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Abstract

It can be challenging to detect tumor margins during surgery for complete resection. The purpose of this work is
to develop a novel learning method that learns the difference between the tumor and benign tissue adaptively for
cancer detection on hyperspectral images in an animal model. Specifically, an auto-encoder network is trained
based on the wavelength bands on hyperspectral images to extract the deep information to create a pixel-wise
prediction of cancerous and benign pixel. According to the output hypothesis of each pixel, the misclassified pixels
would be reclassified in the right prediction direction based on their adaptive weights. The auto-encoder network is
again trained based on these updated pixels. The learner can adaptively improve the ability to identify the cancer
and benign tissue by focusing on the misclassified pixels, and thus can improve the detection performance. The
adaptive deep learning method highlighting the tumor region proved to be accurate in detecting the tumor
boundary on hyperspectral images and achieved a sensitivity of 92.32% and a specificity of 91.31% in our animal
experiments. This adaptive learning method on hyperspectral imaging has the potential to provide a noninvasive
tool for tumor detection, especially, for the tumor whose margin is indistinct and irregular.
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Introduction
Orophary cancer is a common cancer worldwide and in
recent years its incidence increased in a fast pace in both
America and Europe [1]. More than half a million pa-
tients receive the diagnosis of squamous-cell carcinoma
of the head and neck worldwide each year [2]. Survival
rate of patients relates directly to the size of the primary
tumor at first diagnosis, hence, early detection can be
helpful in curing the disease completely. Squamous-cell
carcinoma of the head and neck is a complex disease,
which can be biopsied for histopathological assessment
to make a definitive diagnosis traditionally. That is not
only time consuming and invasive, but also subjective
and inconsistent [3].
Hyperspectral imaging (HSI) is a technology that can

acquire a series of images in many adjacent narrow

spectral bands and reconstruct the reflectance spectrum
for every pixel of the image [4]. By measuring the reflec-
tion and absorption of the lights at different wave-
lengths, HSI has the ability to simultaneously provide
information about different tissue constituents and their
spatial distribution from the spectral signature of each
pixel in the hyperspectral image [5]. Hence, HSI tech-
nique can be applied in the noninvasive detection and
diagnosis of cancer, such as breast cancer, gastric cancer,
tongue cancer, and so on [6].
Hyperspectral images, known as hypercubes, contain

rich information on a wide range of spectra with a high
spectral resolution [7], hence, dimensionality reduction,
image processing, and machine learning techniques are
applied to extract the useful information from the vast
amounts of HSI data, and have made many of the ad-
vancements in cancer identification: (1) Dimensionality
reduction techniques. The principal component analysis
[8, 9], tensor decompositions [10], and T-distributed sto-
chastic neighbor approach [11, 12], were to reduce the
dimensionality of features in hyperspectral images for
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compact expression; (2) Image processing techniques.
Fourier coefficients [13], normalized difference nuclear
index [14], sparse representation [15], box-plot and the
watershed method [16], superpixel method [9], markov
random fields [17, 18], and morphological method [19],
were used for hyperspectral image processing and quan-
tification analysis; (3) Machine learning techniques.
Many of the advancements have been done in cancer
identification using traditional machine learning clas-
sification models, such as linear discriminant analysis
[20–26], quadratic discriminant analysis [21], support
vector machine [12, 17, 20–22, 27–37], decision trees
[22], k-nearest neighbors algorithm [22, 38], k-means
[12, 19, 39], naïve bayes [22], random forests [21, 22, 34, 37],
maximum likelihood [40], minimum spanning forest [31],
gaussian mixture models [41], and semantic texton forest
[11], and artificial neural network [33–35, 37], and so on.
However, these technologies require domain-specific

knowledge to extract discriminant data to convert suit-
able features. In contrast to these conventional machine
learning techniques, deep learning models can learn rep-
resentations of data with multiple levels of abstraction,
thereby can discover intricate structures in high-
dimensional data with very little engineering by hand
[42]. Convolutional neural network (CNN) is a type of
feed-forward artificial neural network, which has many
successes in image recognition, natural language under-
standing, and medical image analysis [43]. It also can
improve the detection and classification performance on
HSI [44]. An HSI-based optical biopsy method was
proposed using CNN, which could provide multi-
category diagnostic information for normal head-and-
neck tissue, squamous-cell carcinoma, and thyroid car-
cinomas [45–47]. A CNN-based modeling framework
was introduced for the analysis of hyperspectral images
for the detection of head and neck cancer in an animal
model [48]. A modified inception-v4 CNN architecture
was used to detect the squamous cell carcinoma [49]. In
addition, several CNN-based architectures with pixel-
wise prediction have shown their efficiency in the
segmentation or detection task, such as fully connected
networks (FCN) [50], SegNet [51], and U-Net [52]. The
U-Net deep neural network was used for the tumor seg-
mentation [53] and the breast tumor detection [54] in
hyperspectral images.
Since hyperspectral imagery has the system noise and

image artifacts arising from uneven surface illumination,
the tumor margin is irregular and unclear. So it is diffi-
cult to distinguish a tumor from surrounding normal tis-
sue. In this study, we proposed an automated cancer
detection algorithm for highlighting the tumor by adap-
tive auto-encoder network learning. Auto-encoder is an
unsupervised deep neural network that can learn the in-
herent features and extract the suitable representation

from complex data automatically. We involved the auto-
encoder network to learn and recognize the depth fea-
tures of pixels in hyperspectral imagery for the initial
cancer detection. Each pixel is assigned a weight accord-
ing to its classification result. The proposed adaptive
auto-encoder learning method is performed on these
weighted pixels and is trained to correct the misclassi-
fied pixels for the improvement of the detection per-
formance. In this study, we demonstrate the efficiency
and effectiveness of the auto-encoder and adaptive deep
learning in HSI for head and neck cancer detection in an
animal model. The method and experiments are de-
scribed in the following sections.

Methods
HSI system
Hyperspectral images were obtained by a wavelength-
scanning CRI Maestro in vivo imaging system. This in-
strument mainly consists of a flexible fiber-optic lighting
system, a solid-state liquid crystal filter, a spectrally opti-
mized lens, and a 16-bit high-resolution charge-coupled
device. For image acquisition, the wavelength setting can
be defined within the range of 450 to 950 nm with 2-nm
increments. Further details can be referred in our previ-
ous paper [10, 55].

The proposed adaptive deep learning method
The proposed adaptive deep learning method for cancer
detection on HSI contains four parts: pre-processing,
deep feature learning, adaptive weight learning, and
post-processing. Figure 1 shows the overview of the
method. After the input hypercube is preprocessed, deep
feature is extracted and learned for the initial cancer de-
tection. According to the output hypothesis of pixels,
the adaptive weights are calculated and the updated
hypercube is constructed. The discriminant deep feature
is re-extracted and re-learned on the new hypercube.
Hence, the re-trained model is adaptive and discrimina-
tive. Then, the cancerous tissue in a test hypercube can
be identified by the adaptive model, and the detected
cancerous tissue is refined by a post-processing step.

Pre-processing
The acquired hyperspectral images were saved in a raw
format, and correction was made with a white and a
dark reference to remove the influence of the dark
current and obtain a relative reflectance image. The cor-
rected image, I, is calculated by

I ¼ Iraw−Idark
Iwhite−Idark

ð1Þ

where Iraw is the raw image, Iwhite is the white reference
image (100% reflectance) obtained by placing a standard
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white reference board in the field of view, and Idark is
the dark image (0% reflectance) was acquired by keeping
the camera shutter closed. These reference images were
used to calibrate hyperspectral raw data before image
analysis.

Deep feature learning
An auto-encoder is a type of artificial neural network
used to learn efficient data coding in an unsupervised
manner [56]. It has one visible layer of k inputs, one hid-
den layer of d units, one reconstruction layer of k units,
and an activation function. We illustrate the architec-
tures of an auto-encoder in Fig. 2.
An auto-encoder consists of two parts, the encoder

and the decoder. The encoder is to map the input X ∈
Rk to the hidden layer and produce the latent activity Y
∈ Rd. The decoder is to map Y to an output Z ∈ Rk,
having the same number of nodes as the input layer, and

with the purpose of reconstructing its own inputs X. We
can get the Y and Z by

Y ¼ f w1X þ b1ð Þ
Z ¼ f w2Y þ b2ð Þ ð2Þ

where w1 and w2 are the weight of input-to-hidden and
the hidden-to-output, and b1 and b2 are their bias, f(p) is
the activation function. In our method, it is a sigmoid
function like:

f pð Þ ¼ 1
1þ exp −pð Þ ð3Þ

Based on the structure of the auto-encoder, we use the
spectral features of each pixel as the input, and train the
network by iteratively updating the weights and biases to
minimize the loss function of reconstruction error. To
improve the robustness of the auto-encoder, in addition

Fig. 1 Overview of the proposed adaptive deep learning method for cancer detection with hyperspectral imaging

Fig. 2 Illustration of an auto-encoder
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to the mean squared error between the input features
and the reconstructed features, the L2 regularization and
the Kullback-Leibler divergence based sparsity
regularization is incorporated into the loss function. The
learned feature that lies in the hidden layer is a learned
deeper feature. The decoder part is been removed and
the softmax layer is added into the network for the clas-
sification of cancer and normal tissue. The framework is
shown in the Fig. 3.
The auto-encoder network can identify the cancer

pixels and healthy pixels. Then we can obtain the initial
detection result of cancer and the output hypothesis of
pixels.

Adaptive weight learning
Because of the characteristics of medical images, the
tumor margin is irregular and indistinct. The values of
pixels in tumor are similar with those of pixels in
healthy tissue. So, it is difficult to distinguish the tumor
from its surrounding normal tissue for any learning
method. Hence, we highlight the tumor by adjusting its
weight adaptively in two aspects according to the mis-
classified pixels. The misclassified pixels can be divided
into two types, the health pixels which are misclassified
into cancer (false positives) and the cancer pixels which
are misclassified into health (false negatives). The adap-
tive weight is assigned to each pixel according to its
output hypothesis from the initial model, and it can be
calculated by

weight Pij
� � ¼

weight se Pij
� � ¼ 1; Pri Pij

� � ¼ true Pij
� �

se maskð Þ; Pri Pij
� � ¼ 0; true Pij

� � ¼ 1

�

weight sp Pij
� � ¼ 1; Pri Pij

� � ¼ true Pij
� �

sp maskð Þ; Pri Pij
� � ¼ 1; true Pij

� � ¼ 0

�

8
>><

>>:

ð4Þ

where mask is the initial cancer detection, Pij is the i-th
and j-th pixel in the mask and weight (Pij) is the weight
of Pij. The weight_se(Pij) means to focus on the weights
of the false negative pixels and the weight_sp(Pij) means
to focus on the weights of the false positive pixels. The
se (mask) is the sensitivity of the initial cancer detection
and the sp (mask) is the specificity of the initial cancer
detection. The Pri (Pij) is the prediction of the initial
model for the pixel Pij, true (Pij) is the true label of the

pixel Pij, 0 means the healthy tissue and 1 means the
cancer tissue.
Eq. (4) is the definition of weight. We can see that the

weight is adaptive because it is related to the local out-
put hypothesis of each pixel and global detection per-
formance. Then the adaptive weights can be used to
inform the image, for instance, the misclassified pixels
need to change their values in order to become distin-
guishable from its surrounding tissue. With the help of
the weights, the original image can be updated as:

hypercube update Pij
� � ¼ hypercube Pij

� �

� weight Pij
� � ð5Þ

where hypercube_update is the updated hypercube and
hypercube is the original hypercube, hypercube_update(-
Pij) means the value of Pij in the updated hypercube and
it is the product of the value of Pij in the original one
and the weight of Pij. The main aim of updating the
original hypercube is to highlight the tumor most con-
ducive to learning adaptively. Based on the updated
hypercube, the deep features can be retrained, and an
adaptive auto-encoder network model can be obtained.
Eqs. (4) and (5) show that the initial detected tumor is

refined in two ways. If the detected tumor lost some
relevant regions, then weight_se() could assign the
weights to those false negative pixels and the updated
image could focus on those pixels. So the new auto-
encoder learner on the updated images tends to expand
the relevant pixels to improve the sensitivity of tumor
detection. If the detected tumor contained some irrele-
vant regions, then weight_sp() could assign the weights
to those false positive pixels, and the updated image
could highlight those pixels. So the new learner tends to
eliminate the irrelevant pixels to improve the specificity
of tumor detection. Thus, the pixels classified correctly
keep their correct prediction while the pixels misclassi-
fied change their values adaptively. Therefore, the adap-
tive learner heightens the ability to identify the tumor
and healthy tissue.
In this paper, the refined type improving the sensitivity

or specificity will be determined by experiments accord-
ing to the detection performance of training images.

Fig. 3 Illustration of an auto-encoder learning for cancer classification
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Post-processing
Since our method is based on the classification of each
pixel, the detected tumor may contain some noise and
holes. The flood-fill operation is used to fill holes in the
segmented binary image and the biggest connected
component is chosen as our detected cancer tissue.

Results
HSI experiments
All methods were carried out in accordance with the ap-
proved Institutional Animal Care and Use Committee
protocol (YER-2003103-042918BN) and the relevant
guidelines and regulations of Emory University. We ac-
quired the hyperspectral reflectance images from 12
tumor-bearing mice approximately 2 weeks post-tumor
cell injection. The reflectance images contained 251
spectral bands and the image size on each spectral band
was 390 × 435. Therefore, the data cube collected was a
three-dimensional array of the size 390 × 435 × 251. In
this study, tumor cells had green fluorescence protein
(GFP) signals and thus GFP images were also acquired
as the reference standard to evaluate the proposed
tumor detection algorithm.
We conducted leave-one-out cross-validation experi-

ments for the tumor detection in hyperspectral images.
We take each hyperspectral image as the testing sample
in turn, and the 11 remaining samples as the training
samples.

Parameter tuning
The performance of auto-encoder could be affected by
its reduced dimensionality. We test the dimension of

compressed features from 20 to 60, step 5 on the train-
ing set. For each mouse, we train and test on its training
set, and calculate the detection accuracy of each training
samples, and obtain the average detection accuracy. The
results of 12 mice named from #1 to #12 are shown in
Fig. 4. The optimal dimensions of compressed feature
are 55, 50, 40, 45, 60, 45, 55, 30, 60, 55, 60, and 60 corre-
sponding to the highest accuracy for the 12 mice,
respectively.
Next, we recorded the accuracy obtained by the adaptive

sensitivity-weighted learning and specificity-weighted
learning on the training set. The initial detected tumor of
each mouse in the training set is refined by adjusting its
sensitivity-weight and specificity-weight. The average ac-
curacy is shown in Fig. 5. In Fig. 5, we can see that the
adaptive sensitivity-weighted learning on the training sets
for the mouse #1, #5, #6, #7, #10, and #11 has the higher
accuracy than the adaptive specificity-weighted learning,
while the adaptive specificity-weighted learning performs
better on the other training sets. That shows the refine
type we choose depends on the training data. Hence, for
the mouse #1, #5, #6, #7, #10, and #11, we will choose the
sensitivity-weighted learning for the improvement of can-
cer detection, and the mouse #2, #3, #4, #8, #9, and #12
will choose the specificity-weighted learning for the
improvement.

Advantage of auto-encoder
To obtain the effective information, the auto-encoder is
adopted to learn to compress the 251 wavelengths from
450 to 950 with 2 nm increments into a short feature by
extracting the useful characters and ignoring noise. We

Fig. 4 The accuracy in the training process with different dimensions of compressed feature for the 12 mice
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randomly choose one mouse and use the auto-encoder
to obtain the compressed features. Its average spectral
values for the cancerous tissue and the healthy tissue of
251 wavelengths and 60 compassed features are shown
in Fig. 6. The results in the Fig. 6 show that the

difference of the spectral values between the cancerous
tissue and the healthy tissue in the compassed features is
bigger than that in the original wavelengths. The result
demonstrates that auto-encoder can extract the deep
features which descripting the discriminate characters

Fig. 5 The accuracy in the training process with the adaptive sensitivity-weighted and adaptive specificity-weighted improvement for the
12 mice

Fig. 6 Average spectral values of pixels contained within the cancer and normal regions for (a) the original wavelengths and (b) compressed
features gotten by auto-encoder
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for better distinguishing the cancer tissue from the
health tissue.
In addition, we compare the auto-encoder with the

CNN-based semantic segmentation neural network, such
as FCN [50], SegNet [51], and U-Net [52]. We train the
FCN, SegNet, U-Net, and auto-encoder for the initial
cancer detection on the HSI, and show the compared
results in Fig. 7. In Fig. 7, we can see that the auto-
encoder can perform best, so we choose the auto-
encoder as our learner, and further improve its detection
ability by using the adaptive learning.

Advantage of adaptive weight learning
To see the advantage of adaptive weight in the detection
of cancer tissue, we compare the detection performance
of the original learning method and the adaptive weight
learning method. The compared results are shown in
Fig. 8. Figure 8a is the original gray image by averaging
the intensities of 251 spectral bands. It is difficult to
identify the part edge of the cancer tissue. The model in-
volved the auto-encoder and neural network learns on
the image with 251 spectral bands, and predicts and
shows the probability of cancer in Fig. 8b. In Fig. 8b, we
can see that most pixels have been classified correctly,
that proves the effectiveness of auto-encoder again.
However, there are still some misclassified pixels. Ac-
cording to the classification results, the weight of each

pixel has been calculated and the weight image is shown
in Fig. 8c. In the weight image, we can see that a weight
is assigned to each pixel. Based on the weight image, we
obtain the new image as shown as Fig. 8d. The new
image is tweaked in favor of those misclassified pixels.
A new model trained on the new image can achieve
better classification performance than that on the ori-
ginal image. The updated prediction result is shown
in Fig. 8e. Compared to the gold standard of cancer
detection (Fig. 8f), the updated cancer detection per-
formance involved the adaptive weights is better than
the original performance, that demonstrates that the
adaptive weighted learning is beneficial to improve
the accuracy of cancer detection.

Qualitative results
We show the qualitative results of cancer detection on
five mice in Fig. 9, where the RGB composite images
generated from the tumor hypercube are shown in the
first row, the initial cancer detection results by the auto-
encoder learning are shown in the second row (the white
parts mean the cancer tissue while the black parts mean
the healthy tissue), the improved detection results by
adaptive weighted auto-encoder learning are shown in
the third row, the final results refined by post-processing
are shown in the fourth row, and the gold standards are
shown in the fifth row.

Fig. 7 The accuracy of cancer detection for each mouse and their average one for the method FCN, SegNet, U-net, and auto-encoder used in
this paper
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In Fig. 9, we can see that the initial cancer detection
results are sensitive to the blood vessel and uneven sur-
face. Since the improved cancer detection method fo-
cuses the misclassified pixels with the help of adaptive
weight, it is robust to blood vessel, uneven surface and
noise, like the detection results of the first and third
mouse. Even it can achieve good performance when the
tumor has the irregular or unclear margin, like the de-
tection results of the second and fourth mouse. The final
detection results refined by post-processing are satisfac-
tory. However, we also can see the performance as
shown in the last column is not satisfied. That because
the difference between the tumor and normal tissue is
too obscure, the intra-similarity between the tumor in
the center and the tumor at the edge is much bigger

than the inter-similarity between the tumor at the edge
and the sounding normal tissue. But we can see that our
adaptive auto-encoder method still works better than
the auto-encoder method even though when an edge
part of the tumor disappears. Hence, our adaptive weight
learning is effective.

Quantitative results
Table 1 provides the quantitative evaluation results of
our proposed method for 12 mice. The average sensitiv-
ity, specificity, and accuracy of 12 mice are 92.32%,
91.31%, and 91.33%, respectively. These results confirm
that our method is effective. Based on the above results,
we know that the bad performances of the last two mice
shown in Table 1 were caused by the tissue artifacts and

Fig. 8 The advantage of adaptive weight learning on the cancer detection. a: the original gray image, b: the probability image predicted for the
original image, c: the adaptive weighted image, d: the updated image based on the adaptive weight, e: the updated probability image predicted
for the updated image, f: the gold standard of the cancer tissue
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the invasion of surrounding tissue. Although our method
received unsatisfied results when part of tumors dis-
appear, it could obtain above 80% accuracy. If we
remove the two mice, the average sensitivity, specificity,
and accuracy, will be 94.72%, 92.26%, and 92.97%,
respectively.

Discussion
In this study, we proposed automated detection method
for head and neck cancer using the adaptive deep learning
on hyperspectral imagery in an animal model. Auto-
encoder network model is involved to extract the deep
features from a hyperspectral imagery with size of 390 ×
435 × 251 and distinguish the cancerous tissue from its
surrounding normal tissue. Because of the noise and un-
even surface and so on, the detected cancer region is not
satisfactory. To improve the initial performance and ob-
tain a complete tumor, the adaptive auto-encoder network
model is proposed, which focus on the misclassified pixels
and enhance to learn for the misclassified pixels. The
method is shown to classify the tumor region with high
sensitivity, specificity, and accuracy.

Fig. 9 Qualitative evaluation of the cancer detection from five mice. Row 1st: RGB composite images generated from the hypercube, 2nd: The
initial detection results, 3rd: The improved results obtained by the adaptive weighted learning, 4th: The final results refined by post-processing,
and 5th: The gold standard

Table 1 The performance of cancer detection for 12 mice

Mouse ID Sensitivity (%) Specificity (%) Accuracy (%)

1 99.50 94.49 95.52

2 90.67 92.48 91.78

3 93.85 96.48 95.98

4 99.77 90.89 93.13

5 93.16 98.08 96.79

6 98.91 95.54 96.27

7 96.13 94.20 94.50

8 95.49 90.03 92.28

9 91.67 86.16 87.80

10 88.10 84.22 85.63

11 60.84 99.63 85.79

12 99.78 73.53 80.52

Average 92.32 91.31 91.33
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Since reflectance hyperspectral images contain 251 spec-
tral bands from 450 to 950 nm with 2 nm increments, and
each hyperspectral image contains over millions of reflect-
ance spectral signatures, it is difficult to extract discrimin-
ant features from the huge data by hand. Deep learning
methods can learn features by building high-level features
from low-level ones and automatically discover the fea-
tures needed for cancer detection. The auto-encoder is an
unsupervised deep neural network that tries to denoise
the inputs automatically by finding the latent representa-
tion from which to reconstruct the original input, hence it
is especially suitable for describing the hyperspectral data.
As shown in the Fig. 6, the extracted features by auto-
encoder method can better distinguish the cancerous
tissue from the non-cancerous tissues. In addition, the
auto-encoder can achieve higher accuracy compared with
the other neural network models, hence, the auto-encoder
is used as the learner for the initial cancer detection.
Although auto-encoder can extract the useful informa-

tion for detecting the cancer tissue, the blood vessel or un-
even surface make it difficult to identify the complete
tumor from the normal tissue. Since blood vessel or un-
even surface could misrepresent the tissue structures, nei-
ther the traditional classification methods nor the deep
learning methods could detect the tumor with high accur-
acy by learning the intensity or the distribution of inten-
sity. The proposed adaptive auto-encoder network can
predict the misrepresented tissue structures into their true
classes by adaptively weighting those misclassified pixels,
and thus greatly improve the performance of tumor detec-
tion, as shown in Figs. 7, 8, 9 and Table 1. Under the same
conditions, our proposed method performed better than
the traditional classification methods [10, 31], and the
CNN based deep learning method [45, 50–52]. However,
we obtain unsatisfied performance on some mice. In the
next work, we plan to improve the cancer detection per-
formance on those special images. We will learn the deep
feature by iteratively updating the sensitivity-weights and
specificity-weights until convergence to overcome the ef-
fects of noise and artifacts.
The automatic detection algorithm was written and run

in MATLAB on Intel Core 2.60GHz CPU with 16GB of
RAM. The time for normalization, deep feature extraction,
cancer detection, post-processing is about 0.1 s, 2.8 s, 3.2 s,
and 0.02 s, respectively. The total running time is about 6
s for per hyperspectral image. It greatly improved the effi-
ciency of cancer detection compared with the method
[31] using 45min. This automatic cancer detection
method can be implemented in real time if involving the
multi-thread, GPU acceleration or parallel programming.

Conclusions
In this study, an adaptive deep learning framework was
proposed and validated for head and neck cancer

detection using HSI in an animal model. This algorithm
extracted the deep feature of hyperspectral images for re-
ducing the dimensionality effectively and better character-
izing the cancerous tissue. The adaptive weight learning
could improve the cancer detection performance by focus-
ing on harder-to-classify pixels. In the head and neck can-
cer mouse model, the proposed cancer detection method
was able to obtain a high sensitivity and specificity. The
results demonstrated that the HSI combined with deep
learning technique may enable accurate and fast detection
of cancers in a noninvasive manner and may provide a
promising tool for future clinical applications.
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