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Abstract
To better understand some aspects of bone matrix glycation, we used an in vitro glycation

approach. Within two weeks, our glycation procedures led to the formation of advanced gly-

cation end products (AGEs) at the levels that corresponded to approx. 25–30 years of the

natural in vivo glycation. Cortical and cancellous bones from human tibias were glycated in
vitro using either glucose (glucosylation) or ribose (ribosylation). Both glucosylation and

ribosylation led to the formation of higher levels of AGEs and pentosidine (PEN) in cancel-

lous than cortical bone dissected from all tested donors (young, middle-age and elderly

men and women). More efficient glycation of bone matrix proteins in cancellous bone most

likely depended on the higher porosity of this tissue, which facilitated better accessibility of

the sugars to the matrix proteins. Notably, glycation of cortical bone from older donors led to

much higher AGEs levels as compared to young donors. Such efficient in vitro glycation of

older cortical bone could result from aging-related increase in porosity caused by the loss of

mineral content. In addition, more pronounced glycation in vivo would be driven by elevated

oxidation processes. Interestingly, the levels of PEN formation differed pronouncedly be-

tween glucosylation and ribosylation. Ribosylation generated very high levels of PEN

(approx. 6- vs. 2.5-fold higher PEN level than in glucosylated samples). Kinetic studies of

AGEs and PEN formation in human cortical and cancellous bone matrix confirmed higher

accumulation of fluorescent crosslinks for ribosylation. Our results suggest that in vitro gly-

cation of bone using glucose leads to the formation of lower levels of AGEs including PEN,

whereas ribosylation appears to support a pathway toward PEN formation. Our studies may

help to understand differences in the progression of bone pathologies related to protein gly-

cation by different sugars, and raise awareness for excessive sugar supplementation in

food and drinks.
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Introduction
The importance of the advanced glycation end-products (AGEs) formation in biological sys-
tems was recognized for the first time in late 1960’s when it was discovered that non-enzymatic
processes leading to AGEs formation in human body are similar to the Maillard reaction occur-
ring during food browning at elevated temperatures [1, 2]. It was established then that diabetic
patients displayed increased formation of glycosylated hemoglobins [3]. Later, it was deter-
mined that AGEs are formed at a slow but constant rate in a healthy human body beginning at
early embryonic development, and continue to accumulate with time. In vivo accumulation of
AGEs has not only been associated with major pathogenic processes in diabetes [4, 5], but also
with other health disorders such as atherosclerosis, neurodegenerative diseases [6] and normal
aging. For example, pyrraline was detected in brain tissue from patients with Alzheimer disease
[7]. Products originating from α-ketoaldehyde transformations such as glyoxal-lysine dimer
and methylglyoxal-lysine dimer were identified as major Maillard reaction cross-link products
in lens proteins. The concentrations of these two products were significantly elevated in lens
proteins of elderly patients [8]. It was also shown that accumulation of AGEs deteriorates me-
chanical properties and fracture resistance of bone [9–12].

The Maillard reaction is remarkably complicated [2]. Based on the in vitro studies, the reac-
tion process is traditionally divided into three main steps (Fig. 1A). The initial step of the non-
enzymatic glycation is the condensation of reducing sugars (in the open chain form) with the
unprotonated N-terminal amino acid residues or epsilon amino groups of proteins, lipids, and
nucleic acids. As a result, a Schiff base, a reversible and unstable N-substituted glycosylamine,
is produced. In this initial step, glucose shows the slowest glycation rate when compared to
other reducing sugars. In the next step, the Schiff base undergoes isomerization termed an
Amadori rearrangement and converts into an array of more stable Amadori adducts known as
ketosamines. Ketosamines undergo further dehydration either to form reductones and dehy-
dro-reductones, or change to short-chain, hydrolytic fission products such as diacetyl, acetol
or pyruvaldehyde.

The chemical nature of many AGEs is currently unknown. AGEs form a large group (esti-
mated approx. 750 different AGEs) of complex and very heterogenous compounds which in-
clude naturally fluorescent crosslinks such as pentosidine [13, 14], non-fluorescent
crosslinking products such as glucosepane [15], glyoxal-lysine dimer (GOLD) and methyl-
glyoxal-lysine dimer (MOLD) [8], or non-fluorescent, non-crosslinking adducts such as car-
boxymethyl-lysine (CML) [16] and pyrraline [17]. Formation of chemically stable AGEs can
permanently alter protein structure and function. Long-lived tissue proteins such as bone ma-
trix collagen accumulate AGEs with age, and hence, contribute to the development of fragile
bones [9–12, 18].

Sometimes certain AGEs attract more attention in one research field than the other. For ex-
ample, carboxymethyl-lysine (CML) was the first AGE identified in food products and there-
fore is commonly used as a marker of dietary AGEs. In the bone tissue studies, pentosidine
(PEN), a mature, naturally fluorescent AGE is typically used as a marker of non-enzymatic gly-
cation of bone matrix proteins. Measurement of PEN can predict vertebral fractures in vitro in-
dependently of bone mineral density [19]. It was also shown that PEN accounts for 9% of the
variance in trabecular ductility [10] and up to 23% of the variation in bone fracture toughness
[20]. Several molecularly defined AGEs that are known to accumulate in soft tissues have not
yet been studied in bone because of technical constrains imposed by bone mineral on the isola-
tion, identification and quantitation of specific AGEs. In particular, bone mineral solubilizes
well at elevated temperatures in strong acids such as hydrochloric acid. AGEs which are resis-
tant to strong acids and high temperature are relatively simple to quantify in bone. Therefore,
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we selected PEN in order to study potential differences between the glucose- and ribose-based
glycation of human cortical and cancellous bone from donors of different age and sex. In addi-
tion to sucrose, fructose, lactose and maltose, these two sugars are the most common compo-
nents of human diet.

Based on the USA economical disappearance data, the average intake of added sugars from
all sources was approx. 218 g/day per person in 2000 [21]. The largest single source of sugars in
human diet is added sugars consumed in deserts, candies, and most importantly, in soft drinks
and other sweetened beverages, all of which are produced using high-fructose corn syrup that
typically contains 42, 55 or 90% fructose [22]. Compelling evidence shows that diets high in
sugars, in particular fructose and sucrose, can lead to obesity, insulin resistance/glucose intoler-
ance, and dyslipidemia in animals [23–26] and humans [21, 27–35].

Fig 1. Schematic representation of the main steps of Maillard reaction used to glycate human bone
samples. A. In the initial step, a given sugar attaches to a free amino group present on the protein surface,
and then, through a sequence of different reactions, an advanced glycation end product is formed. As the
example, we show pentosidine as the final glycation product.B. Glycation process was conducted using
spatially matched cortical (left side) and cancellous (right side) bone samples. A bone piece from the
61 year-old donor is shown as the example. The bar corresponds to 1 cm.

doi:10.1371/journal.pone.0117240.g001
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Ribose is a naturally occurring monosaccharide essential to every living cell. This sugar is
likely the second most abundant carbohydrate in human blood. It is present at approx. 100 μM
concentration in human fasting serum which is approx. 50-fold lower than blood glucose con-
centration in a healthy person [36, 37]. Ribose metabolites contribute to the formation of many
important biomolecules such as nucleic acids (RNA and DNA) [38], vitamins (riboflavin) [39]
and the key energy storing compound, adenosine triphosphate (ATP) [40]. Most studies focus
on the intracellular synthesis of ribose-5-phosphate from glucose [41]. However, cells can also
retrieve ribose from extracellular environment for the needs of cellular metabolism [42]. With
few exceptions, cells and tissues cannot survive with ribose as their sole carbohydrate source
[43–45]. Therefore, it was proposed that ribose may have alternative and distinct roles different
from those of glucose in the body.

Ribose metabolite ATP is the most important energy compound in human body. For exam-
ple, it fuels the process of muscle contraction. After an intensive physical exercise when the
ATP pool is depleted, human body restores its ATP levels by converting glucose to ribose, and
then to ATP [41]. This process can be speeded up by ingestion of ribose supplements. It has
been shown that taking ribose supplements could benefit athletic performance and reduce
muscle soreness and stiffness associated with intensive exercise. Therefore, D-ribose is used as
the ingredient of sports nutrition products. Currently, ribose is an ingredient in approximately
100 products such as, for example, energy bars (Detour, FastFuel, Marathon) and beverages
(SoBe Adrenaline Rush, Vitamin Water, Snapple Antioxidant Water). Moreover, ribose is
added in larger quantities to medical food to assist patients with compromised heart function,
chronic fatigue syndrome (CFS) and fibromyalgia (FMS) [46]. However, the studies on the in-
fluence of ribose-rich supplements on the overall human health, specifically in the context of
glycation are very limited.

The role of ribose in in vivo and in vitro glycation processes has recently attracted a lot of at-
tention after abnormally high levels of D-ribose were detected in the urine of type 2 diabetic pa-
tients [47] suggesting that these patients not only suffer from disorders in glucose metabolism
but also from ribose metabolism disorders. A few earlier in vitro studies established that ribosy-
lation led to protein aggregation [48], significant alteration of the collagen structure [49] as
well as the reduced proliferation, increased necrosis and apoptosis of cultured pancreatic islet
beta-cells exposed to the ribosylated fetal calf serum [50]. Recent in vitro neurotoxicity studies
involving ribosylated bovine serum albumin (BSA) showed that misfolded, globule-like aggre-
gates of BSA were highly cytotoxic to neural cells [51]. Extension of these in vitro to the in vivo
studies demonstrated that ribosylation of brain proteins impaired mouse spatial recognition
[52]. The aforementioned data clearly support the need for studies on the relationship between
ribosylation and the development of different diseases.

Glucose is the key sugar of energy metabolism in living organisms. D-glucose is present in
millimolar range in human plasma (on average up to 5 mM in healthy people and 20–50 mM
in the plasma of diabetic patients) [16, 36]. Still, glycation of mineralized bone tissues in vitro
using this sugar has thus far been unsuccessful. This is why ribose is commonly used for in
vitro glycation of different biological materials including bone [9]. We reasoned that due to the
difference in the reactivity between glucose and ribose [53], it may be possible to capture
some quantitative and qualitative differences in the formation of certain AGE(s) in bone matrix
(i.e., AGE(s) that are naturally fluorescent as well as heat and high-acidity resistant) between
the two sugars. This not only could bring new insights into the chemistry of Maillard reaction
in bone, but may even influence the amount of sugars added to different food formulations
and/or certain energy supplements and drinks [26–28].

Bone differs from all other tissues in a body by being composed largely of a mineral
(70–90%) and a small amount of total organic material (10–30%) that contains a uniquely
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large proportion of collagen (approx. 90%). Non-fibrillar organic matrix comprises a total of
approx. 10%, and again within this group of proteins, osteocalcin and osteopontin are present
in a large proportion (1 to 2% in a healthy bone). Together with collagen, these major non-
collagenous proteins of bone matrix form a scaffold for hydroxyapatite deposition [54]. Osteo-
calcin and osteopontin have recently begun to be recognized as critical determinants of bone
quality and its ability to resist fracture [54–56]. Taken together, collagen and non-collagenous
proteins (NCPs) are important contributors to bone quality [56] as both these groups of pro-
teins are the subjects of biochemical modifications (e.g., undesired glycation [57]).

Currently there is no information available on the kinetics of advanced glycation end prod-
ucts and pentosidine formation during in vitro glycation of mineralized animal or human
bone. It is also unknown to what degree other bone matrix proteins than collagen can undergo
glycation. Thus, the objectives of the present study were to glycate in vitro human cortical and
cancellous bone tissues from donors of different age and sex using either glucose or ribose and
to examine the rate and quantity of fluorescent AGEs formation in the extracellular bone ma-
trix. To test the hypothesis of a potential glycation of the major non-collagenous bone matrix
proteins, we used osteocalcin as the representative of this protein group. For the first time our
study provides the evidence for the formation of significant amounts of pentosidine (PEN)
during ribose-based glycation of bone matrix proteins. Interestingly, our in vitro glycation
studies show that pentosidine is one of the intermolecular crosslinks formed between osteocal-
cin and its proximal matrix proteins (a manuscript in preparation). We also demonstrated that
cancellous bone is more efficiently glycated by both sugars when compared to cortical bone.
This may have important implications for current understanding of the progression of bone
pathologies related to protein glycation by different sugars such as diabetes, osteoporosis and
other sugar-related diseases.

Materials and Methods

Chemicals and reagents
If not otherwise stated all chemicals were ultrapure or molecular biology grade. All reagents
used for chromatographic separations were HPLC grade. Acetonitrile and acetic acid were pur-
chased from Fisher Scientific (Morris Plains, NJ, USA). Heptafluorobutyric acid was purchased
from Sigma-Aldrich (St. Louis, MO, USA). Hydroxyproline Reagent kit was purchased from
Bio-Rad (München, Germany). The pentosidine standard was purchased through Internation-
al Maillard Reaction Society, www.imars.org). Human osteocalcin was purchased from Sigma-
Aldrich (St. Louis, MO, USA).

Human bone samples
To determine natural levels of fAGEs and PEN, tibias (posterior area) from total of 18 human
female donors (young 35.0 ± 15.0, middle age 60.0 ± 10 and elderly donors 80.0 ± 15.0 years
old) served as the source of cortical bone tissue samples. For the in vitro glycation experiments,
tibias (posterior area) from human female (23, 59 and 86 years old) and male (25, 61 and
87 years old) donors served as the source of cortical and cancellous bone (Fig. 1B). The speci-
mens obtained from the centralized National Disease Research Interchange (NDRI) biobank
were known to be free of osteoarthritis, diabetes and other metabolic bone diseases. They were
also certified to be free of HIV and hepatitis B. Collected bone pieces were repeatedly washed
in cold distilled water until the washings were free of contaminating blood and other impurities
that are not the part of bone matrix [30]. After freeze-drying, the specimens were stored at -80°
C until their use.
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In vitro glycation process using ribose (ribosylation)
Each bone sample (5 or 10 mg) was placed into a vial containing sterile Hank’s buffer
pH 6.8–7.0 (Sigma, St. Louis, MO, USA) supplemented with 0.6 M ribose, 1.25 mM
ε-amino-n-caproic acid, 5 mM benzamidine, 10 mM N-ethylmaleimide, 30 mMHEPES, and
0.5 M CaCl2. The 0.6 M concentration of ribose is the standard concentration of this sugar
used for glycation of bone samples in vitro [9, 18]. Ribose was omitted from the buffer that
served as a glycation solution for control samples. All samples were incubated at 37°C. The
pH of the incubated solutions was monitored daily and maintained between 6.8 and 7.2 using
0.1 M hydrochloric acid or 0.1 M sodium hydroxide to lower or raise the pH, respectively.
Next, the samples were dialyzed extensively against water for 48 to 72 hours to remove free
sugar. After dialysis, the samples were lyophilized over-night (ON) and stored at -80°C until
their analysis. Osteocalcin was ribosylated according to the same protocol as the bone samples.

In vitro glycation process using glucose (glucosylation)
The glycation of bone samples with glucose was performed according to a similar procedure
for that of ribose. However, before the transfer of each bone sample (5 or 10 mg) into the sterile
Hank’s buffer, the samples were lyophilized with glucose and incubated under vacuum for
2 days. Also, the Hank’s buffer was supplemented with 0.6 M glucose (sterilized using filtra-
tion) instead of ribose. All other components of the buffer were the same as for ribosylation.
The samples that served as controls did not have glucose added into the Hank’s buffer. All sam-
ples were incubated at 37°C under controlled pH ranging between 6.8 and 7.2, and then, dia-
lyzed extensively against water as described above. In the final step, the samples were
lyophilized ON and stored at -80°C until their use.

Kinetics of the initial phase of fluorescent AGEs and pentosidine
formation
Glucosylation and ribosylation were performed as described above. However, for each
kinetics experiment, bone pieces (1.0–1.1 mg) of the same bone part (Fig. 1B) from a given
donor were used. Every day for 7 days, and then, from the 10th day every 3 or 4 days, one bone
piece was taken out from the Hank’s buffer for future analysis. The respective sampling was
conducted under aseptic conditions, i.e., inside a laminar flow hood. The bone pieces were
stored at -80°C until their use. For the remaining bone pieces, the glycation continued as
described above.

Measurement of fluorescent AGEs
Direct acid hydrolysis of the glycated bone samples, glycated osteocalcin (OC) and non-
glycated controls was performed in 6N HCl (100 μl/mg bone) at 110°C for 20 hrs. After com-
pletion of the hydrolysis, the hydrolysates were centrifuged and the supernatants were divided
into portions. Each portion was transferred into a clean tube and used directly for the assays or
stored at -80°C as needed. Since the defined amounts of OC were taken out for glycation from
the stock solution (cstock = 0.1 μg OC/μl), only the measurement of each hydrolysate fluores-
cence was needed in order to calculate the levels of fluorescent AGEs (fAGEs) per mmol of OC.

The assay to measure fAGEs in bone matrix has two parts. The first one is the fluorometric
assay for determination of fAGEs content “in-bulk.” This assay is based on the measurement of
natural fluorescence of AGEs as compared to the fluorescence of the quinine (Q) standards
(the stock solution: 10 mg/mL quinine per 0.1 N sulfuric acid) at 360/460 nm excitation/
emission using a microtiter-plate (MT-plate) reader (model Infinite 200; Tecan). The second
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assay component is the colorimetric assay for determination of collagen content in bone sam-
ples through the measurement of hydroxyproline concentration.

Hydroxyproline was used to prepare the standard curve for the colorimetric assay. All solu-
tions were made fresh directly before their use. The assay was initiated by addition of chlora-
mine-T solution to hydroxyproline standards (the stock solution: 2 mg/mL L-hydroxyproline
per 0.001 N HCl) and to the hydrosylates of bone samples. These solutions were then incubated
at room temperature (RT) for 20 minutes. Subsequently, 3.15 M perchloric acid solution was
added to the samples and 5 min incubation at RT followed. Next, the p-dimethylaminobenzal-
dehyde solution was added and the samples were incubated for 20 minutes at 60°C. Finally, all
the standards and the samples were cooled down to RT in darkness. The absorbance was mea-
sured at 570 nm using the MT-plate reader (model Infinite 200; Tecan). Collagen content was
calculated based on the determined amount of hydroxyproline [58, 59]. The amounts of fluo-
rescent AGEs were expressed in the terms of unit of fluorescent quinine per unit of collagen
(e.g., fAGEs [μmol Q/mmol Col]).

Measurement of pentosidine by UPLC
PEN was measured using ultra-high performance liquid chromatography [58, 59]. Two analy-
ses were performed on each bone hydrolysate, one to measure pentosidine content, and a sec-
ond to determine hydroxyproline content that was further used to calculate collagen
concentration. Since the defined amounts of OC were used for glycations, only the measure-
ment of PEN content was needed.

Before the UPLC analysis, each hydrolysate was dissolved in 1% n-heptafluorobutyric acid
(HFBA). PEN was separated using an Acquity UPLC machine (Waters Corp., Milford, MA,
USA) equipped with the reverse-phase Acquity UPLC HSS T3 column (1.8 μm; 2.1 x 100 mm).
The column flow rate and temperature were 0.400 ml/min and 40°C, respectively. Solvent A
contained 0.06% HBFA in 18 ohms pure water, and solvent B was composed of 50: 50 (v: v)
mixture of solvent A: acetonitrile. Prior the use, the column was equilibrated using 10% solvent
B. Gradient of 10 to 50% of solvent B (from 8 to 20 min) was used for the separation of PEN.
The elution of PEN was monitored for fluorescence emission at 385 nm after excitation at 335
nm (Fig. 2A and B). PEN was quantified using a standard curve.

Measurement of hydroxyproline by UPLC
Hydroxyproline content was determined using reagents from the HPLC assay kit (Bio-Rad
Labratories GmbH, Müchen, Germany), but the mobile phase solvents and conditions were de-
veloped specifically for the UPLC separation. The column flow rate and temperature were
0.400 ml/min and 60°C, respectively. The 0 to 50% gradient of acetonitrile was achieved by
mixing 100% acetonitrile (solvent B) with a buffer composed of 0.3% acetic acid and 0.6%
triethylamine, pH 4.50 (solvent A). The elution of the derivatized hydroxyproline was moni-
tored at 471 nm (Fig. 2C). The amount of hydroxyproline was determined using a standard
curve. The amount of collagen was calculated assuming 300 nmol of hydroxyproline in 1 mol
of collagen (e.g., PEN [μmol PEN/mmol Col]) [58, 59].

Results
In order to study the rate and quantity of fluorescent AGEs formation in bone matrix, we se-
lected bone pieces that contained similar initial levels of fAGEs and PEN (Table 1). Natural lev-
els of AGEs and PEN in bone show some variation not only between healthy donors of the
same age [18], but also within a given healthy donor. Such differences are normal and can be
explained, for example, by various life styles and/or genetic traits. We were most interested in
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in the levels of fluorescent AGEs formed in vitro between the 7th and 10th day, because our ear-
lier work showed that the levels of fAGEs and PEN formed during this period of time corre-
sponded to approx. 25 to 30 years of natural in vivo glycation of bone tissue (Fig. 3). We
confirmed that the accumulation of fAGEs (Fig. 3A) and pentosidine (Fig. 3B), both normal-
ized to the collagen contents in cortical bone from human tibia, increased with the donors’ age.
In order to determine the extent of the fAGEs and PEN increase over selected decades of
human life, we chose 19, 29, 39 68 and 97 years old donors (discerned in green in Fig. 3A and
in blue in Fig. 3B). We calculated to what degree (expressed as the percentage) fAGEs and
PEN increased between the selected decades (i.e., 19–29 [10 years], 29–39 [10 years], 39–68
[±30 years], 68–97 [±30 years]; Fig. 3C and Fig. 3D, respectively) as well as between the age of
the youngest available donor (i.e., 19 year old) and the age of other older donors (i.e., 19–29
[10 years], 19–39 [20 years], 19–68 [±50 years], 19–97 [±80 years]; Fig. 3E and Fig. 3F,
respectively).

Fig 2. Examples of UPLC chromatograms. A. Identification of PEN (shown by red arrow) in the
glucosylated human cortical bone samples. B. Identification of PEN (shown by red arrow) in the ribosylated
human cortical bone samples.C. The UPLC chromatogram with the peak of ProOH (shown by red arrow)
used for determination of collagen contents. Similar amounts of the samples were injected to the column.
Notably, the chromatogram obtained from the analysis of the ribosylated sample contains several peaks that
are not present in the glucosylated sample.

doi:10.1371/journal.pone.0117240.g002

Table 1. The determined natural, in vivo levels of fluorescent AGEs and pentosidine in cortical and cancellous bone tissue originating from
healthy young, middle-age, and elderly donors.

Donors Age [years] fAGEs PEN

[mmol Quinine/mmol Collagen] [μmol PEN/mmol Collagen]

Cortical Cancellous Cortical Cancellous

20–25 1.7–2.1 2.0–2.4 2.1–3.0 2.9–3.0

60–65 1.8–2.3 2.1–2.4 9.0–10.0 5.1–8.0

85–90 1.9–2.5 2.0–2.9 9.6–13.2 10.2–13.8

doi:10.1371/journal.pone.0117240.t001
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Using the aforementioned information, for example, we produced the in vitro levels of
fAGEs and PEN in bone samples originating from middle-age donors that would match the
physiological levels of AGEs observed either in elderly people (85 years and older) or middle-
age diabetic patients (60–64 years old). Since we investigate different characteristics of aging
bone, we regularly use the time-frame of 7th and 10th days and the developed in vitro glycation
conditions (as described in Materials and Methods) in order to mimic aging process and/or
conditions of diabetes in our studies on the role of glycation in the resistance of bone
to fracture.

Fig 3. Natural levels of fAGEs and PEN in human cortical bonematrix. A. The levels of bone-matrix
fluorescent AGEs increase with the increasing age of human donors.B. Bone-matrix levels of PEN increase
with the increasing age of human donors.C. The percentage of fAGEs increase during 10 years (for 19–29
and 29–39 years old donors) and 30 years (for 39–68 and 68–97 years old donors).D. The percentage of
PEN increase during 10 years (for 19–29 and 29–39 years old donors) and 30 years (for 39–68 and 68–97
years old donors). E. The percentage of fAGEs increase between the youngest available donor and other
older donors (i.e., 19–29 [10 years], 19–39 [20 years], 19–68 [±50 years], 19–97 [±80 years]). F. The
percentage of PEN increase between the youngest available donor and other older donors (i.e., 19–29
[10 years], 19–39 [20 years], 19–68 [±50 years], 19–97 [±80 years]).

doi:10.1371/journal.pone.0117240.g003
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Difference between glucose- vs. ribose-based formation of fluorescent
AGEs in bone matrix
We established that typically glycation with ribose produced approx. 2-fold higher levels of
fAGEs as compared to glycation using glucose (on average 6.0 mmol quinine (Q)/ mmol colla-
gen (Col) for ribosylation vs. average 3.3 mmol Q/mmol collagen for glucosylation) (Fig. 4).
Ribosylation led also to approx. 2- to 2.5-fold increase in the fAGEs content between glycated
and non-glycated (controls) bones in all types of tested human bone tissues that were glycated
for the same length of time (Fig. 4B). Age of donors influenced the outcome of in vitro glyca-
tion, in particular in young donors. Thus, ribosylation led to the formation of higher levels of
fAGEs than glucosylation in young male and female donors (Fig. 4). Conversely, the levels of
fAGEs in bone tissues of middle-age and elderly donors were high after either glucosylation or
ribosylation (Fig. 4). Considering the donor’s sex, the levels of fAGEs were typically slightly
higher in male than female bone tissues on the 7th day of glycation.

Fig 4. Comparison of the glucosylation (A) and ribosylation (B) through the determined fluorescent
AGEs content. Fluorescent AGEs were quantified in glycated (for 7 days) human cortical (C) and cancellous
(T) bone samples originating from young, middle-age and elderly male and female donors. The abbreviation
code for the samples is as follows: 25 C c corresponds to 25 years old cortical bone of control and 25 C Gluc
corresponds to 25 years old cortical bone of glucose. Ribosylated samples have r in front of the age, and
Gluc is replaced by Ribo for ribose (r25 C c and r25 C Ribo).

doi:10.1371/journal.pone.0117240.g004
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Formation of fluorescent AGEs differs between human cortical and
cancellous bone
The amount of fluorescent AGEs formed during the first 7 days of glucosylation and ribosyla-
tion was significantly higher in cancellous than cortical bone (Fig. 4).

In vitro glucosylation led to the formation of higher levels of fAGEs in bone tissues of mid-
dle-age (on average for the 61 year-old male 4.5 and 7.4 mmol Q/mmol collagen for glucosy-
lated cortical and cancellous bone, respectively; on average for the 59 year-old female 4.6 and
6.8 mmol Q/mmol collagen for glucosylated cortical and cancellous bone, respectively) and el-
derly donors, but not in young donors (on average for young male 2.2 and 2.6 mmol Q/mmol
collagen for glucosylated cortical and cancellous bone, respectively; on average for young fe-
male 2.3 and 2.7 mmol Q/mmol collagen for glucosylated cortical and cancellous bone, respec-
tively). Notably, the bone tissues of young donors showed the lowest propensity for glycation
using either glucose (see above) or ribose (on average for the young 25 year-old male 4.9–5.0
and 4.7–5.1 mmol Q/mmol collagen for ribosylated cortical and cancellous bone, respectively;
on average for the young 23 year-old female 3.7 and 6.3 mmol Q/mmol collagen for ribosylated
cortical and cancellous bone, respectively) (Fig. 4A and B) when compared to the data collected
for all older donors.

Pentosidine as the key fluorescent AGE formed in bone matrix by
ribosylation
The levels of PEN were measured using highly sensitive UPLC methods (Fig. 2). We estab-
lished that the amount of PEN formed within the first 7 days of glycation was approx.
3- (young donors) to 6-fold (elderly donors) higher for ribose than glucose (Fig. 5). Consider-
ing approx. 2-fold difference in fAGEs formation between the two sugars, this indicates that
the amount of PEN constituted a significant portion of fAGEs formed during ribosylation.
Moreover, like for fAGEs, the levels of PEN in bone samples originating from the older donors
were significantly higher (up to approx. 193 μmol PEN/mmol collagen for ribosylation vs. up
to approx. 57 μmol PEN/mmol collagen for glucosylation) than in the young donors (Fig. 5).

Another interesting observation was that while the levels of PEN formed during glucosyla-
tion were quite similar between young males and females, they differed more pronouncedly be-
tween older men and women (Fig. 5A). As opposed to glucosylation, ribosylation led to
significant increase of PEN levels in bone samples from all age groups of donors (Fig. 5B).

Higher levels of pentosidine formation in human cancellous than cortical
bone
Both glucosylation and ribosylation led to a more pronounced increase of PEN levels in cancel-
lous than cortical bone of all donors (Fig. 5).

Pentosidine levels were typically approx. 1.5- to 1.8-fold higher after glucosylation of bone
samples originating from the young male and female donors as compared to the control sam-
ples. The highest levels of PEN were formed in the middle-age and elderly male and female
donor samples (2.0-fold for glucosylated cortical and 3.0-fold for glucosylated cancellous
bone).

Ribosylation led to approx. 2.5 to 3.0-fold higher level of PEN in the young donors (approx.
6.2–9.0 μmol PEN/mmol collagen) and 5- to 6-fold higher level of PEN (approx. 109–193
μmol PEN/mmol collagen) in the older donors as compared to the spatially matched controls.
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Kinetics of the initial phase of fluorescent AGEs formation in bone matrix
Kinetics of the fAGEs formation was followed for cortical and cancellous bone tissues originat-
ing from the 61 year-old male and the 59 year-old female donor. The levels of fAGEs were mea-
sured for glucosylation (Fig. 6A and B) and ribosylation (Fig. 6C and D). We observed that
after approx. one day of the induction period (a lag phase), the formation of fluorescent AGEs
increased steadily in cortical as well as cancellous bone until beginning to approach the plateau
around the 14th day of incubation (Fig. 6). The half-time of fluorescent AGEs formation in the
bone matrix was 6 to 7 days for ribose and 20 to 22 days for glucose.

Like for the end-point measurements (i.e., on the 7th day; Fig. 4), glucosylation and ribosyla-
tion led to more pronounced formation of fAGEs in cancellous than cortical bone of male and
female donors. Interestingly, some differences referring the levels of fAGEs that were observed
between the sexes at the early stages of glycation (Fig. 4) diminished when formation of fAGEs
had begun to approach the plateau (Fig. 6A and C vs. B and D).

Fig 5. Quantification of pentosidine in the glucosylated (A) and ribosylated (B) bone samples.
Fluorescent PEN was quantified in glycated (for 7 days) human cortical (C) and cancellous (T) bone samples
originating from young, middle-age and elderly male and female donors. The abbreviation code for the
samples is the same as described in the legend for Fig. 3.

doi:10.1371/journal.pone.0117240.g005
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Kinetics of the initial phase of pentosidine formation in bone matrix
The levels of PEN were measured in the same acidic hydrolysates that were used for the deter-
mination of fAGEs concentration. After in vitro glycation, a pronounced difference in the levels
of PEN was observed between cancellous and cortical bone.

We established that the formation of PEN displayed a steady and significant increase in
the cancellous bone samples originating from both the male and female donor (average 4- to
5-fold increase for glucose and 12- to 14-fold increase for ribose) (Fig. 7). The half-times of
PEN formation using ribose or glucose were similar to those determined for fAGEs
(i e., approx. 6 to 7 days for ribose and approx. 17 to 19 days for glucose).

The amount of PEN formed in cortical bone during kinetic experiments differed significant-
ly between glucose and ribose (average 1.5- to 1.7-fold increase for glucose vs. 6.5- to 7-fold in-
crease for ribose) (Fig. 7). Interestingly, the levels of PEN formed during in vitro ribosylation
were lower in cortical bone from the male (Fig. 7C) than the female donor (Fig. 7D). Typically
the cortical bone samples from the male donor showed approx. 2-fold lower levels after ribosy-
lation (Fig. 7C). Conversely, the cancellous bone showed slightly higher level of PEN in the fe-
male (Fig. 7D) than the male (Fig. 7C) donor.

Glycated osteocalcin
We determined that like collagen, OC undergoes glycation which leads to the production of
fluorescent AGEs. The analysis of the acidic hydrolysates of OC using UPLC revealed the pres-
ence of pentosidine. We established that pentosidine is one of the intermolecular crosslinks
formed between osteocalcin and its proximal matrix proteins (a manuscript in preparation).

Discussion
The fundamental importance of glycation in bone health has begun to be recognized recently
due to its significant role in the deterioration of mechanical properties and fracture resistance

Fig 6. Kinetics of fluorescent AGEs formation. The content of fAGEs was determined in human cortical
(blue diamonds) and cancellous (red squares) bone after glycation using glucose (A andB) or ribose (C and
D) for the male (61 M) and the female (59 F) donor.

doi:10.1371/journal.pone.0117240.g006
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of bone [9–12]. In order to better understand the impact of the Maillard reaction on bone
aging and diabetes related fragility fractures, as well as to develop effective therapeutic methods
to prevent accumulation of AGEs in different tissues, it is essential to understand the contribu-
tion of different sugars to the formation of AGEs. Investigation of changes in mechanical prop-
erties of bone tissue due to glycation relies considerably on the in vitromethods. However, the
methods that were initially developed for in vitro glycation of purified proteins require approx.
3 to 9 months of incubation [16]. Mimicking physiological conditions [16], for example with
the respect to the glucose concentration in the in vitro glycation reactions, helped to determine
natural progression of AGEs formation for single proteins (e.g., BSA, ribonuclease A, lyso-
zyme) and established that crosslinking and insolubility are the major changes that happen to
proteins that undergo glycation. However, the use of the aforementioned methods for in vitro
glycation of mineralized bone matrix would be impractical for several reasons, in particular,
the input of time spent on the experiments. Therefore, we focused our studies on two reaction
parameters: the sugar concentration (was increased to c = 0.6 M) and the length of incubation
time, both of which effectively control the levels of AGEs produced in bone matrix. Using our
approach we could, for example, convert younger bone (e.g., from a 40 year old donor) charac-
terized by lower levels of AGEs into a bone mimicking the bone of a donor of the specific, older
age (e.g., 65 year old or older human). Our experimental strategy permitted investigation of
certain aspects of bone matrix glycation, which otherwise could not be studied. Thus, for the
first time we report that in addition to some similarities, there is a pronounced difference in
the quantity and likely quality of the fluorescent AGEs formation, including PEN, between glu-
cose-based and ribose-based in vitro glycation of mineralized bone matrix.

Fig 7. Kinetics of pentosidine formation. The content of PEN was determined in human cortical (blue
diamonds) and cancellous (red squares) bone after glycation using glucose (A andB) or ribose (C andD) for
the male (61 M) and the female (59 F) donor.

doi:10.1371/journal.pone.0117240.g007
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We demonstrated that ribose is a potent glycation agent as compared to glucose, because it
showed ability to glycate bone tissues from young donors. Formation of significant amounts of
AGEs during bone matrix ribosylation can be explained, for example, by facile reaction of
more reactive pentose than hexose with free functional groups of amino acids and the subse-
quent conversion into various AGEs precursors into mature AGEs. Moreover, we observed a
significant quantitative difference in PEN formation between glucose (approx. 2.0% and 4.4%
of PEN in fAGEs formed in cortical and cancellous bone, respectively) and ribose (approx.
4.8% and 8.4% of PEN in fAGEs formed in cortical and cancellous bone, respectively) as com-
pared to the corresponding difference between fAGEs measured “in-bulk.”We propose that
ribosylation may support a pathway towards PEN formation. We also infer that there may be a
difference in the capacity of the two processes to form some AGEs. Thus, in the case of some
AGEs, there may be a quantitative difference in their formation, in which PEN can serve as the
example. Other AGEs may be formed only during glucosylation or ribosylation. Taken togeth-
er, these intriguing observations add to the complexity of the AGEs formation driven by the
Maillard reaction and require more studies.

Another interesting observation was that albeit glucosylation and ribosylation were con-
ducted using mineralized bone, the produced levels of fAGEs and PEN were high. Both gluco-
sylation and ribosylation led to a higher formation of fluorescent AGEs in cancellous than
cortical bone, in particular in the middle-age and elderly male and female donors. One of the
reasons for the higher formation of AGEs appears to be the structural differences between cor-
tical (Fig. 1B left) and cancellous (Fig. 1B right) bone. It is likely that compact cortical bone
serves as a better barrier against glycating sugars than naturally porous cancellous bone. This
conclusion is also supported by our observation that in vitro glycated cortical bone samples
from the middle-age and elderly donors had higher levels of fAGEs than those from the young
donors. Among other issues, the amount of mineral phase decreases with aging and this signifi-
cantly increases porosity of bone tissues [60]. As the protective role of mineral begins to de-
cline, glycation of bone matrix proteins becomes more pronounced.

The kinetic studies of fAGEs and PEN accumulation confirmed that cancellous bone is
more prone to the formation and accumulation of the glycation products. These studies also re-
vealed surprisingly fast conversion of sugars into AGEs when the conditions favor the Maillard
reaction. The differences in the levels of fAGEs and PEN produced during glycation of bone tis-
sues originating from male donors as compared to female donors may be explained, for exam-
ple, by the prior in vivo glycation history (“local age’) of the dissected bone samples.

Pentosidine is considered to be the well-defined AGE of sugar origin. In the first step of
PEN formation, the aldehyde group of the open-chain glucose attaches to the free amino
groups of such amino acids as lysine or arginine. In the last step of PEN formation, the trans-
formation of pentosidine precursor(s) into mature PEN involves oxidation [14]. Since oxida-
tion processes facilitate the conversion of pentosidine precursor, pentosinane, into mature
PEN [14] and these processes increase in bone with aging, they could enhance the in vivo for-
mation of PEN, and potentially other AGEs, which are the products of carbohydrate oxidation.
These AGE products are known as “advanced glycoxidation end products” (AGOEs) and rep-
resent a subgroup of AGEs [14]. This could also explain the observed significant increase in the
in vivo formation of fAGEs and PEN in donors of 65 or older (Fig. 3).

Bone matrix collagen comprises 90% of organic matrix and its amino acid sequence is rich
in lysines and arginines, the key amino acids involved in the formation of PEN [14, 15]. Thus,
the sequence space of collagen available for glycation is very large due in part to its relatively
simple fiber structure that helps to expose amino acids onto the protein surface. In addition,
bone matrix collagen interacts with a number of different non-collagenous proteins (NCPs),
for example, osteocalcin and osteopontin [54, 56]. Lysines, arginines, valines and tyrosines are
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the most commonly glycated amino acids [17]. For example, in vivo glycation is the major
cause of heterogeneity in human hemoglobin [61]. In red cells, glucose reacts predominantly
with the N-terminal valine of the β-chains, to a lesser extent with the N-terminal valine of the
α-chains, and with several ε-amino lysines [61]. Interestingly, among amino acids that com-
pose human OC, there are several arginines, valines and tyrosines that could potentially under-
go glycation. It has already been established that the N-terminal tyrosine of human OC can
become glycated in vivo [57]. Thus, OC in bone could become post-translationally glycated to
a variable extent depending upon the age and the local glucose concentration. Our study re-
vealed that pentosidine is one of the intermolecular crosslinks formed between osteocalcin and
its proximal matrix proteins (a manuscript in preparation). We propose that as a result of close
structural proximity of the key amino acids in collagen with respect to osteocalcin [56, 62, 63],
there are multiple opportunities for the formation of various AGEs between these two proteins
as well as other NCPs in bone matrix. The detection of OC with the PEN crosslink supports
the aforementioned conclusions.

The discussed results also turn attention to some practical aspects of our studies, in particu-
lar, the influence of excessive sugar addition to energy drinks and food on general health. Com-
monly, ribose is used to improve athletic performance and the ability to exercise by boosting
muscle energy. Studies to evaluate the effectiveness of ribose in improving athletic performance
as well as the role of in vivo ribosylation on the overall health are needed.

In conclusion, our studies have given new insights into glycation processes occurring in
human cortical and cancellous bone samples when two different sugars were used. As different
sugars compose a substantial part of human diet, our studies may help to understand certain
bone and other organs pathologies that are related to protein glycation.

Acknowledgments
The use of human tissues from deceased donors was approved by the Rensselaer Institutional
Review Board as Exempt according to 45CFR46.101(b)(4): Existing Data & Specimens—No
Identifiers. A.S. participated in the studies as the undergraduate research assistant under the
RPI’s Undergraduate Research Program in Biochemistry and Biophysics. G.E.S. and A.S. thank
D.V. for research freedom given to them on this project.

Author Contributions
Conceived and designed the experiments: GES. Performed the experiments: GES AS. Analyzed
the data: GES AS. Contributed reagents/materials/analysis tools: GES DV. Wrote the paper:
GES. Originated and supervised the project: GES. Prepared the figure representing the major
steps of the Maillard reaction: AS. Prepared other figures: GES. Reviewed the manuscript: DV.

References
1. Fayle SE, Gerrard JA (2002) The Maillard Reaction, Ed. Belton P. S., Royal Society of Chemistry,

Cambridge. Chapter 1, pp. 1–6.

2. Nursten HE (2005) The Maillard Reaction: Chemistry, Biochemistry, and Implications, Ed. Nursten H.
E., Royal Society of Chemistry, Cambridge. Chapter 1, pp. 1–4.

3. Rahbar S, Blumenfeld O, Ranney HM (1969) Studies of an unusual hemoglobin in patients with diabe-
tes mellitus. Biochem Biophys Res Commun 36(5): 838–843. PMID: 5808299

4. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, et al. (1993) Maillard reaction products and their
relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91: 2463–2469. PMID:
8514858

5. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, et al. (1993) Maillard reaction products and
their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91: 2470–2478.
PMID: 8514859

In VitroGlycation Kinetics of Human Bone

PLOSONE | DOI:10.1371/journal.pone.0117240 February 13, 2015 16 / 19

http://www.ncbi.nlm.nih.gov/pubmed/5808299
http://www.ncbi.nlm.nih.gov/pubmed/8514858
http://www.ncbi.nlm.nih.gov/pubmed/8514859


6. Cai W, Uribarri J, Zhu L, Chen X, Swamy S, et al. (2014) Oral glycotoxins are a modifiable cause of de-
mentia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA 111(13):
4940–4945; doi: 10.1073/pnas.1316013111 PMID: 24567379

7. Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, et al. (1994) Advanced Maillard reaction end prod-
ucts are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 91: 5710–5714. PMID:
8202552

8. Frye EB, Degenhardt TP, Thorpe SR, Baynes JW (1998) Role of the Maillard reaction in aging of tissue
proteins: Advanced glycation end product-dependent increase in imidazolium cross-links in human
lens proteins. J Biol Chem 273: 18714–18719. PMID: 9668043

9. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, et al. (2001) Influence of nonenzymatic gly-
cation on biomechanical properties of cortical bone. Bone 28: 195–201. PMID: 11182378

10. Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee AN, et al. (2005) Trabecular microfracture
and the influence of pyridinium and nonenzymatic glycation-mediated collagen cross-links. Bone 37
(6): 825–832. PMID: 16140600

11. Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Curr Osteoporos Rep 5: 62–66.
PMID: 17521507

12. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, et al. (2009) Pentosidine and in-
creased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94: 2380–2386. doi:
10.1210/jc.2008-2498 PMID: 19383780

13. Sell DR, Lapolla A, Odetti P, Fogarty J, Monnier VM (1992) Pentosidine formation in skin correlates
with severity of complications in individuals with long-standing IDDM. Diabetes 41(10): 1286–1292.
PMID: 1397702

14. Biemel KM, Reihl OR, Conrad J, Lederer MO (2001) Formation pathways for lysine-arginine cross-links
derived from hexoses and pentoses by Maillard process. J Biol Chem 276: 23405–23412. PMID:
11279247

15. Lederer MO, Bühler HP (1999) Cross-linking of proteins by Maillard processes-characterization and de-
tection of a lysine-arginine cross-link derived from D-glucose. Bioorg Med Chem 7: 1081–1088. PMID:
10428377

16. Vozian PA, Khalifah RG, Thibaudeau C, Yildiz A, Jacob J, et al. (2003) Modification of proteins in vitro
by physiological levels of glucose: Pyridoxamine inhibits conversion of Amadori intermediate to ad-
vanced glycation end-products through binding of redox metal ions. J Biol Chem 278: 46616–46624.
PMID: 12975371

17. Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: New products and new
perspectives. Amino Acids 25: 275–281. PMID: 14661090

18. Karim L, Tang SY, Sroga GE, Vashishth D (2013) Differences in non-enzymatic glycation and collagen
crosslinks between human cortical and cancellous bone. Osteoporos Int 24: 2441–2447. doi: 10.1007/
s00198-013-2319-4 PMID: 23471564

19. Viguet-Carrin S, Roux JP, Arlot ME, Merabeta Z, Leeming DJ, et al. (2006) Contribution of the ad-
vanced glycation end product pentosidine and of maturation of type I collagen to compressive bio-
mechanical properties of human lumbar vertebrae. Bone 39: 1073–1079. PMID: 16829221

20. Wang X, Shen X, Li X, Agrawal CM (2002) Age-related changes in the collagen network and toughness
of bone. Bone 31(1): 1–7. PMID: 12110404

21. Havel PJ (2005) Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbo-
hydrate metabolism. Nutrition Reviews 63(5): 133–157. PMID: 15971409

22. Hanover LM, White JS (1993) Manufacturing, composition, and applications of fructose. Am J Clin Nutr
58(suppl): 7245–7325.

23. Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hyperten-
sion in rats. Hypertension 10: 512–516. PMID: 3311990

24. Quin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, et al. (2004) Cinnamon extracts prevents the insulin
resistance induced by a high-fructose diet. HormMetab Res 36: 119–125. PMID: 15002064

25. Wu LY, Juan CC, Hwang LS, Hsu YP, Ho PH, et al. (2004) Green tea supplementation ameliorates in-
sulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur J Nutr
(2004) 43: 116–124. PMID: 15083319

26. Jürgens H, HaassW, Castañeda TR, Schürmann A, Koebnick C, et al. (2005) Consuming fructose-
sweetened beverages increases body adiposity in mice. Obes Res 13: 1146–1156. PMID: 16076983

27. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ (2002) Fructose, weight gain, and the insulin resistance
syndrome. Am J Clin Nutr 76: 911–922. PMID: 12399260

In VitroGlycation Kinetics of Human Bone

PLOSONE | DOI:10.1371/journal.pone.0117240 February 13, 2015 17 / 19

http://dx.doi.org/10.1073/pnas.1316013111
http://www.ncbi.nlm.nih.gov/pubmed/24567379
http://www.ncbi.nlm.nih.gov/pubmed/8202552
http://www.ncbi.nlm.nih.gov/pubmed/9668043
http://www.ncbi.nlm.nih.gov/pubmed/11182378
http://www.ncbi.nlm.nih.gov/pubmed/16140600
http://www.ncbi.nlm.nih.gov/pubmed/17521507
http://dx.doi.org/10.1210/jc.2008-2498
http://www.ncbi.nlm.nih.gov/pubmed/19383780
http://www.ncbi.nlm.nih.gov/pubmed/1397702
http://www.ncbi.nlm.nih.gov/pubmed/11279247
http://www.ncbi.nlm.nih.gov/pubmed/10428377
http://www.ncbi.nlm.nih.gov/pubmed/12975371
http://www.ncbi.nlm.nih.gov/pubmed/14661090
http://dx.doi.org/10.1007/s00198-013-2319-4
http://dx.doi.org/10.1007/s00198-013-2319-4
http://www.ncbi.nlm.nih.gov/pubmed/23471564
http://www.ncbi.nlm.nih.gov/pubmed/16829221
http://www.ncbi.nlm.nih.gov/pubmed/12110404
http://www.ncbi.nlm.nih.gov/pubmed/15971409
http://www.ncbi.nlm.nih.gov/pubmed/3311990
http://www.ncbi.nlm.nih.gov/pubmed/15002064
http://www.ncbi.nlm.nih.gov/pubmed/15083319
http://www.ncbi.nlm.nih.gov/pubmed/16076983
http://www.ncbi.nlm.nih.gov/pubmed/12399260


28. Gross LS, Li L, Ford ES, Liu S (2004) Increased consumption of refined carbohydrates and the epidem-
ic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr 79: 774–779. PMID:
15113714

29. Stanhope KL, Griffen SC, Bair BR, Swarbrick MM, Keim NL, et al. (2008) Twenty-four-hour endocrine
and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glu-
cose-sweetened beverages with meals. Am J Clin Nutr 87: 1194–1203. PMID: 18469239

30. Stanhope KL, Havel PJ (2008) Endocrine and metabolic effects of consuming beverages sweetened
with fructose, glucose, sucrose, or high fructose corn syrup. Am J Clin Nutr 88(6): 1733S–1737S. doi:
10.3945/ajcn.2008.25825D PMID: 19064538

31. Dekker MJ, Su Q, Baker CB, Rutledge AC, Adeli K (2010) Fructose: a highly lipogenic nutrient implicat-
ed in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab
299: E685–E694. doi: 10.1152/ajpendo.00283.2010 PMID: 20823452

32. Malik VS, Popkin BM, Bray GA, Després JP, Hu FB (2010) Sugar-sweetened beverages, obesity, type
2 diabetes mellitus, and cardiovascular disease risk. Circulation 121: 1356–1364. doi: 10.1161/
CIRCULATIONAHA.109.876185 PMID: 20308626

33. Lowndes J, Kawiecki D, Pardo S, Nguyen V, Melanson KJ, et al. (2012) The effects of four hypocaloric
diets containing different levels of sucrose or high fructose corn syrup on weight loss and related pa-
rameters. Nutrition J 11: 55.

34. Bantle JP, Laine DC, Castle GW, Thomas JW, Hoogwerf BJ, et al. (1983) Postprandial glucose and in-
sulin responses to meals containing different carbohydrates in normal and diabetic subjects. N Engl J
Med 309: 7–12. PMID: 6343873

35. Malerbi DA, Paiva ES, Duarte AL, Wajchenberg BL (1996) Metabolic effects of dietary sucrose and
fructose in type II diabetic subjects. Diabetes Care 19: 1249–1256. PMID: 8908389

36. Gross M, Zöllner N (1991) Serum levels of glucose, insulin, and C-peptide during long term D-ribose ad-
ministration in man. Klin Wochenschr 69(1): 31–36. PMID: 1901925

37. Clark PM, Flores G, Evdokimov NM, McCracken MN, Chai T, et al. (2014) Positron emission tomogra-
phy probe demonstrates a striking concentration of ribose salvage in the liver. Proc Natl Acad Sci USA:
111(28): E2866–E2874; doi: 10.1073/pnas.1410326111 PMID: 24982199

38. Broom AD, Townsend LB, Jones JW, Robins RK (1964) Purine Nucleosides. VI. Further Methylation
Studies of Naturally Occurring Purine Nucleosides. Biochemistry 3: 494–500. PMID: 14188163

39. Keller PJ, Le Van Q, Kim SU, Bown DH, Chen HC, et al. (1988) Biosynthesis of riboflavin: mechanism
of formation of the ribitylamino linkage. Biochemistry 27: 1117–1120. PMID: 3130093

40. Racker E (1961) Mechanisms of synthesis of adenosine triphosphate. Adv Enzymol Relat Subj Bio-
chem 23: 323–399. PMID: 14489689

41. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry ( Freeman, New York). PMID: 12790104

42. Katz J, Abraham S, Hill R, Chaikoff IL (1955) The occurrence and mechanism of the hexose monophos-
phate shunt in rat liver slices. J Biol Chem 214(2): 853–868. PMID: 14381422

43. Mahoney JR Jr, Sako EY, Seymour KM, Marquardt CA, Foker JE (1989) A comparison of different car-
bohydrates as substrates for the isolated working heart. J Surg Res 47(6): 530–534. PMID: 2511381

44. Chang RS (1960) Genetic study of human cells in vitro. Carbohydrate variants from cultures of HeLa
and conjunctival cells. J Exp Med 111(2): 235–254.

45. Reitzer LJ, Wice BM, Kennell D (1980) The pentose cycle. Control and essential function in HeLa cell
nucleic acid synthesis. J Biol Chem 255(12): 5616–5626. PMID: 6445904

46. Teitelbaum JE, Johnson C, St Cyr J (2006) The use of D-ribose in chronic fatigue syndrome and fibro-
myalgia: a pilot study. J Altern Complement Med 12(9): 857–862. PMID: 17109576

47. Su T, Xin L, He YG, Wei Y, Song YX, et al. (2013) The abnormally high level of uric D-ribose for type-2
diabetics. Prog Biochem Biophys 40: 816–825.

48. Wei Y, Han CS, Zhou J, Liu Y, Chen L, et al. (2012) D-ribose in glycation and protein aggregation. Bio-
chim Biophys Acta 1820: 488–494. doi: 10.1016/j.bbagen.2012.01.005 PMID: 22274132

49. Tanaka S, Avigad G, Brodsky B, Eikenberry EF (1988) Glycation induces expansion of the molecular
packing of collagen. J Mol Biol 203: 495–505. PMID: 3143838

50. Viviani GL, Puddu A, Sacchi G, Garuti A, Storace D, et al. (2008) Glycated fetal calf serum affects the
viability of an insulin-secreting cell line in vitro. Metabolism 57: 163–169. doi: 10.1016/j.metabol.2007.
08.020 PMID: 18191044

51. Wei Y, Chen L, Chen J, Ge L, He RQ (2009) Rapid glycation with D-ribose induces globular amyloid-
like aggregations of BSA with high cytotoxicity to SHSY 5 Y cells. BMC Cell Biology 10: 10; doi: 10.
1186/1471-2121-10-10 PMID: 19216769

In VitroGlycation Kinetics of Human Bone

PLOSONE | DOI:10.1371/journal.pone.0117240 February 13, 2015 18 / 19

http://www.ncbi.nlm.nih.gov/pubmed/15113714
http://www.ncbi.nlm.nih.gov/pubmed/18469239
http://dx.doi.org/10.3945/ajcn.2008.25825D
http://www.ncbi.nlm.nih.gov/pubmed/19064538
http://dx.doi.org/10.1152/ajpendo.00283.2010
http://www.ncbi.nlm.nih.gov/pubmed/20823452
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.876185
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.876185
http://www.ncbi.nlm.nih.gov/pubmed/20308626
http://www.ncbi.nlm.nih.gov/pubmed/6343873
http://www.ncbi.nlm.nih.gov/pubmed/8908389
http://www.ncbi.nlm.nih.gov/pubmed/1901925
http://dx.doi.org/10.1073/pnas.1410326111
http://www.ncbi.nlm.nih.gov/pubmed/24982199
http://www.ncbi.nlm.nih.gov/pubmed/14188163
http://www.ncbi.nlm.nih.gov/pubmed/3130093
http://www.ncbi.nlm.nih.gov/pubmed/14489689
http://www.ncbi.nlm.nih.gov/pubmed/12790104
http://www.ncbi.nlm.nih.gov/pubmed/14381422
http://www.ncbi.nlm.nih.gov/pubmed/2511381
http://www.ncbi.nlm.nih.gov/pubmed/6445904
http://www.ncbi.nlm.nih.gov/pubmed/17109576
http://dx.doi.org/10.1016/j.bbagen.2012.01.005
http://www.ncbi.nlm.nih.gov/pubmed/22274132
http://www.ncbi.nlm.nih.gov/pubmed/3143838
http://dx.doi.org/10.1016/j.metabol.2007.08.020
http://dx.doi.org/10.1016/j.metabol.2007.08.020
http://www.ncbi.nlm.nih.gov/pubmed/18191044
http://dx.doi.org/10.1186/1471-2121-10-10
http://dx.doi.org/10.1186/1471-2121-10-10
http://www.ncbi.nlm.nih.gov/pubmed/19216769


52. Han C, Lu Y, Wei Y, Liu Y, He R (2011) D-ribose induces cellular protein glycation and impairs mouse
spatial cognition. PLoS ONE 6(9): e24623; doi: 10.1371/journal.pone.0024623 PMID: 21966363

53. Laroque D, Inisan C, Berger C, Vouland E, Dufossé L, et al. (2008) Kinetic study on the Maillard reac-
tion: Consideration of sugar reactivity. Food Chem 111: 1032–1042.

54. Sroga GE, Vashishth D (2012) Effects of bone matrix proteins on fracture and fragility in osteoporosis.
Curr Osteoporos Rep 10: 141–150. doi: 10.1007/s11914-012-0103-6 PMID: 22535528

55. Young MF (2003) Bone matrix proteins: their function, regulation, and relationship to osteoporosis.
Osteoporos Int 14(Suppl 3): S35–S42. PMID: 12730768

56. Poundarik AA, Diab T, Sroga GE, Ural A, Boskey AL, et al. (2012) Dilatational band formation in bone.
Proc Natl Acad Sci USA 109: 19178–19183. doi: 10.1073/pnas.1201513109 PMID: 23129653

57. Gundberg CM, Anderson M, Dickson I, Gallop PM (1986) “Glycated” osteocalcin in human and bovine
bone. J Biol Chem 261(31): 14557–14561. PMID: 3490475

58. Sroga GE, Vashishth D (2011) UPLCmethodology for identification and quantitation of naturally fluo-
rescent crosslinks in proteins: A study of bone collagen. J Chromatogr B: Analyt Technol Biomed Life
Sci 879: 379–85; doi: 10.1016/j.jchromb.2010.12.024

59. Sroga GE, Karim L, ColónW, Vashishth D (2011) Biochemical characterization of major bone-matrix
proteins using nanoscale-size bone samples and proteomics methodology. Mol Cell Proteomics 10(9):
doi: 10.1074/mcp.M110.006718, 1–12.

60. Jilka RL, O’Brien CA, Roberson PK, Bonewald LF, Weinstein RS, et al. (2014) Dysapoptosis of osteo-
blasts and osteocytes increases cancellous bone formation but exaggerates cortical porosity with age.
J Bone Mineral Res 29: 103–117. doi: 10.1002/jbmr.2007 PMID: 23761243

61. Shapiro R, McManus MJ, Zalut C, Bunn HF (1980) Sites of nonenzymatic glycosylation of human he-
moglobin A. J Biol Chem 255: 3120–3127. PMID: 7358733

62. Nikel O, Laurencin D, Bonhomme C, Sroga GE, Besdo S, et al. (2012) Solid state NMR investigation of
intact human bone quality: Balancing issues and insight into the structure at the organic-mineral inter-
face. J Phys ChemC 116: 6307–6319.

63. Nikel O, Laurencin D, McCallum SA, Gundberg CM, Vashishth D (2013) NMR investigation of the role
of osteocalcin and osteopontin at the organic−inorganic interface in bone. Langmuir 29, 13873−13882.
doi: 10.1021/la403203w PMID: 24128197

In VitroGlycation Kinetics of Human Bone

PLOSONE | DOI:10.1371/journal.pone.0117240 February 13, 2015 19 / 19

http://dx.doi.org/10.1371/journal.pone.0024623
http://www.ncbi.nlm.nih.gov/pubmed/21966363
http://dx.doi.org/10.1007/s11914-012-0103-6
http://www.ncbi.nlm.nih.gov/pubmed/22535528
http://www.ncbi.nlm.nih.gov/pubmed/12730768
http://dx.doi.org/10.1073/pnas.1201513109
http://www.ncbi.nlm.nih.gov/pubmed/23129653
http://www.ncbi.nlm.nih.gov/pubmed/3490475
http://dx.doi.org/10.1016/j.jchromb.2010.12.024
http://dx.doi.org/10.1074/mcp.M110.006718
http://dx.doi.org/10.1002/jbmr.2007
http://www.ncbi.nlm.nih.gov/pubmed/23761243
http://www.ncbi.nlm.nih.gov/pubmed/7358733
http://dx.doi.org/10.1021/la403203w
http://www.ncbi.nlm.nih.gov/pubmed/24128197


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


