subsets of immune cells in the TME of PDAC, providing
insights into the immune contexture of PDAC. By analyzing
TCGA data from a larger cohort of patients, we observed
tremendous interpatient heterogeneity of the immune land-
scape in PDAC tumors. The results further highlighted the
needs for more sophisticated strategies to select potential
responders to immunotherapy and personalized treatment
approaches to improve the efficacy.
Our data suggested T cells as the dominant immune cell

population in PDAC TME with significant viability among pa-
tients. We observed decreasing number of T cells from the Tm
to Tns, and few T cells were observed in four tumor samples
that could be considered as “cold tumor.” We detected low
levels of several inhibitory checkpoints, such as CTLA-4, TIM-
3, and LAG-3, in PDAC-infiltrating T cells, suggesting that
immunotherapies targeting these molecules might be unlikely
to gain success. On the other hand, PD-1 was broadly
expressed in PDAC-infiltrating T cells, including both CD8+

and CD4+ compartments. Expression of PD-1 is induced by
T-cell receptor signaling and sustained upon chronic activa-
tion, leading to impaired T-cell functions and immunosup-
pression (59). Nevertheless, studies have also established
PD-1 as a marker for functional avidity and antitumor
reactivity of antigen-specific T cells (39). This dual role of PD-1
was further confirmed here by the observed coexpression of
both stimulatory and inhibitory molecules with PD-1. In addi-
tion, the frequencies of PD-1+ cells markedly varied among
patients, and RNA sequencing data from TCGA also revealed
great interpatient heterogeneity of PD-1 expression. The bet-
ter survival of TCGA patients with higher CD8 and PD-1
expression indicated PD-1 as a putative marker for anti-
tumor immune response. Furthermore, as shown by IHC
staining, although relatively high density of T cells was
observed in some tumors, they were largely excluded from the
Tn. Therefore, a combination of PD-1 blockade and therapies
targeting stromal elements may be beneficial to improve pa-
tient outcome. The combination of PD-1 and focal adhesion
kinase-1 inhibitors is currently being evaluated in several
clinical trials, for example, NCT02758587 and NCT03727880.
Intriguingly, the mass cytometry data showed that several

costimulatory molecules were expressed in PDAC-infiltrating
immune cells at relatively higher frequencies compared with
the other samples. For example, we observed a subset of MPs
expressing CD137L in PDAC samples. The CD137–CD137L
interaction enhances type 1 cell-mediated immune responses,
and the reverse CD137L signal promotes the survival and
proliferation of proinflammatory monocytes and stimulates
their migration and extravasation into tissues (33). CD137
agonists exhibit antitumor activity in multiple cancer types
(32, 33). In addition, transgenic CD137L expression induces
cytotoxic T-cell expansion and inhibits tumor growth and
metastasis (59). Substantial evidence has shown that target-
ing CD137/CD137L synergizes with cancer vaccines and
immune checkpoint inhibitors in boosting anticancer immune
responses (59). Moreover, a recent study reported that
agonistic CD137 monoclonal antibody increased CTL growth
in PDAC tumors (60, 61). Here, our data further revealed the
possibility of targeting the CD137–CD137L interaction for
PDAC treatment. It would be interesting to explore the impact
of CD137 agonists on the proinflammatory activity of the
antigen-presenting cells as well as its effect in combination
with PD-1/programmed cell death receptor ligand 1 check-
point inhibitors.
Another interesting observation is the extensive expression

of CD69 in PDAC-infiltrating T cells with a mean frequency of
24%. The best-known function of CD69 is the regulation of
local retention of lymphocytes through the interaction with
sphingosine-1-phospate receptor 1 (62). CD69 is also a
marker of tissue-resident memory T cells, a subpopulation of
memory CD8+ T cells that persist in peripheral tissues (63).
Several studies have shown that CD69 knockout or adminis-
tration of anti-CD69 monoclonal antibodies resulted in the
augmentation of antitumor responses (64, 65). However,
whether CD69 delivers intracellular signaling to regulate T-cell
activities is still unclear, and its specific roles in PDAC remain
unknown. Here, we observed a significantly higher level of
CD69 in PDAC-infiltrating CD8+ T cells compared with those
Mol Cell Proteomics (2022) 21(8) 100258 13
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in blood or CP tissues (supplemental Fig. S5B). Moreover,
CD69 was coexpressed with PD-1 at the single-cell level in
several T-cell subsets (Fig. 4, F and G), which was consistent
with a recent report that CD69-deficient tumor-infiltrating
CD8+ T cells exhibited a less exhausted phenotype than
CD69-sufficient tumor-infiltrating CD8+ T cells (51). Our data
implied an intrinsic correlation between CD69 and PD-1 and
suggested the potential clinical application of targeting CD69
to further invigorate exhausted T cells in the microenvironment
of PDAC.
In recent years, many large-scale proteomic studies of PDAC

have been reported, providing valuable opportunities to identify
useful biomarkers for diagnosis andpotential therapeutic targets
for treatment (66–68). However, the proteome data derived from
bulk tissues are often insufficient to resolve the detailed immune
components in the TME. Our single-cell data complement the
large-scale proteomic data in several aspects. First, although
thousands of proteins can be detected by proteomics, many
classical immune markers are not detectable or only detected in
a small fraction of samples. Protein marker expression at the
single-cell level was examined in this study, allowing the char-
acterization of well-defined immune cell populations and the
identification of disease-associated immune phenotypes.
Furthermore, unlike proteomic studies focusing on the analysis
of global protein expression changes, we investigated well-
characterized markers, such as immune checkpoints, which
are direct targets of immunotherapies but are often missing in
global proteomic studies. For example, Le Large et al. (67) per-
formed proteomic analysis on laser-capturemicrodissected and
bulk PDAC samples (n = 16) and identified over 6000 proteins.
However, none of the eight checkpoint molecules we examined
here were detected. More recently, Cao et al. (68) reported a
proteogenomic study of PDAC with the largest sample size (n =
140) and deepest coverage (11,662 proteins and 51,469 phos-
phosites) for the PDAC proteome up to date. In this study, TIM-3
and ICOSwere detected in 50%and 20%of their samples at the
protein level, whereas the other checkpoint molecules, that is,
PD-1, CTLA-4, CD27, OX40, and CD137L, were not observed.
Interestingly, the authors also detected phosphorylation sites on
LAG-3, PD-1, and TIM-3 from 11%, 80%, and 40% of the
samples, providing additional information regarding the activities
of these molecules. Nevertheless, it is still challenging for pro-
teomics to analyze immune checkpoints, possibly because they
are all membrane proteins with low abundance. To integrate
single-cell mass cytometry and global proteome analysis may
provide a new opportunity to better understand the immune
microenvironment in cancer.
Meanwhile, this study has limitations. Compared with

single-cell transcriptomics that has been employed to reveal
valuable information regarding the immune microenvironment
in various cancers in the recent years (69, 70), much fewer
markers were investigated in this study. However, mass
cytometry measures protein expression features, which are
more directly associated with cell phenotype than transcripts.
14 Mol Cell Proteomics (2022) 21(8) 100258
In addition, we were only able to obtain mass cytometry data
from eight PDAC tumors in this study, and few immune cells
were obtained from four of 12 investigated samples; therefore,
the observations may only apply to the immune-enriched
subtype of PDAC. A larger patient cohort is required to
achieve a higher level of statistical power and to associate the
identified cell phenotypes with clinical outcome. Moreover, the
biological functions and clinical implications of some identified
phenotypes need to be further evaluated.
In conclusion, our data reveal a single-cell atlas of the tumor-

infiltrating immune cells in PDAC, especially focusing on the
cellular and functional composition of the T-cell compartment.
The results provide clinically relevant information regarding
useful cell phenotypes and biomarkers with potential impact on
the optimization of immunotherapies for PDAC.
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