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Immobilization causes rapid andmassive bone loss. By comparing BotulinumToxin A (BTX)-induced bone loss in
mouse strainswith different genetic backgroundswe investigatedwhether the genetic background had an influ-
ence on the severity of the osteopenia. Secondly, we investigated whether BTX had systemic effects on bone. Fe-
malemice from four inbredmouse strains (BALB/cJ, C57BL/6 J, DBA/2 J, and C3H/HeN)were injected unilaterally
with BTX (n=10/group) or unilaterallywith saline (n=10/group).Micewere euthanized after 21 days, and the
bone properties evaluated using μCT, DXA, bone histomorphometry, andmechanical testing. BTX resulted in sub-
stantially lower trabecular bone volume fraction (BV/TV) and trabecular thickness in all mouse strains. The dete-
rioration of BV/TV was significantly greater in C57BL/6 J (−57%) and DBA/2 J (−60%) than in BALB/cJ (−45%)
and C3H/HeN (−34%) mice. The loss of femoral neck fracture strength was significantly greater in C57BL/6 J
(−47%) and DBA/2 J (−45%) than in C3H (−25%) mice and likewise the loss of mid-femoral fracture strength
was greater in C57BL/6 J (−17%), DBA/2 J (−12%), and BALB/cJ (−9%) than in C3H/HeN (−1%) mice, which
were unaffected. Using high resolution μCT we found no evidence of a systemic effect on any of the microstruc-
tural parameters of the contralateral limb. Likewise, there was no evidence of a systemic effect on the bone
strength in any mouse strain. We did, however, find a small systemic effect on aBMD in DBA/2 J and C3H/HeN
mice. The present study shows that BTX-induced immobilization causes the greatest loss of cortical and trabec-
ular bone in C57BL/6 J and DBA/2 J mice. A smaller loss of bonemicrostructure and fracture strength was seen in
BALB/cJmice, while the bonemicrostructure and fracture strength of C3H/HeNmiceweremarkedly less affected.
This indicates that BTX-induced loss of bone is mouse strain dependent.We found onlyminimal systemic effects
of BTX.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Immobilized patients, whether due to upper or lower motor neuron
damage, muscular dystrophies, or severe backaches, are prone to devel-
op osteopenia and osteoporosis in the affected limbs (Jiang et al., 2006;
Minaire et al., 1974; Leblanc et al., 1990; Rittweger et al., 2010; Thomsen
et al., 2005a; Hansson et al., 1975; Krølner and Toft, 1983). For example,
Hansson et al. found a loss of spinal bone mineral content of 2% per
week in patients undergoing bed rest due to scoliosis surgery
(Hansson et al., 1975), while Krølner and Toft showed that patients re-
cumbent due to therapeutic bed rest had a loss of spinal bone density of
1% per week (Krølner and Toft, 1983). However, immobilizing an
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otherwise healthy human population raises a number of ethical ques-
tions, and problems related to tissue extraction and analyses. Instead,
a range of animal models are available for the investigation of bone
loss following skeletal unloading: Neurectomy (Kodama et al., 1999;
Zeng et al., 1996; Weinreb et al., 1989; Sakai et al., 1999, 2005), spinal
cord injury (McManus and Grill, 2011; Ding et al., 2011), tail suspension
(Morey, 1979), plaster casting (Rantakokko et al., 1999; Orimo et al.,
1971), elastic bandaging (Akamine et al., 1992; Lindgren, 1976), and
Botulinum Toxin A (BTX)-induced immobilization (Warner et al.,
2006a). Here, we focus on the BTXmodel, which besides requiring little
setup and beingminimally invasive has been shown to have skeletal ef-
fects over and above any effect it has in altering gravitational loading,
thereby suggesting a direct effect of muscle on bone (Warden et al.,
2013).

After the injection of BTX, the ensuing muscle paralysis is based on
the toxin's ability to cleave the synaptosome-associated protein 25
(SNAP-25) in the presynaptic membranes of the neuromuscular junc-
tion. This prevents vesicles containing acetylcholine from docking at
the presynaptic membranes, and results in blockade of vesicle fusion
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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and the subsequent release of acetylcholine into the synaptic cleft (Lin
and Scheller, 2000; Hambleton, 1992; Dressler and Adib, 2005;
Simpson, 1981). Unlike invasive methods of immobilization, like
neurectomy and spinal cord injury, the BTXmodel preserves the senso-
ry nerve function of the animals as only the efferentmotor pathways be-
come affected.

We have previously shown losses of bone density, microstructure,
and strength in rats following BTX injection (Vegger et al., 2014;
Thomsen et al., 2012; Brüel et al., 2013; Grubbe et al., 2014), and these
findings are similar to what has been shown in mice (Warner et al.,
2006a; Warden et al., 2013; Ellman et al., 2014; Manske et al., 2010a;
Aliprantis et al., 2012; Grimston et al., 2007; Ausk et al., 2013; Manske
et al., 2010b, 2012; Poliachik et al., 2010;Warner et al., 2006b). Further-
more, it has been demonstrated that the bone deterioration following
BTX-induced muscle paralysis is paralleled by an increase in osteoclast
activity and osteoclastogenesis, and these two factors are believed to
play key roles for the rapidly occurring bone loss in thismodel of immo-
bilization (Aliprantis et al., 2012; Warner et al., 2006b).

Mice are increasingly being used as experimental animals in bone
research. Interestingly, skeletal features such as bone density, strength,
and microarchitecture have been shown to differ between a variety of
mouse strains (Jiao et al., 2010; Beamer et al., 1996; Sabsovich et al.,
2008; Wergedal et al., 2005). Moreover, the response to skeletal chal-
lenges such as ovariectomy (OVX) has been shown to vary in different
mouse strains. Hence, Bouxsein et al. showed a greatmouse strain relat-
ed variation in the bone loss following OVX in four strains of mice
(Bouxsein et al., 2005). Studies of tail suspended mice have indicated
that the response to skeletal unloading is also dependent on the
mouse strain studied (Shahnazari et al., 2012; Amblard et al., 2003).
When conducting experiments involving disuse in mice caution should
be exercisedwhen selecting themouse strain for the study as the differ-
ent mouse strains respond very differently to disuse. Hence, it is neces-
sary to know how various mouse strains respond to BTX-induced bone
loss.

Recently, the possibility of a systemic effect in BTX treated mice has
attracted attention. Reports have been ranging from a single study
showing a massive systemic impact (Ellman et al., 2014) to other stud-
ies presenting only negligible systemic effects of BTX (Manske et al.,
2010a, 2010b; Poliachik et al., 2010).

Therefore, the main objective of the present study was to establish
whether four commonly used mouse strains would respond differently
when immobilized by BTX. In addition, we performed a comprehensive
investigation of the possible systemic effect of BTX.

2. Materials & methods

2.1. Animals

Eighty 16-week-old female BALB/cJ (BALB/c) and C57BL/6 J (B6)
mice (Taconic Farms, Denmark), and DBA/2 J (DBA) and C3H/HeN
(C3H) mice (Harlan Laboratories, Holland) were investigated. The
micewere randomized into one control (n= 10) and one experimental
group (n = 10) per mouse strain and housed at 22 °C with a 12/12 h
light/dark cycle with free ambulation and standard mice chow and
water ad libitum.

On day 0 the mice were anesthetized with 4% isoflurane (Isofluran;
Baxter, Deerfield, IL) by inhalation and injected IM with either saline
or Botulinum Toxin A (BTX) (Botox, Allergan, Irvine, CA). The BTX dos-
age was 2 U/100 g body weight and was injected into the quadriceps
musculature and the calf muscles. The contralateral (non-injected)
hind limbs served as internal controls. During the study no adverse ef-
fects of the BTX injections were observed, and there were no visible
signs of the immobilized animals not thriving.

The gait ability of the BTX-injected animals was assessed (as de-
scribed by Warner et al., 2006a) in a pilot study of 10 BALB/c mice on
days 0, 1, and 2, and thereafter twice a week.
All mice received SC injections with alizarin (Sigma-Aldrich, St.
Louis, MO, 20 mg/kg) on day −5, calcein (Sigma-Aldrich, St. Louis,
MO, 15 mg/kg) on day 13, and tetracycline (Sigma-Aldrich, St. Louis,
MO, 20 mg/kg) on day 17.

Body weights were obtained at days −5, 0, 5, 12, and 21. The mice
were euthanized on day 21. No mice died prematurely during the
course of the study. All procedures compliedwith the guiding principles
of the Guide for the Care and Use of Laboratory Animals and were ap-
proved by the Danish Animal Experiment Inspectorate.

2.2. Tissue extraction

Immediately after euthanasia the left and right hind limbs were re-
moved. Both the left and right rectus femorismuscleswere carefully iso-
lated in a standardized manner and weighed using an electronic scale.
The femora were stored in Ringer's solution at −20 °C for the subse-
quent analyses. The tibiae were immersion-fixed in 0.1 M sodium
phosphate-buffered 4% formaldehyde, pH 7.0, for 48 h and then trans-
ferred to 70% ethanol.

2.3. Dual-energy X-ray absorptiometry

The femorawere thawed, cleaned of soft connective tissue, placed in
a pDEXA scanner (Sabre XL; Norland Stratec, Pforzheim, Germany), and
scanned using a pixel size of 0.1 × 0.1 mm2. The bone mineral content
(BMC) and the area bone mineral density (aBMD) of the whole bone
were determined with the software provided with the scanner. Quality
assurancewas performed by scans of the two solid-state phantoms pro-
videdwith the scanner. The coefficient of variation (CV) ofmice femoral
aBMD is 2.4% in our laboratory.

2.4. Mechanical testing

The femoral length was determined using a digital caliper, and the
midpoint was marked. The femora were placed in a testing jig con-
structed for three-point bending tests. The distance between the
supporting rods was fixed at 7.15 mm. Load was applied at a constant
deflection rate of 2 mm/min with a rod perpendicular to the midpoint
of the femora in a materials testing machine (5566; Instron, High
Wycombe, UK) until fracture.

The proximal femur obtained after the three-point bending test was
placed in a device for standardized fixation (Mosekilde et al., 1999). The
fixation device was then placed in the materials testing machine and
load was applied to the top of the femoral head at a constant rate of
2 mm/min until fracture.

2.5. Micro-computed tomography (μCT)

The proximal tibial metaphyses were μCT-scanned (μCT 35; Scanco
Medical, Brüttisellen, Switzerland) in high resolution mode (1000 pro-
jections/180°) with a spatial resolution of 3.5 × 3.5 × 3.5 μm3, an X-
ray tube voltage of 55 kVp and current of 145 μA, and an integration
time of 800 ms.

A 1000-μm-high volume of interest (VOI) was delineated within the
endocortical edges of the proximal tibial metaphysis starting 200 μm
below the most distal part of growth plate in order to exclude the pri-
mary spongiosa. The 3D data sets were low-pass-filtered using a Gauss-
ian filter (σ= 1.3, support = 2) and segmented with a fixed threshold
filter of 476 mg HA/cm3 in accordance with the current guidelines
(Bouxsein et al., 2010).

Determinationof the trabecular bonemicrostructurewas carried out
using the software provided with the μCT scanner (version 6.0, Scanco
Medical). The microstructural measures included bone volume per
total volume (BV/TV), trabecular thickness (Tb.Th), trabecular separation
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(Tb.Sp), trabecular number (Tb.N), connectivity density (CD), structural
model index (SMI), trabecular bonematerial density (ρtrab), and volumet-
ric bone mineral density (vBMD). The computation of these structural
measureswas performedusing the directmethod as previously described
in detail (Thomsen et al., 2005b).

Quality assurance was performed by weekly (density) and monthly
(geometry) scans of the solid-state calibration phantom provided with
the scanner.

2.6. Static bone histomorphometry

Approximately 200-μm-thick sections were sawed from the fem-
oral mid-diaphysis with a diamond precision-parallel saw (Exakt
Apparatebau, Norderstedt, Germany). The sectionswere sawed as closely
as possible to the fracture site from the three-point bending test and per-
pendicular to the long axis of the bone. These unembedded sectionswere
mounted on microscope slides and placed in a microscope (Eclipse 80i;
Nikon, Tokyo, Japan) equipped with a motorized stage (H138E50; Prior,
Cambridge, UK), a digital camera (DP72; Olympus, Tokyo, Japan), and
connected to a PC with the newCAST stereology software (version
Table 1
Body weights of control and BTX groups. For the BTX groups only: rectus femoris muscle mass,
diaphysis.

BALB/c B6

Start End Start

Body weight
Control group (g) 20.5

(±1.4)
22.1#

(±1.2)
21.4
(±1.2)

BTX group (g) 21.5
(±1.5)

20.3#,E

(±1.3)
22.2
(±0.9)

BTX group Contralat. Inj. Contralat.

M. rectus femoris (mg) 56.0
(±5.1)

34.3⁎

(±5.3)
62.3
(±3.6)

−38.3%
(±11.4)

−46.2%
(±12.2)

Femur length (mm) 15.03
(±0.3)

15.06
(±0.4)

15.40
(±0.3)

0.2%
(±1.1)

−0.1%
(±0.9)

Whole femur
BMC (mg) 17.8

(±2.3)
15.6⁎

(±1.3)
18.1
(±1.0)

−10.9% (±14.5) −12.9% (±9
aBMD (mg/cm2) 55.6

(±3.0)
50.7⁎

(±2.8)
51.7
(±1.9)

−8.8%
(±4.1)

−10.0%
(±5.7)

Femoral mid-diaphysis
Bone Area (mm2) 0.81

(±0.08)
0.78
(±0.07)

0.85
(±0.06)

−3.8%
(±11.5)

−2.4%
(±2.5)

Marrow area (mm2) 0.63
(±0.06)

0.67⁎

(±0.07)
0.91
(±0.05)

6.5%
(±6.4)

5.6%
(±3.4)

Tissue area (mm2) 1.44
(±0.12)

1.44
(±0.12)

1.75
(±0.08)

0.5%
(±7.7)

1.7%
(±1.3)

Mean differences are listed in percentage between the BTX-injected and contralateral limbs.
Mean ± SD.

# p b 0.05 vs. start weight.
E p b 0.05 vs. control group.
⁎ p b 0.05 vs. contralateral limb.
a Difference p b 0.05 vs. BALB/c.
b Difference p b 0.05 vs. B6,
c difference p b 0.05 vs. DBA.
3.6.4.0; Visiopharm, Hørsholm, Denmark). Digital images were projected
onto the computermonitor of the attached PC. At amagnification of ×290
a point grid was superimposed by the software andmarrow area (Ma.Ar)
and bone area (B.Ar) were estimated.

2.7. Dynamic bone histomorphometry

Cortical bone dynamic histomorphometry was performed using the
mid-diaphyseal sections and the stereology system, which was also
equipped with a fluorescence illuminator (LH-M100C-1; Nikon, Tokyo,
Japan). A randomly rotated star shaped grid with 16 radiating arms
was superimposed on the digital images. The center of the grid was
placed in the center of the medullar cavity, so that the radiating lines
of the grid randomly intersected the endosteal and periosteal perimeter
as previously described (Oxlund and Andreassen, 2004). The number of
grid intersectionswith either single labels or double labels at the endos-
teal or periosteal surface was counted at a magnification of ×1170. In
the case of grid intersection with a double label, the distance between
the labels wasmeasured. Alz.S/BS, MS/BS, MAR, and BFR/BS of the corti-
cal bone were determined.
femur length, whole femur DXA values, and static histomorphometry of the femoral mid-

DBA C3H

End Start End Start End

21.8
(±1.5)

22.3
(±0.7)

22.5
(±0.7)

25.0
(±1.5)

26.7#

(±1.2)
21.3#

(±1.1)
22.1
(±0.7)

20.9#,E

(±0.7)
25.1
(±1.3)

23.4#,E

(±1.2)

Inj. Contralat. Inj. Contralat. Inj.

33.4⁎

(±7.4)
62.5
(±13.6)

29.4⁎

(±2.6)
56.5
(±3.9)

30.2⁎

(±7.7)
−52.5%
(±8.2)

−46.3%
(±14.1)

15.38
(±0.2)

14.93
(±0.1)

14.88
(±0.1)

15.61
(±0.2)

15.59
(±0.2)

−0.3%
(±0.8)

−0.2%
(±1.1)

15.7⁎

(±1.3)
15.1
(±1.1)

14.2
(±1.5)

25.1
(±2.8)

25.8
(±2.8)

.7) −5.6% (±11.2) 4.2%a,b (±17.6)
46.5⁎

(±1.9)
51.0
(±3.2)

47.9
(±1.6)

74.8
(±3.0)

74.0
(±3.2)

−5.6%
(±8.3)

−1.0%a,b,c

(±3.5)

0.83⁎

(±0.07)
0.79
(±0.04)

0.77⁎

(±0.25)
1.23
(±0.06)

1.24
(±0.07)

−14.6%b

(±5.9)
0.6%c

(±4.4)
0.96⁎

(±0.04)
0.41
(±0.01)

0.44⁎

(±0.03)
0.34
(±0.07)

0.38⁎

(±0.06)
10.8%
(±5.7)

14.0%
(±17.0)

1.78⁎

(±0.09)
1.20
(±0.04)

1.13⁎

(±0.05)
1.58
(±0.10)

1.62
(±0.10)

−6.0%a,b

(±4.0)
3.1%c

(±4.7)
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After μCT, the proximal tibiae were embedded undecalcified in
methyl methacrylate. Frontal 7-μm-thick sections were cut on a micro-
tome (Jung RM2065; Leica Instruments, Nussloch, Germany) and either
left unstained, stained for tartrate-resistant acid phosphatase (TRAP), or
stained with Masson-Goldner trichrome (MGT).

Unstained sections were placed in the microscope and analyzed
using newCAST. A 1000-μm-high region of interest (ROI) was delineat-
ed within the endocortical edges of the metaphysis starting 300 μm
below the top of the growth plate, excluding primary spongiosa. The
fields of view were sampled systematically random (Gundersen and
Jensen, 1987), and a line grid with random orientation was super-
imposed on thefields of view.MS/BS,MAR, and BFR/BS of the trabecular
bone were determined at a magnification of ×1170. The amount of os-
teoclast covered surfaces (Oc.S/BS)was estimated in a similarwayusing
the sections stained for TRAP.

2.8. Bone adiposity of the proximal tibia

The adipose tissue volume relative to marrow volume (AV/MV) was
estimated on theMGT stained sections using point counting in a ROI de-
lineated from the bottom of the growth plate and 2 mm distally.
Fig. 1. Femoral neck andmid-diaphyseal bone strength. Thewhite columns are the contra-
lateral limbs and the hatched columns are the BTX-injected limbs. Mean differences be-
tween limbs are listed in percentages below their respective mice strains. Mean ± SD.
*: p b 0.05 vs. contralateral limb, a: difference p b 0.05 vs. BALB/c, b: difference p b 0.05
vs. B6, c: difference p b 0.05 vs. DBA.
2.9. Statistics

To assess the systemic effect of BTX, the contralateral limbs from
control mice were compared with contralateral limbs from BTX-
treated mice (with the exception of μCT data where saline-injected
limbs of control micewere used instead) using a Student's independent
samples t-test. To demonstrate the magnitude of BTX-induced bone
changes the absolute values obtained at the injected and contralateral
limbs were compared with a Student's paired samples t-test. To evalu-
ate the influence of mouse strain type on BTX-induced changes the ra-
tios of BTX-injected to non-injected limbs from all four mouse strains
were compared using a one-way analysis of variance with a Student-
Newmann–Keuls post-hoc analysis. When normal distribution was
not found, Wilcoxon Mann–Whitney U test, Wilcoxon Signed-Rank
test, and Kruskal–Wallis one-way analysis of variance on ranks with a
Student–Newmann–Keuls post-hoc analysis, respectively, were applied
instead. Differences were regarded as statistically significant when
p b 0.05. All data are expressed as mean ± SD or mean percent
difference ± SD.

3. Results

3.1. Body weight and gait ability score

In the 5 days following BTX injection, the DBA and C3H strain lost
weight significantly, whereas the BALB/c and B6 strains experienced
only non-significant weight losses. At the end of the study, however,
the body weights of BTX animals in both the BALB/c, DBA, and C3H,
but not the B6 strain, were significantly lower (7–12%) than the body
weights of their respective control animals.

The pilot study of 10 BALB/c mice showed that the gait ability score
rapidly deteriorated, and reached its lowest (2.1 ± 1) at day 2, after
which the mice slowly recuperated, and finished on a gait ability score
of 6.6 ± 1 at day 21.

3.2. Rectus femoris muscle mass and femur length

In all mouse strains, a significant loss of rectus femoris muscle mass
(38–53%) was observed in the BTX-injected hind limb when compared
to the contralateral limb. No difference in the magnitude of muscle
wasting was found between any of the four mouse strains (Table 1).

The length of the femora was not influenced by BTX in any of the
mouse strains (Table 1).
3.3. Dual-energy X-ray absorptiometry

Immobilization resulted in significantly lower femoral BMC and
aBMD in the BTX-injected hind limb compared with the contralateral
limb in the BALB/c and B6 strains, whereas no significant differences
were observed in the DBA and C3H strains (Table 1).

The difference in femoral BMC was significantly greater in BALB/c
(−10.9%) and B6 (−12.9%) compared to C3H (+4.2%) mice. Similarly,
the loss of femoral aBMD was significantly more pronounced in BALB/c
(−8.8%), B6 (−10.0%), and DBA (−5.6%) than in C3H (−1.0%) mice.

3.4. Mechanical testing

The bone strength of the femoral neckwas significantly lower in the
BTX-injected than in the contralateral limb in all mouse strains (Fig. 1).
These differences in bone strength were significantly greater in B6
(−47.1%) and DBA (−45.0%) than in C3H (−24.7%) mice.

At the femoral mid-diaphysis, the bone strength was significantly
lower in the BTX-injected than in the contralateral limb in BALB/c, B6,
and DBA mice, but not in C3H mice. These BTX-induced differences in
mid-diaphyseal bone strength was significantly greater in BALB/c
(−9.2%), B6 (−16.9%), and DBA (−12.3%) than in C3H (−1.0%) mice
(Fig. 1).

Image of Fig. 1
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3.5. μCT

Compared with the contralateral limb BTX resulted in substantially
lower BV/TV values in all mouse strains ranging from −34% (C3H) to
−60% (DBA). Similarly, the BTX-injections led to significantly lower
Tb.Th, CD, vBMD, and ρtrab values and a significantly higher SMI value
in all mouse strains (Table 2, Figs. 2 and 3).

The difference in BV/TV was significantly greater in B6 (−57%) and
DBA (−60%) than in BALB/c (−45%) and C3H (−34%)mice. The loss of
Tb.Th was significantly greater in BALB/c (−26.4%), B6 (−28.7%), and
DBA (−29.9%) than in C3H (−13.5%) mice. The BTX-induced differ-
ences in Tb.N, Tb.Sp, CD, and ρtrab did not differ between the mouse
strains. The increase in SMI was significantly greater in B6 (+51.5%),
DBA (+115.5%), and C3H (+56.3%) than in BALB/c (+30%)mice. Final-
ly, the loss of vBMD was significantly greater in BALB/c (−58%), B6
(−80%), and DBA (−75%) than in C3H (−36%) mice.

3.6. Static histomorphometry of cortical bone

The femoralmid-diaphyseal B.Ar was significantly lower in the BTX-
injected limb in B6 and DBA mice compared to the contralateral limb,
whereas no difference was found for BALB/c and C3H mice (Table 1
and Fig. 4). These differences were significantly greater in DBA
(−14.6%) than in B6 (−2.4%) and C3H (+0.6%)mice. TheM.Arwas sig-
nificantly larger in the BTX-injected limb in all four mouse strains, but
Table 2
Trabecular bone micro-structure indices of the proximal tibial metaphysis.

BALB/c B6

Contralat Inj. Contralat Inj

Tibial proximal metaphysis
BV/TV (%) 11.3

(±1.8)
6.3⁎

(±1.7)
11.2
(±1.6)

4.7
(±

−45%
(±10)

−57%a

(±8)
Tb.Th (μm) 44

(±2)
32⁎

(±4)
46
(±4)

33
(±

−26.4%
(±9.1)

−28.7%
(±6.2)

Tb.N (mm−1) 3.66
(±0.30)

3.37⁎

(±0.22)
3.69
(±0.24)

3.3
(±

−7.7%
(±5.9)

−7.8%
(±6.0)

Tb.Sp (μm) 274
(±25)

294⁎

(±21)
268
(±19)

29
(±

7.8%
(±7.3)

8.7%
(±7.3)

CD (mm3) 197
(±48)

120⁎

(±39)
186
(±38)

98
(±

−39.0%
(±12.9)

−47.5%
(±15.5)

SMI (−) 1.4
(±0.2)

1.8⁎

(±0.2)
1.5
(±0.2)

2.3
(±

30.0%
(±10.4)

51.5%a

(±22.7)
vBMD (mg/cm3) 113

(±25)
48⁎

(±24)
105
(±18)

22
(±

−58%
(±16)

−80%
(±25)

ρtrab 971
(±25)

915⁎

(±28)
906
(±22)

85
(±

−5.7%
(±3.7)

−5.9%
(±3.2)

Mean differences are listed in percentage between the BTX-injected and contralateral limbs.
Mean ± SD.
⁎ p b 0.05 vs. contralateral limb.
a Difference p b 0.05 vs. BALB/c.
b Difference p b 0.05 vs. B6.
c Difference p b 0.05 vs. DBA.
the magnitude of the difference in marrow area did not differ between
the mouse strains. Finally, the T.Ar was significantly greater in the
BTX-injected limb in the B6 mice, while it proved significantly lower
in the BTX-injected limb in DBA mice. This difference in T.Ar between
the injected and the contralateral limb was significantly greater in
DBA (−6.0%) than in BALB/c (+0.5%), B6 (+1.7%), and C3H (+3.1%)
mice.

3.7. Dynamic histomorphometry of cortical bone

At the endocortical surface of the femoral mid-diaphyseal Alz.S/BS
was lower in the BTX-injected limb in B6, DBA, and C3Hmice, whereas
Alz.S/BS was not significantly affected by BTX in BALB/c mice (Table 3).

Endocortical MS/BS was significantly lower in the BTX-injected
limbs in BALB/c, B6, and C3H mice, whereas no difference was found
in the DBA strain. BTX did not influence MAR and BFR/BS in any of the
mouse strains.

No effect of BTX at the periosteal surface was found in any of the
mouse strains.

3.8. Dynamic histomorphometry of trabecular bone

At the proximal tibia, MS/BS, MAR, BFR/BS, Oc.S/BS, and AV/MV did
not differ significantly between the BTX-injected and the contralateral
limb in any of the mouse strains (Table 3).
DBA C3H

. Contralat Inj. Contralat Inj.

⁎

0.8)
12.5
(±4.0)

4.6⁎

(±1.2)
19.4
(±2.5)

12.8⁎

(±2.9)
−60%a

(±18)
−34%b,c

(±13)
⁎

3)
44
(±4)

30⁎

(±2)
61
(±3)

53⁎

(±6)
−29.9%
(±8.7)

−13.5%a,b,c

(±10.7)
9⁎

0.16)
3.67
(±0.43)

3.25⁎

(±0.31)
3.86
(±0.41)

3.46
(±0.40)

−10.7%
(±9.7)

−9.6%
(±14.4)

1⁎

15)
284
(±30)

310⁎

(±32)
266
(±34)

292
(±36)

10.1%
(±12.2)

11.2%
(±16.0)

⁎

39)
309
(±121)

151⁎

(±68)
235
(±45)

165⁎

(±59)
−43.1%
(±37.3)

−26.9%
(±30.4)

⁎

0.2)
1.2
(±0.4)

2.3⁎

(±0.3)
1.1
(±0.2)

1.7⁎

(±0.4)
115.5%a

(±120.4)
56.3%a

(±52.0)
⁎

25)
120
(±43)

26⁎

(±18)
208
(±39)

129⁎

(±35)
−75%
(±21)

−36%a,b,c

(±19)
2⁎

20)
917
(±25)

856⁎

(±22)
1019
(±11)

991⁎

(±27)
−6.6%
(±4.5)

−2.7%
(±2.5)



Fig. 2. Proximal tibial metaphysis BV/TV, Tb.Th, and SMI. The white columns are the con-
tralateral limbs and the hatched columns are the BTX-injected limbs.Meandifferences be-
tween limbs are listed in percentages below their respective mice strains. Mean ± SD.
*: p b 0.05 vs. contralateral limb, a: difference p b 0.05 vs. BALB/c, b: difference p b 0.05
vs. B6, c: difference p b 0.05 vs. DBA.

Fig. 3. Proximal tibial metaphyses from the BTX group presented as 3D images. Contralat-
eral (left) and BTX-injected (right) limbs are accompanied by their respective BV/TV
values.
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3.9. Assessment of the systemic effect of the BTX-injection

In order to address the possibility of BTX having a systemic effect, we
compared the contralateral (non-injected) hind limb of the BTX group
with the non-injected limb of the control group. BTX did not affect the
femoral length or bone strength (both femoral neck and femoral mid-
diaphysis were tested) in any mouse strain. Likewise, no differences in
rectus femoris muscle mass were found apart from in the C3H mice
(−16%). The aBMD was significantly lower in DBA (−6%) and C3H
(−5%) mice, but did not differ in the BALB/c and B6 mice. Importantly,
none of the microstructural indices differed between the contralateral
(non-injected) hind limb in the BTX group and the saline-injected
limb in the control group.

4. Discussion

The present study established that the response to BTX-induced
osteopenia is mouse strain specific. In particular, we found, that even
though the loss of muscle mass in C3H mice was comparable to that of
B6, DBA, and BALB/c mice, the C3H mice were surprisingly less suscep-
tible to BTX-induced losses of BV/TV, Tb.Th, and bone strength.

Image of Fig. 2
Image of Fig. 3


Fig. 4. Cross sections of themid-diaphyseal femur from the BTX group. Contralateral (left)
and BTX-injected (right) limbs are accompanied by their respective B.Ar values.
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In all investigated mouse strains, BTX resulted in loss of BV/TV and
Tb.Th accompanied by a decline in femoral bone strength (except for
C3H mice). These findings are consistent with previous studies investi-
gating BTX-induced immobilization in both mice and rats, and validate
the reproducibility of the BTX-induced immobilization model in mice
(Warner et al., 2006a; Warden et al., 2013; Brüel et al., 2013; Ellman
et al., 2014; Manske et al., 2010a; Aliprantis et al., 2012; Grimston
et al., 2007; Manske et al., 2010b, 2012; Poliachik et al., 2010).

The apparent greater resilience of C3H mice to BTX-induced de-
creases in BV/TV, Tb.Th, and bone strengthwas also encountered in pre-
vious studies of tail suspended and sciatic neurectomized mice
(Kodama et al., 1999; Amblard et al., 2003; Judex et al., 2002; Judex
et al., 2004). This relatively greater resistance of C3H mice to
immobilization-induced bone loss seems more pronounced in cortical
bone than in trabecular bone. In contrast to the othermouse strains, nei-
ther aBMD nor femoral mid-diaphyseal bone strength was influenced
by BTX in C3H mice. Although immobilization increased the marrow
area and decreased endosteal Alz.S/BS in C3H mice, indicating an in-
creased resorption at the endocortical surface, the femoral mid-
diaphyseal bone area and tissue area were also increased in these
mice indicating a concomitant periosteal drift. This drift may explain
the preservation of cortical mechanical strength in immobilized C3H
mice.

Interestingly, previous studies of immobilized B6 andC3Hmice indi-
cate a surge in osteoclastogenesis and mobilization of osteoclasts as a
sizeable contributor to bone loss following unloading (Sakai et al.,
2005; Rantakokko et al., 1999; Aliprantis et al., 2012; Poliachik et al.,
2010; Amblard et al., 2003; Sakata et al., 1999). Bone marrow from B6
mice has been shown to consistently produce and retainmore osteoclasts
than bonemarrow from C3Hmice (Linkhart et al., 1999). The less potent
osteoclastogenesis and the lower number of osteoclasts in C3Hmicemay
explain why this mouse strain appears to be less affected by unloading
than other strains ofmicewith greater ‘osteoclastic responsiveness’, nota-
bly the B6 strain. Consistent with this, we found that Oc.S/BS was 25%
greater (borderline significant) in the BTX-injected than in the contralat-
eral limb in B6mice, while this differencewas only 8% (not significant) in
C3H mice. Paradoxically, however, we also found that the contralateral
limb of C3H mice had a significantly greater absolute Oc.S/BS compared
with the contralateral limb of the B6 strain. In light of these contrasting
data our study may, therefore, neither corroborate nor reject the theory
that the C3H strain is less affected by immobilization due to inherently
less efficient osteoclasts and osteoclastogenesis.

We found no effect of BTX on MS/BS in the trabecular compartment
in anymouse strain. This should not be taken as a sign that therewas no
cellular response from the osteoblasts to the immobilization occurring
at all. Instead, the powerful cellular response to unloading is transient
and most intense for both osteoblasts and osteoclasts in the early
phase of immobilization after which the response to unloading fades
out (Sakai et al., 2005; Poliachik et al., 2010; Amblard et al., 2003).

Trabecular bone is characterized by a higher turnover than cortical
bone and this may explain why we are still able to find significant
BTX-induced differences in MS/BS at the femoral mid-diaphysis at the
end of the study.

Mouse strain specific bone loss has previously been shown in the
OVX model of bone loss (Bouxsein et al., 2005). However, the mecha-
nisms, leading to bone loss in the OVX model may very likely differ
from those of the immobilization models. Bouxsein et al. found that
OVX induced significant losses of BV/TV and Tb.Th in C3H and BALB/c
mice,whereas, interestingly, theB6 and theDBA strains did not undergo
any significant deterioration in trabecular BV/TV and Tb.Th at the prox-
imal tibial metaphysis when compared with sham groups (Bouxsein
et al., 2005). Thus, it would appear as if OVX-induced bone loss behave
in a different way than BTX-induced bone loss. Here, we found that the
C3Hmicewere significantly less affected by immobilization than B6 and
DBA mice.

Furthermore, Bouxsein et al. hypothesized, that micewith an initial-
ly low BV/TV cannot afford to lose more bone, and suggested the exis-
tence of a possibly new mechano-stat driven feedback system that
allows them to maintain trabecular bone volume (Bouxsein et al.,
2005). In the present study the mouse strain with the lowest initial
BV/TV (B6) was also themouse strain that wasmost affected by immo-
bilization, whereas the mouse strain with the highest initial BV/TV
(C3H) was actually themouse strain that was least affected by immobi-
lization. Consequently, our data do not support the notion of a
mechano-stat driven feedback system in immobilization models
where mice with an initial low BV/TV are protected from further bone
loss, but this does not rule out its possible existence in the OVX model.

Skeletal unloading may also be achieved by use of tail suspension.
The tail suspension model was initially developed to mimic micrograv-
ity conditions during space flight (Morey, 1979). In contrast to the BTX-
model, only the ground reaction forces are removed in tail suspended
animals,while forces originating frommuscle contractions are still pres-
ent. Several studies of tail suspended mice – comparable to the present
study in terms of age and duration of disuse – indicate, that tail
suspended BALB/c mice lose BV/TV and Tb.Th in measures roughly
equal to that of BTX induced osteopenia (Judex et al., 2002; Judex
et al., 2004). Interestingly, this does not seem to be the case for C3H
and B6 mice (Warner et al., 2006a; Amblard et al., 2003; Judex et al.,
2002; Judex et al., 2004). For most parameters the C3Hmicewere unaf-
fected in the BTXmodel, except for BV/TVwhere we found a significant
decrease. However, three comparable studies of tail suspended C3H
mice found no differences in BV/TV between control and tail suspended
groups (Amblard et al., 2003; Judex et al., 2002; Judex et al., 2004). Thus,
BTX-immobilization appears to have a stronger detrimental effect on
bone in C3H mice than tail suspension does. In B6 mice, significant

Image of Fig. 4


Table 3
Dynamic histomorphometry of the mid-diaphyseal femur (cortical) and the proximal tibial metaphysis (trabecular).

BALB/c B6 DBA C3H

Contralat Inj. Contralat Inj. Contralat Inj. Contralat Inj.

Femoral mid-diaphysis
e.Alz/BS (−) 0.18

(±0.16)
0.16
(±0.16)

0.50
(±0.13)

0.28⁎

(±0.12)
0.44
(±0.15)

0.20⁎

(±0.12)
0.41
(±0.13)

0.19⁎

(±0.10)
−54.6%
(±52.9)

−40.1%
(±21.9)

−57.8%
(±24.9)

−46.8%
(±38.1)

e.MS/BS (−) 0.12
(±0.08)

0.03⁎

(±0.04)
0.30
(±0.19)

0.16⁎

(±0.15)
0.14
(±0.07)

0.13
(±0.12)

0.23
(±0.09)

0.14⁎

(±0.07)
−64.1%
(±65.7)

−43.1%
(±58.5)

−3.9%
(±124.1)

−34.7%
(±36.7)

p.Alz/BS (−) 0.75
(±0.22)

0.68
(±0.27)

0.59
(±0.14)

0.57
(±0.08)

0.70
(±0.16)

0.72
(±0.19)

0.79
(±0.14)

0.92
(±0.07)

−2.1%
(±50.4)

1.1%
(±29.7)

0.0%
(±21.4)

15.7%
(±27.6)

p.MS/BS (−) 0.18
(±0.07)

0.20
(±0.05)

0.18
(±0.12)

0.21
(±0.07)

0.28
(±0.11)

0.18
(±0.09)

0.23
(±0.15)

0.36
(±0.13)

28.8%
(±76.9)

36.8%
(±78.4)

−34.2%
(±28.3)

52.8%
(±64.8)

Tibial proximal metaphysis
MS/BS (−) 0.35

(±0.04)
0.38
(±0.05)

0.38
(±0.14)

0.37
(±0.13)

0.35
(±0.09)

0.29
(±0.10)

0.38
(±0.09)

0.36
(±0.07)

9.2%
(±25.9)

−0.3%
(±20.4)

−17.2%
(±25.6)

−1.6%
(±18.3)

Oc.S/BS (−) 25.95
(±4.88)

26.55
(±6.04)

22.67
(±3.89)

27.68
(±4.84)

24.34
(±3.58)

26.19
(±4.31)

29.79
(±3.70)

32.08
(±5.41)

0.8%
(±27.0)

25.0%
(±26.4)

9.3%
(±27.5)

7.9%
(±18.1)

AV/MV (%) 0.26
(±0.49)

0.23
(±0.21)

1.34
(±0.85)

1.88
(±1.35)

1.91
(±1.08)

1.63
(±0.98)

1.93
(±1.76)

1.88
(±0.87)

153.4%
(±254.5)

87.9%
(±234.9)

109.1%
(±258.1)

17.7%
(±70.8)

Mean differences are listed in percentage between the BTX-injected and contralateral limbs.
Mean ± SD.
⁎ p b 0.05 vs. contralateral limb.
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losses of BV/TV and Tb.Th occur in both models of immobilization, but
the degree of bone deterioration with BTX-immobilization in the pres-
ent study is between two and three times greater than the losses
found with tail suspension (Warner et al., 2006a; Amblard et al., 2003;
Judex et al., 2002; Judex et al., 2004). This is corroborated by thefindings
of Ellman et al. who also foundBTX treatment of B6mice induced two to
three times greater bone losses than experienced with tail suspension
(BV/TV: −66% with BTX compared to −28% with tail suspension)
(Ellman et al., 2014). This indicates that BTX results in greater bone
losses than tail suspension.

The systemic effect of BTX seems ever present among the studies ap-
plying BTX to achieve immobilization and is often mentioned (Warner
et al., 2006a; Ellman et al., 2014; Manske et al., 2010a; Grimston et al.,
2007;Manske et al., 2010b; Poliachik et al., 2010); but the degree of dis-
crepancy between studies on this matter is perplexing. Most studies
find only minor systemic effects (Manske et al., 2010a, 2010b;
Poliachik et al., 2010), whereas a study by Ellmanet al. has reported pro-
found impact on the contralateral limb (non-injected) compared with
control animals (Simpson, 1981).

In the present study, we used a very high spatial resolution (3.5 μm)
in our μCT scans and found no evidence of a systemic effect on micro-
structural parameters such as BV/TV and Tb.Th. Likewise, we found no
evidence of a systemic effect of BTX in our measurements of bone
strength. However, we did find that the aBMD was 5–6% lower in the
non-injected limb comparedwith the controls in C3H and DBAmice in-
dicating a slight systemic effect of BTX in these mouse strains. A reason
for the discrepancy between the large systemic effects of BTX found by
Ellman et al. compared with the modest systemic effects found in the
present study could be the age of the mice studied. Ellman et al. used
11-week-old B6mice andmice seemingly experience the least systemic
effect of BTX when they are older than 15 weeks (Manske et al., 2010a,
2010b; Poliachik et al., 2010), which may explain the discrepancy.

In conclusion, the present study found that immobilization
osteopenia induced by BTX causes severe loss of cortical and trabecular
bone and bone strength in B6 andDBAmice. Amedium loss of bonemi-
crostructure and strength was observed in the BALB/c mice, while the
C3H strainwasmarkedly less affected in themicrostructural parameters
and the femoral neck, and moreover the mid-diaphyseal bone strength
was completely unaffected. Importantly, only minimal systemic effects
of BTX were found in the present study.
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