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Anthropogenically-driven increases in the risks
of summertime compound hot extremes
Jun Wang 1, Yang Chen 2*, Simon F.B. Tett 3, Zhongwei Yan1,4, Panmao Zhai2, Jinming Feng1 &

Jiangjiang Xia1

Compared to individual hot days/nights, compound hot extremes that combine daytime and

nighttime heat are more impactful. However, past and future changes in compound hot

extremes as well as their underlying drivers and societal impacts remain poorly understood.

Here we show that during 1960–2012, significant increases in Northern Hemisphere average

frequency (~1.03 days decade−1) and intensity (~0.28 °C decade−1) of summertime com-

pound hot extremes arise primarily from summer-mean warming. The forcing of rising

greenhouse gases (GHGs) is robustly detected and largely accounts for observed trends.

Observationally-constrained projections suggest an approximate eightfold increase in

hemispheric-average frequency and a threefold growth in intensity of summertime compound

hot extremes by 2100 (relative to 2012), given uncurbed GHG emissions. Accordingly, end-

of-century population exposure to compound hot extremes is projected to be four to eight

times the 2010s level, dependent on demographic and climate scenarios.
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It is well known that hot extremes, during the hottest season in
particular, have adverse societal and environmental impacts1–4.
In a warming climate, increasingly frequent and intense

hot extremes have been reported globally with strong evidence
pointing to a large contribution from anthropogenic warming5–8.
Severe damage comes from sequential occurrences of hot day and
hot night within 24 h, which accumulate and aggravate adverse
impacts of daytime and nighttime heat on various sectors9,10.
Some studies considered both diurnal and nocturnal tempera-
tures, for instance using daily mean temperature as a measure-
ment11,12. However, compared with the well-understood
univariate hot days and hot nights7,8,13,14, current knowledge
about combined daytime–nighttime hot extremes remains too
sparse to inform development of type-specific adaptation and
mitigation strategies.

Combined daytime–nighttime hot extremes might differ from
individual hot days/nights not only in meteorological and cli-
matological aspects15–17 but more importantly in impacts on
human and natural systems18. Specifically, combined events are
reportedly more damaging to human health, as the ensuing
nighttime heat deprives humans of their chance to recover from
the preceding daytime heat19,20. Overlooking this compounding
effect may lead to serious underestimate of heat-induced con-
sequences. Hence, it is worthwhile to revisit observation,
detection–attribution and projection of hot extremes based on a
bivariate definitional framework, to refine and further advance
our understandings about their past changes and underlying
drivers as well as future impacts and risks21.

To this end, we first define three nonoverlapping types of
summertime hot extremes, i.e., independent hot days (daytime
events, hot day–mild night), independent hot nights (nighttime
events, mild day–hot night), and compound hot extremes (hot
day–hot night, see the Methods section). With respect to these
bivariate-classified hot extremes, we conduct a series of ana-
lyses on their historical changes, mechanism explanations,
quantitative detection and attribution, constrained projections,
and future population exposure. We find that across Northern
Hemisphere lands, the rise in anthropogenic greenhouse
gases has driven summertime compound hot extremes
increasingly frequent and intense from 1960 to 2012, with
those trend patterns closely linked to regional nocturnal
land–atmosphere coupling strengths. At the end of the 21st
century, uncurbed greenhouse gases emissions would make
three-quarters of summer days typical of today’s compound
hot extremes, leading to several-fold growth in population
exposure to them.

Results
Observed changes in compound hot extremes. Summertime
compound hot extremes’ frequency and intensity (see the
Methods section) have exhibited significant increases across most
of the mid–high latitudes during 1960–2012 (Fig. 1). Larger
increases in frequency are observed in southern parts of the
United States, Northwest and Southeast Canada, Western and
Southern Europe, Mongolia, and Southeast China, while stronger
intensifications occur in the Southwest United States, Northern
and Southeast Canada, and broad swaths of Eurasia. The
HadGHCND22-based spatial–temporal trend patterns are con-
sistent with those based on the Berkeley Earth Surface Tem-
perature data set23 (Supplementary Fig. 1). This indicates the
robustness of trend estimates against the choice of data sets that
differ markedly in homogenization levels, data sources, and pre-
processings. The robustness of trend estimates is also under-
pinned by their insensitiveness to the choice of analysis periods
(Supplementary Fig. 2).

By contrast, trends for independent hot days are weaker, less
significant, and more spatially heterogeneous (Fig. 1c, d). Thus,
previous estimates of traditionally defined hot days’ trends, which
reflect a mixture of changes in compound events and indepen-
dent hot days, actually underrepresent (overrepresent) the greater
(smaller) rate (% decade−1) and higher (lower) significance of
frequency/intensity increases in compound hot extremes (inde-
pendent hot days) (Supplementary Fig. 3a–d). Independent hot
nights have also experienced significant increases in frequency
and intensity across the Northern continents, but with a smaller
intensification rate compared with compound hot extremes
(Supplementary Fig. 3).

Observed trend patterns for the frequency of hot extremes are
basically captured by the multi-model ensemble (MME) mean, as
evidenced by significant pattern correlations between them
(Supplementary Fig. 4). The reductions in independent hot days
in southern Canada and central–eastern China, however, fail to
be reproduced, possibly due to models’ misrepresentation of key
local-scale processes cooling Tmax there (e.g., expansion of
irrigation and crop planting in both regions24,25, and increasing
aerosols in central–eastern China26). The simulated trends’
inaccuracy, particularly in intensity at local-to-regional scales,
may also be linked to considerable smoothing of internal
variability by the multi-model ensemble mean27,28.

Statistical and physical mechanisms. Before formal detection
and attribution, we explore respective roles of summer-mean
temperature rise (i.e., general warming) and changing tempera-
ture variability in determining changes in summertime com-
pound hot extremes. We do this by re-computing frequency and
intensity trends after removing the general warming signal (see
the Methods section). We find that the summer-mean warming
over 1960–2012 largely dictates the past increases in frequency
and intensity of compound hot extremes during that period in
both observations and simulations (Fig. 2). By dissecting the
contribution from each parameter (e.g., location mean, scale
variability, and shape width of tail) of daily temperature dis-
tributions (Supplementary Note 1, Supplementary Fig. 5), we
confirm that the increase in frequency of compound hot extremes
results primarily from the general warming of boreal summer as
expressed by a positive shift of the location parameter.

Observed trends for compound hot extremes show marked
regional differences and greater magnitudes compared to other
types in some areas (Fig. 1; Supplementary Fig. 3). To explain this
geographical heterogeneity, we examine the dependence of
compound hot extremes’ changes on regional physical processes
(Fig. 3). Theoretically, anticyclonic setups facilitate greater
adiabatic heating and more absorbed solar radiation. These
conditions bring higher Tmax and also store more heat near the
surface, thus partly offsetting the nighttime radiative cooling and
elevating Tmin17. An increase in anticyclonic conditions should
lead to an increase in compound hot extremes. We calculate
trends for both sea-level pressures and 500 hPa geopotential
heights to approximate unforced and warming-forced circulation
changes29. Increasing occurrences of anticyclonic conditions are
found especially pronounced in Europe, southeastern Greenland,
western Asia, and northeastern Asia (Supplementary Fig. 6, see
synoptic-scale analysis in refs. 30,31). So, regions observing
stronger increases in anticyclonic conditions generally see
larger increases in frequency of compound hot extremes
(compare Supplementary Fig. 6a, b with Fig. 1a), with this
relationship more significant using 500 hPa geopotential height
trends (Fig. 3b, c). After accounting for strong influences of the
general warming on 500 hPa geopotential height increases and
the possible bias in reanalysis data, however, the evidence that
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increases in compound hot extremes have been dynamically
contributed by increasing presence of anticyclonic conditions
seems not as strong as theoretically expected (Fig. 3c).

Drying soil has also been proposed as an important driver for
not only daytime hot extremes32,33 but also extreme hot
conditions at night34,35, implying that regions of stronger
land–air interactions may see larger increases in compound hot
extremes. We use the correlation between detrended precipitation
and detrended temperatures (Tmax & Tmin) to measure the
strength of soil moisture–air temperature coupling36,37. Negative
correlations occur where enhanced sensible heat fluxes from drier
soil bring higher air temperature. Increases in compound hot
extremes are larger in areas with stronger nocturnal land–air
interactions (compare Supplementary Fig. 6c with Fig. 1a), and
such a physical linkage is statistically significant (Fig. 3d). By
contrast, despite a more uniform pattern of anticorrelation
between Tmax & precipitation (Supplementary Fig. 6d), stronger
daytime land–air interaction alone does not necessarily induce
greater increases in compound hot extremes (Fig. 3e). Stronger
nocturnal land–air interactions are co-located with greater
increases in anticyclonic activities in some hotspots for frequency
increases (Fig. 3b–d, red and green symbols). This implies the
joint role of these two physical processes in strengthening the
coupling between daytime and nighttime hot extremes (Supple-
mentary Fig. 7), partly explaining greater increases in compound
events than decoupled hot days/nights there.

Considering the well-established causal linkage between the
general warming and anthropogenic emissions of GHGs5, we may
qualitatively infer an important role of human-induced global
warming in these observed changes. This is also underpinned by
the similarity between the observed trend pattern driven by the
general warming (Fig. 2a, b) and the forced pattern as simulated
by the multi-model ensemble mean (Supplementary Fig. 4a, b).
Even so, formal detection and attribution analyses are still needed

to quantitatively evaluate contributions of different external
forcings (e.g., GHGs, anthropogenic and volcanic aerosols), which
help to pin down the main driver for past changes in compound
hot extremes38–40 and allow calibration of future projections (see
the Projection section below). Quantitative attributions and
reliable projections are desired by policy-makers to devise
strategies to alleviate future impacts and risks from compound
hot extremes.

Detection and attribution. The hemispheric-average frequency
and intensity of summertime compound hot extremes have sig-
nificantly increased by 1.03 days decade−1 (90% confidence
interval (CI): 0.82–1.26 days decade−1) and 0.28 °C decade−1

(90% CI: 0.23–0.33 °C decade−1) during 1960–2012 (Fig. 4).
These increases are qualitatively well reproduced by simulations
with all forcings included.

We use an optimal fingerprinting approach38 (see the Methods
section) to estimate contributions from anthropogenic (ANT)
and natural forcings (NAT) to the observed hemispheric-scale
changes in summertime compound hot extremes. As shown in
Fig. 5a, the significant departure of scaling factors for ANT and
NAT from zero signifies the detection of these external forcings.
For both frequency and intensity changes, a best-estimated
scaling factor slightly larger than one is required to amplify
simulated responses to ANT forcings to best match observations
(Fig. 5a). A three-signal analysis supports this detection statement
and further highlights the dominance of anthropogenic emissions
of GHGs in the detectability of ANT forcings. By contrast, a
failure to detect other anthropogenic forcings (OANT, dominated
by anthropogenic aerosols and large-scale land-use changes6) is
indicated by the inclusion of zero within the uncertainty range of
their scaling factors.

Quantitatively speaking, the human-induced rise in GHG
concentration contributes the most to the past increases in
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Fig. 1 Observed changes in summertime hot extremes. Linear trends for frequency and intensity are estimated for the period of 1960–2012 based on the
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compound hot extremes, in the frequency of 1.18 days decade−1

(5–95% uncertainty range (UR): 0.96–1.41 days decade−1) and in
the intensity of 0.28 °C decade−1 (5–95% UR: 0.22–0.34 °C
decade−1) during 1960–2012 (Fig. 5c). These GHG-forced
increases are a little offset by the cooling effect of OANT
forcings, with a best estimate of −0.09 days decade−1 (5–95% UR:
−0.20–0.03 days decade−1) for the frequency and −0.02 °C
decade−1 (5–95% UR: −0.04–0.01 °C decade−1) for the intensity.
Thus, anthropogenic emissions of GHGs should have produced
around 7–8% larger increases in frequency and intensity of
compound hot extremes than observed. Despite the detection of
NAT’s role (Fig. 5a, b), the attributable portion from it to both
frequency and intensity increases is far less than that from
anthropogenic GHGs (Fig. 5c). These detection and attribution
conclusions are robust against alternative time-smoothing
schemes, such as using 5-year-mean instead (see the Methods
section and Supplementary Fig. 8).

The same methodology is also applied to detect and attribute
observed changes in independent hot days and nights (see
Supplementary Note 3). Both ANT and NAT signals are detected
in observed changes of these two types of summertime hot
extremes (Supplementary Figs. 9, 10). The historical simulations
overestimate (underestimate) responses of independent hot days
(nights) to anthropogenic GHGs, thus warranting a scaling factor
below (above) the unity to scale down (up) simulated responsive
changes.

Observationally constrained projections. Aforementioned
varying degrees of underestimations/overestimations of modeled
responses to external forcings would bias projections of hot
extremes, if simply extrapolating un-scaled responses to pre-
scribed emission levels in the future (e.g., RCP4.5 and RCP8.5).
We take advantage of observation-based calibration on responses
to external forcings to constrain projections (ref. 40, also see the
Methods section). Compound hot extremes show the greatest
increases in frequency and intensity (Fig. 6); while the frequency
is projected to stay nearly constant for independent hot days, and
to increase gradually under RCP4.5 and to peak then fall under
RCP8.5 for independent hot nights. These distinct increases in
hot extremes’ frequency result in drastic shifts of the most
common type of summertime hot extremes, an impact-relevant
character underreported previously. Specifically, the dominance
of independent hot days in total hot extremes before the 1990s
has been replaced by independent hot nights, whose dominance is
expected to hold till the 2030s (Fig. 6a, c). After that, compound
hot extremes become the most common type across the Northern
continents. This rapid transition calls for urgent adaptation and
mitigation efforts against compound hot extremes in particular.
Relative to 2012, anthropogenic forcings will cause an approx-
imate fourfold increase in the hemispheric-average frequency of
compound hot extremes (from 8.3 days per summer to
32.0 days per summer) under RCP4.5 by the end of the 21st
century. Following a high-end emission pathway (RCP8.5), about

90N
a Compound-frequency

60N

30N

0

90N
b

60N

30N

0

90N
d

fe

60N

30N

0

90N
c

60N

30N

0

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180

Compound-intensity

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180

100

R
el

at
iv

e 
co

nt
rib

ut
io

n 
(%

)

80

60

40

20

OBS

Can
ESM

2

CNRM
-C

M
5

CSIR
O-M

k3
-6

-0

Had
GEM

2-
ES

IP
SL-

CM
5A

-L
R

OBS

Can
ESM

2

CNRM
-C

M
5

CSIR
O-M

k3
-6

-0

Had
GEM

2-
ES

IP
SL-

CM
5A

-L
R

0

100

R
el

at
iv

e 
co

nt
rib

ut
io

n 
(%

)

80

60

40

20

0

–2.5 –2 –1.5 –1 –0.5 –0.75 –0.6 –0.45 –0.3 –0.15 0 0.15 0.3 0.45 0.6 0.75
Days decade–1

°C decade–1

0 0.5 1 1.5 2 2.5

Compound-frequency Compound-intensity

Fig. 2 Contributions from changing temperature mean and variability. Observed changes in frequency and intensity of compound hot extremes caused
by changes in summer-mean temperature are shown in a, b and those caused by changes in temperature variability are displayed in c, d. e, f show
observed and modeled ensemble median contributions from changing summer-mean temperature (orange bars) and temperature variability (blue bars) to
area-weighted mean frequency (e) and intensity (f) changes, respectively. The vertical black bars show the 5–95% uncertainty range of contributions in
observations. Gray diamonds and circles indicate values from individual simulations of each model, with their MME (multi-model ensemble) median shown
by orange and blue dashed lines.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14233-8

4 NATURE COMMUNICATIONS |          (2020) 11:528 | https://doi.org/10.1038/s41467-019-14233-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


three-quarters of summer days (~69 days) would be compound hot
extremes before 2100, equivalent to over an eightfold increase.

Converting these emission pathways to specific warming levels
(Methods), we find that compared with a 1.5 °C warmer world,
2 °C of global warming signifies, on average across the Northern
Hemisphere lands, an extra ~5 days of compound hot extremes
and an additional ~0.5 °C increase in their intensity. However,

4–6 °C of global warming from the non-mitigated pathway
(RCP8.5) adds extra 40–60 days in frequency and 4–6 °C in
intensity of compound hot extremes, relative to the 1.5 °C
status (Fig. 6c, d). Of note, the hemispheric-average intensity
of compound events increases quasi-linearly with the rising
levels of global warming in the future, indicative of a
decisive role of general warming41. This consolidates and extends
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observation-based estimates (Fig. 2f). Also notable is that the
compound type is the only one showing monotonic increases in
frequency and intensity with rising levels of GHGs and global
mean surface air temperature (GMST).

Subject to scaling factors’ calibration, the range of simulated
historical changes now better encapsulates observed counter-
parts and the MME mean is much closer to the observations
(compare Supplementary Fig. 11 with Supplementary Fig. 12).
This improvement of consistency between simulations and
observations is particularly pronounced in compound and
nighttime events. For both types, the divergence between un-
calibrated and calibrated projections augments with higher levels
of GHG emissions and GMST. Under RCP8.5, by the end of the
21st century, constrained MME mean projection of compound
event frequency (intensity) is ~13% (~8%) larger than the default
MME mean. The combination of bivariate classification and
constrained projection, therefore, warns about higher risks of
summertime compound hot extremes than originally predicted.

Future population exposure to compound hot extremes. We
assess future population exposure42 (Methods) to heat hazards by
combining climate projections and population projections

compatible with Shared Socioeconomic Pathways (SSPs)43. Even
if the world evolves toward a sustainable future via moderately
mitigated GHG emissions (RCP4.5) and low population growth
(SSP1), the Northern Hemisphere still expects to see nearly a
quadrupling of population exposure to compound hot extremes,
from 19.5 billion person-days in the 2010s to 74.0 billion person-
days in the 2090s (Fig. 7a). By contrast, the scenario combining
unmitigated emissions (RCP8.5) and rapidly growing populations
(SSP3) is projected to see an over eightfold increase to 172.2
billion person-days in the 2090s (Fig. 7b). Greater increases are
clustered over highly urbanized and/or populous regions, such as
eastern United States, western Europe, western Asia, and eastern
China (Supplementary Fig. 13). Population exposure to daytime
and nighttime hot extremes exhibits a similar peak structure, with
the differential exposure to them in two worlds (RCP4.5 and SSP1
vs. RCP8.5 and SSP3) substantially smaller than that to com-
pound type (Fig. 7; Supplementary Fig. 13). After 2030, the
compound type would be the one that populations in the
Northern Hemisphere are most frequently exposed to (Fig. 7).

The high similarity in temporal patterns of hazard (Fig. 6) and
exposure (Fig. 7) demonstrates the dominant role of anthro-
pogenically driven increases in hot extremes in determining
increases in the hemispheric-scale population exposure. However,
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above estimates in population exposure only present a lower
boundary, since the raw climate projections that we use for
calculating exposure (rationale see the Methods section) under-
estimate future increases in compound heat hazards as addressed
above. Underestimation in population exposure to compound hot
extremes also arises from the insufficient land coverage in the

analysis, with some highly populous areas like India unaccounted
for (Supplementary Fig. 13).

Discussion
In this study, we report observed changes in compound hot
extremes across the Northern continents, with underlying
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mechanisms proposed and contributions from various external
forcers quantified. On this basis, future changes in both heat
hazards and population exposure to them are projected. These
findings provide new insights into heat-related risk assessment
and management. Added value in guiding adaptation and miti-
gation planning could be gained by further considering the vul-
nerability of various communities and sectors to these hot
extremes. This better embracement of the risk framework calls for
a closer multidisciplinary collaboration by sharing the data,
methodology and knowledge among different fields. It is rea-
sonable to expect that compound hot extremes are more dan-
gerous to human health12, agriculture44, and ecology fields45, as
this type impairs human and natural systems’ resilience to
ambient excess heat.

The limited data availability over much of the Southern
Hemisphere prohibits us from conducting a quasi-global-scale
analysis. Although the Berkeley Earth Surface Temperature data
set23 provides a global coverage by merging 14 databases of sta-
tion observations, the data quality and availability still vary
apparently with time and region, particularly at a daily scale
critical to identify extremes. We also stress that the quality of
observational data matters for detection–attribution–projection
conclusions, even though the homogenized Berkeley data23 and
non-homogenized HadGHCND22 provide very similar area-
weighted time series at a hemispheric dimension here. Influences
of data quality on detection–attribution–projection, however,
may stand out more starkly in regional-scale analysis (e.g., Sup-
plementary Fig. 1e, f).

Although previous studies have highlighted the importance of
increasing summer-mean temperatures to hot day or night
changes46,47, this is the first study confirming the dominant role
of general warming in observed increases in compound hot
extremes. There are contrasting evidences indicating that changes
in temperature variability also played an important or even
determinant role in inducing changes in hot extremes at regional
scales (e.g., North America)48,49 or in producing extraordinarily
intense cases50. These inconsistencies may stem from different
data sets and methods used to quantify changes in the shape of
temperature distribution51, as well as from distinct temporal- and
spatial-scales being considered52.

We also note that projections of compound hot extremes show
increasingly large intermember/intermodel spread, which is
markedly larger than that of daytime/nighttime event projections
(Fig. 6). In light of our physical interpretations (Fig. 3) and other
recent studies53,54, this large spread may be linked to increasingly
diverging projections of precipitation and resultant discrepancies
in land–air interaction physics. So more trustworthy projections of
compound hot extremes with reduced uncertainties, particularly at
a regional scale, should be built on deeper mechanism under-
standings, including synoptic dynamics and local-to-regional sur-
face energy balance as well as their responses to anthropogenic
forcings54. At continental to global scales, both our statistical
analysis (Fig. 2e, f) and some existing literature16,31 strongly sug-
gest that changes in synoptic dynamic–thermodynamic drivers are
likely secondary to the direct radiative forcing of increasing GHGs
in driving long-term changes in compound hot extremes.

Methods
Observations and simulations. Gridded observations of near-surface Tmax and
Tmin at a horizontal resolution of 3.75° longitude × 2.5° latitude are taken from the
HadGHCND data set22. Considering the availability of observations for producing
this data set, we focus our analysis on the Northern Hemisphere land areas. Only
grid-boxes with no more than one missing value for Tmax/Tmin over 1960–2012
are used. The single missing value is infilled by the average of its neighboring
2 days’ observations. To test the sensitiveness of trend estimates to the choice of
data set, we also use daily Tmax and Tmin observations from the Berkeley Earth
Surface Temperature data set23, which are re-gridded onto 3.75° × 2.5° grids

following the HadGHCND’s resolution and geography and then masked by the
observation availability in the HadGHCND.

Historical simulations and projections of climate variables are taken from the
Coupled Model Intercomparison Project Phase 5 (CMIP5)55. To improve the
sampling of internal variability, each model used here is required to have at least
three ensemble members with Tmax/Tmin outputs available at a daily scale in each
forced experiment, as detailed in Supplementary Table 1. Note that the experiments
including both anthropogenic and natural forcings (ALL) end in 2005, after when
the RCP4.5 simulations are employed to extend historical ALL-forcing simulations
till 2012. Following the observation’s resolution and geography, we apply a bilinear
interpolation algorithm to re-grid model outputs onto the same 3.75° × 2.5° grid
and then mask the re-gridded data by the observations.

For projections of population, we use spatially explicit global population
scenarios43 which account for both changes in the size and spatial distribution of
future population. These projections are provided at a spatial resolution of 1/8° × 1/
8° and at a decadal interval over 2010–2100. To reconcile the spatial resolution and
availability of grids in climate and population projections, we compute 3.75° × 2.5°
population grids by tallying up the total number of persons in those 1/8°
population grids42 included in the domain of each climate grid, and then mask
them by the observation grids.

Summertime hot extremes, frequency, and intensity. A hot day/night is con-
sidered when Tmax/Tmin is higher than its historical 90th percentile for the
specific calendar day during summer (June–August)56. Such daily-based 90th
percentiles are determined by ranking historical (1960–2012) 15-day samples
surrounding this day (7 days before and after, i.e., total samples 15 × 53=
795 days). These daily-based percentiles are, on one hand, stronger than the
seasonal-fixed threshold during peak summer, thus acting to distinguish especially
intense events from more typical cases; on the other hand, slightly lower than
seasonal-fixed threshold during early/late summer, thereby permitting to identify
hot extremes at different stages of summer56. Thus, these daily-based percentiles
take into account intra-seasonally varying preparedness and acclimatization
potential of human and ecosystems against excess heat56,57. The adoption of daily-
based percentiles also avoids possible inhomogeneity in frequency and intensity
series of temperature extremes58.

On this basis, we define three types of summertime hot extremes: a compound
hot extreme—sequential occurrence of a hot day and a hot night within 24 h; an
independent hot day—a hot day without a following hot night; and an independent
hot night—a hot night without a preceding hot day.

The frequency for each type is the number of days satisfying corresponding
constraints. The intensity is measured by the temperature exceedance(s) above
corresponding threshold(s), thus highlighting the detrimental effects of excess heat
above high background temperatures. We calculate the hemispheric-scale
frequency and intensity of summertime hot extremes by averaging area-weighted
grid values. We compute observed trends for frequency and intensity of
summertime hot extremes and other physical variables using the nonparametric
Theil–Sen’s method59,60 and estimate their 90% confidence interval based on the
method proposed in ref. 61. We perform the nonparametric Mann-Kendall test of
the null hypothesis of trend for each grid at the 0.05 significance level62,63. Absolute
trends (days decade−1 for frequency and °C decade−1 for intensity) are also
converted to relative changes (% decade−1 for both) with respect to their
climatological means over 1961–1990, to facilitate inter-type comparisons
(Supplementary Fig. 3).

Roles of general warming and changing variability. We first estimate the general
warming signals by fitting a second-order polynomial to summer-mean Tmax/
Tmin during 1960–2012 for each grid box. Then, with these general warming
signals removed from daily Tmax/Tmin, the frequency and intensity are re-
computed based on Tmax/Tmin residuals. The trends for these re-computed fre-
quency and intensity are assumed to be dictated by evolving variabilities of sum-
mertime Tmax/Tmin (including interannual variability, seasonal cycle,
intraseasonal, and diurnal variability). Accordingly, the remaining proportion in
trends for original series is believed to be ascribed to the general warming (i.e.,
mean-state shift). The 5–95% uncertainty range of observed relative contributions
is estimated through randomly sampling valid grid-boxes 100,000 times.

Formal detection and attribution. We employ an optimal fingerprinting method
for the detection and attribution of observed changes in summertime hot
extremes38. Observed changes (Y) are represented as a sum of scaled fingerprints
(X) of various external drivers, plus internal climate variability (ε)

Y ¼ Xβþ ε: ð1Þ

The MME mean of forced simulations are used to construct the fingerprints, and
outputs from pre-industrial control runs are used to estimate internal climate
variability. These fingerprints, in both frequency and intensity, are then pre-
processed into nonoverlapping 3-year-mean time series consisting of 18 data
samples over 1960–2012. The anthropogenically forced signal (ANT) is represented
as the difference between MME mean responses to ALL and to NAT (natural)
forcings. Furthermore, the signal forced by other anthropogenic drivers (OANT,
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dominated by aerosols and large-scale land-use changes6) is extracted from ANT
by excluding the GHG-forced signal. The regression coefficients (scaling factors)
β scale the fingerprints to best fit observed changes. The regression is resolved
following the scheme proposed in ref. 38

~β ¼ XTC�1
N X

� ��1
XTC�1

N Y: ð2Þ

To fit and test the regression models, we need two independent estimates for
inversed covariance structure of the internal climate variability C�1

N

� �
. Specifically,

we divide these pre-industrial control simulations into 64 nonoverlapping chunks
and then separate them into two sets, which are used for data pre-whitening and
estimating the 5–95% uncertainty range of scaling factors ~β, respectively. We
conduct a regularized estimate of the covariance matrix of internal climate varia-
bility39, which yields a full rank covariance matrix and avoids the underestimation
of the lowest eigenvalues occurring in the original covariance matrix.

If the scaling factor for specific external forcing excludes zero, the influence of
this forcing is deemed detectable in observed changes. Furthermore, when the
scaling factor contains the unity, we claim that the MME mean of forced responses
is consistent with observations. If the scaling factor is smaller (larger) than one, the
magnitude of responses to this forcing is overestimated (underestimated) in
simulations compared with observations. To ensure the validity of detection and
attribution analysis, a standard residual consistency test38 is also implemented to
evaluate models’ performance in reproducing internal variability of the frequency
and intensity of summertime hot extremes. All results shown pass this test at the
0.05 significance level. Based on a successful detection, attributable portion in
observed trends for frequency and intensity are computed as the product of
simulated linear trends for these indices and their respective scaling factors. The
5–95% uncertainty range for attributable changes is then obtained by multiplying
the MME mean forced changes with corresponding scaling factors’
uncertainty range.

Observationally constrained projections. The detection and attribution analysis
provides an optimal estimate of the scaling to better match the simulated amplitude
of forced changes to observed signals40. By exploiting this calibration effect on
forced responses, we produce constrained projections of summertime hot extremes
during 2013–2099 under RCP4.5 and RCP8.5. More specifically, we scale raw
projections of frequency and intensity changes in response to various external
forcings by multiplying corresponding scaling factors40. We note that such
extension of simulations to future periods may introduce inhomogeneities in the
frequency and intensity series (as revealed in ref. 58). Such inhomogeneities,
however, turn out to be negligibly small (Supplementary Fig. 12). For the historical
period (1960–2012), we reconstruct simulated anomalies (relative to 1960–2012) of
changes in hot extremes by summing optimally scaled MME mean responses to
GHG, OANT, and NAT (via the three-signal detection). For the period after 2012,
the MME mean responses under RCP4.5 and RCP8.5 are scaled by the scaling
factor for ANT. Finally, we adjust the historical mean (1960–2012) of the recon-
structed series to match the observed counterpart. Apparently, this observationally
constrained projection method assumes the propagation of current biases of
simulated forced changes into future, and does not account for errors exclusive to
the future, such as a sudden shutdown in the thermohaline circulation40.

Specific levels of global warming. Based on the re-gridded daily Tmax and Tmin
outputs from CMIP5 models (Supplementary Table 1), we compute monthly
anomalies (relative to 1861–1890) of daily mean surface air temperatures at each
grid box for each simulation. Then, weighting the gridded values by the cosine of
their latitudes, we calculate the ensemble mean annual global mean surface air
temperature anomalies for individual models and average these ensemble means to
obtain the MME mean global warming magnitudes. Similar to the methods of King
et al.64, we measure specific levels of global warming by decadal-average MME
mean global warming magnitudes.

Projection of population exposure to hot extremes. Considering both popula-
tion dynamics and hazard increases42, our measure of population exposure refers
to the number of person-days experiencing hot extremes, calculated as the summer
number of events multiplied by the number of people exposed. The projected
exposure, per decade, is computed from the spatial average of the product of
decadal-average event frequency at each grid and the total population at that grid
in that decade. Note that here we have to rely on raw projections of hot extremes
instead of observationally constrained ones for hazard aspect in calculating
exposure, since the latter projection scheme can not be performed on a grid-scale
basis as methodologically required. Potential biases in estimating population
exposures by using unconstrained projections of hazards are discussed in the
main text.

Among various integrated scenarios constituted by RCPs and SSPs, we show a
RCP4.5-SSP1 combination to frame a world evolving into a future with relatively
low challenges to adaptation and mitigation, and a RCP8.5-SSP3 combination to
characterize a world with rapid growth in emissions and populations, i.e., the most
challenging scenario65.

Data availability
The observational data that support the findings are publicly available. The HadGHCND
data are available at https://www.metoffice.gov.uk/hadobs/hadghcnd/. The Berkeley surface
air temperature data are available at the Berkeley Earth website (http://berkeleyearth.org/).
The CRU data could be accessed via http://www.cru.uea.ac.uk/data/. The NCEP-NCAR
reanalysis could be gained through https://www.esrl.noaa.gov/psd/. The CMIP5 model
outputs are accessible via the website (https://esgf-node.llnl.gov/projects/cmip5/). The
spatially explicit global population projection data are publicly available at https://sedac.
ciesin.columbia.edu/data/set/popdynamics-pop-projection-ssp-2010-2100/data-download.

Code availability
The data in this study were analyzed with publicly available tool packages in MATLAB
and the figures were produced with NCAR Command Language. All the scripts are
available upon requests.
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