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The hypothalamic–pituitary–adrenal axis is a vital neuroendocrine system

that regulates the secretion of glucocorticoid hormones from the adrenal

glands. This system is characterized by a dynamic ultradian hormonal oscil-

lation, and in addition is highly responsive to stressful stimuli. We have

recently shown that a primary mechanism generating this ultradian rhythm

is a systems-level interaction where adrenocorticotrophin hormone (ACTH)

released from the pituitary stimulates the secretion of adrenal glucocorticoids,

which in turn feedback at the level of the pituitary to rapidly inhibit

ACTH secretion. In this study, we combine experimental physiology and

mathematical modelling to investigate intra-adrenal mechanisms regulating

glucocorticoid synthesis. Our modelling results suggest that glucocorticoids

can inhibit their own synthesis through a very rapid (within minutes), presum-

ably non-genomic, intra-adrenal pathway. We present further evidence for the

existence of a short time delay in this intra-adrenal inhibition, and also that at

the initiation of each ACTH stimulus, this local feedback mechanism is rapidly

antagonized, presumably via activation of the specific ACTH receptor (MC2R)

signalling pathway. This mechanism of intra-adrenal inhibition enables the

gland to rapidly release glucocorticoids while at the same time preventing

uncontrolled release of glucocorticoids in response to large surges in ACTH

associated with stress.
1. Introduction
The hypothalamic–pituitary–adrenal (HPA) axis is critical for the maintenance of

homeostasis, regulating the hormonal response to both acute and chronic stres-

sors. This neuroendocrine system governs these responses through the secretion

of glucocorticoid hormones (cortisol in man and corticosterone in rodents;

herein referred to as CORT) that are released from the adrenal glands in a

highly dynamic manner, displaying both circadian and ultradian (near hourly)

rhythms in the rat [1] (figure 1a). It is well known that the circadian profile of

CORT is regulated by inputs from the suprachiasmatic nucleus (SCN) to the para-

ventricular nucleus (PVN) of the hypothalamus [3], where parvocellular neurons

project to the median eminence of the hypothalamus and release corticotrophin-

releasing hormone (CRH) and arginine vasopressin (AVP). These hormones travel

through the portal veins to reach the anterior pituitary where they activate corti-

cotroph cells to secrete adrenocorticotrophin hormone (ACTH) into the general

circulation. Within cells of the adrenal cortex, ACTH activates a rapid signalling

pathway that regulates the synthesis and release of CORT (figure 1b). Once

released from the adrenal glands into the blood circulation, CORT accesses

target tissues, such as the liver, and the heart and vascular tissues to exert meta-

bolic and cardiovascular effects, respectively. Additionally, CORT modulates

multiple brain structures to promote, for example, cognitive processes necessary

to cope with a threatening situation (see [4] for a comprehensive review).
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Figure 1. (a) Under basal (i.e. unstressed) conditions, glucocorticoid levels in plasma ( pCORT) are characterized by both a circadian and an approximately hourly
ultradian rhythm. Shaded region indicates the dark phase. Data adapted from Walker et al. [2]. (b) Regulation of HPA axis activity. The hypothalamic PVN receives
circadian input from the SCN as well as stress inputs from the brainstem and from regions of the limbic system such as the hippocampus and amygdala. The PVN
projects to the median eminence where it releases CRH and AVP into the hypothalamic – pituitary portal circulation. CRH and AVP pass through this vascular route to
access corticotroph cells in the anterior pituitary, which respond with the rapid release of ACTH from preformed vesicles into the general blood circulation. In turn,
ACTH reaches the adrenal gland where it activates the synthesis of glucocorticoid hormones. Once synthesized, glucocorticoids are rapidly released into the general
circulation ( pCORT) via which they reach target tissues. Glucocorticoids regulate the activity of the HPA axis, and thus their own production, through feedback
mechanisms acting at the level of the pituitary gland where they inhibit ACTH release, and at the level of the PVN where they inhibit the release of CRH
and AVP. (c) Schematic of the complex adrenal steroidogenic network. ACTH increases adrenal gland activity via PKA activation leading to non-genomic regulation
of steroidogenic proteins. This includes phosphorylation of hormone sensitive lipase (HSL), a protein that increases the levels of intracellular cholesterol (the precursor
of steroid hormones), and phosphorylation of steroidogenic acute regulatory protein (StAR), which promotes the transport of cholesterol into the mitochondria,
where cholesterol is converted into pregnenolone by the enzyme side-chain cleavage cytochrome P450 (P450scc). This process is followed by a number of enzymatic
reactions within the mitochondria and the endoplasmic reticulum that ultimately leads to glucocorticoid synthesis within the cell (aCORT), which, in turn, is released
into the general blood circulation ( pCORT). PKA also mediates adrenal genomic activity by inducing StAR transcription, which is, in turn, enhanced or repressed by
the transcriptional regulators steroidogenic factor 1 (SF-1) and DAX-1, respectively.
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Owing to its lipophilic nature, CORT cannot be pre-

synthesized and stored in adrenal cells, but has to be rapidly

(i.e. within minutes) synthesized upon ACTH stimulation

(figure 1c). Following the binding of ACTH to its specific

melanocortin 2 receptor (MC2R) in the zona fasciculata of

the adrenal cortex, there is increased protein kinase A

(PKA)-mediated phosphorylation of steroidogenic proteins,

including the rate-limiting protein StAR [5], which promotes

the transport of cholesterol, the precursor of steroid hor-

mones, inside the mitochondria [6], where a number of

enzymatic reactions leads to glucocorticoid synthesis. In

addition to its rapid non-genomic effects, ACTH also regu-

lates adrenal activity by inducing the transcription of

steroidogenic genes, including StAR and MC2R (figure 1c).
Consistent with the ultradian rhythm of CORT, transcription

of StAR and other steroidogenic genes also appears to be pul-

satile [7]. This sequence of feed-forward mechanisms within

the adrenal cortex, and more generally within the whole

HPA system, is balanced by negative feedback of CORT

acting at both the anterior pituitary and within the brain to

inhibit further release of ACTH and CRH [8,9] (figure 1b).

The feed-forward–feedback interplay between the ante-

rior pituitary and adrenal glands has been shown to be

critical for the rapid ultradian ACTH and CORT oscillations

observed in the blood. In contrast to the classically held

notion of a hypothalamic pulse generator, we have recently

shown theoretically that this feed-forward–feedback inter-

play can generate ultradian oscillations of CORT secretion
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in the presence of constant levels of CRH [10]. This mathe-

matical hypothesis has been supported by a series of in vivo
experiments where CRH was infused at constant levels

during the circadian nadir of HPA activity and hourly pulses

in both ACTH and CORT were observed [2]. Significantly,

these ultradian rhythms have been shown to be important in

determining the stress responsiveness of the HPA axis as a

whole. For example, the behavioural response to stress has

been observed to desensitize when the hourly rhythm is

replaced by an equivalent constant level of CORT [11]. Further-

more, the timing of an incoming stressor, relative to the

phase of an endogenous pulse of CORT, has been shown to

govern the amplitude of the subsequent stress response as

well as the timing of subsequent pulses [1,12].

While the effect of CORT feedback at the level of the pitu-

itary and brain has received much attention, little is known

about intra-adrenal mechanisms through which CORT may

autoregulate its own synthesis and secretion. There is evidence

that the glucocorticoid receptor (GR) is expressed in the adre-

nal cortex of both the rat [13] and man [14], and that its

functionality is similar to that observed in other tissues [15].

Furthermore, a number of in vitro and in vivo studies have

shown that prior stimulation of the adrenal gland results in a

decreased response to further stimuli. For example, adding

high concentrations of CORT to the medium of cultured adre-

nal cells has been shown to inhibit ACTH-stimulated CORT

synthesis [16], and this effect can be seen within 1–2 h of

CORT exposure [17]. These findings are consistent with studies

showing that adrenals collected from hypophysectomized

rats treated with CORT have lower responses to ACTH when

compared with those from untreated rats [18]. Similarly, a

rapid inhibition of ACTH-induced adrenal steroidogenesis

has been observed following repeated adrenal stimulation

with ether and ACTH [19]. Other studies have shown that

there is no increase in CORT concentration in adrenal vein

effluent in response to ACTH following pre-treatment with

CORT [20,21]. These findings are consistent with studies show-

ing that in rats previously exposed to a stressor, or injected with

a high concentration of ACTH, adrenal CORT is not increased

in response to further stimuli, suggesting that CORT synthesis

is dependent on the prior state within the adrenal of the rat

[22,23]. Collectively, these studies provide support for the con-

cept that rising CORT levels within the adrenal might regulate

further glucocorticoid synthesis and secretion through local

activation of GR.

To investigate further the role of intra-adrenal CORT

autoregulation, in this study we pursue a systems biology

approach; integrating a mathematical model with in vivo
experimental data to investigate whether rapid intra-adrenal

inhibition is an important factor regulating glucocorticoid

synthesis over the timescales of both the basal ultradian

rhythmicity of the HPA axis and the glucocorticoid stress

response. To do so, plasma ACTH, plasma CORT, and adrenal

CORT were measured in rats in which rapid secretion of

CORT was induced by either constant CRH infusion or intrave-

nous (i.v.) administration of ACTH (to stimulate an ultradian

CORT pulse), or in rats exposed to a mild stress. Plasma

ACTH and CORT data were then used as inputs into mathemat-

ical models of adrenal CORT synthesis. Our analysis provides

evidence for the existence of intra-adrenal inhibition of CORT

synthesis, and further that this intra-adrenal feedback is rapidly

antagonized by ACTH, presumably via activation of MC2R,

effectively disinhibiting the system and enabling a rapid early
response of CORT to ACTH, which remains closely regulated

by subsequent steroidogenic activity within the adrenal gland.
2. Material and methods
2.1. Experimental procedures
Male adult Sprague Dawley rats were implanted with a double

indwelling cannula in the jugular vein, as previously described

[2]. Five to seven days after surgery, rats were either exposed to

an acute noise stress (white noise, 110 dB, 10 min) [24,25], infused

with constant CRH (0.5 mg h21) [2] or injected with ACTH (10 ng

per 0.1 ml, i.v.) [26]. Trunk blood and adrenal glands were collected

prior to, during and after each treatment at specific time points.

Plasma and adrenal hormone levels were measured using radio-

immunoassay as previously described [26]. Figure 2 illustrates the

hormone dynamics obtained from each of these paradigms.

2.2. Mathematical models and analysis
We used ordinary differential equations (ODEs) to describe three

candidate systems-level mechanisms for CORT autoregulation

within the adrenal network as well as the null hypothesis of no

CORT-driven mechanism (illustrated schematically in figure 3).

The three mechanisms were either instantaneous or delayed CORT

inhibition, as well as the possibility that a CORT-driven inhibitory

mechanism is itself transiently blocked (that we term disinhibition).

These equations take into account the synthesis and secretion of

adrenal CORT, governed by nonlinear activation of the adrenal by

ACTH. Levels of plasma CORT were assumed to depend upon

levels of adrenal CORT and the metabolic clearance rate of plasma

CORT only. The above considerations result in a system of equations

_Ba(t) ¼ f (A(t))� Bout
a (t)� Yinhibition(Ba(t)) (2:1a)

and

_Bp(t) ¼ Ba
in(t)� CdecayBp(t), (2:1b)

where t is time, Ba is the concentration of adrenal CORT, A is the con-

centration of plasma ACTH, Bout
a is the level of CORT diffusing out of

the cell, Bin
a is the level of CORT diffusing into the plasma, Bp is the

concentration of plasma CORT and Cdecay is a parameter governing

the metabolic clearance rate of plasma CORT. f is a function

representing Michaelis–Menten activation kinetics

f (A(t)) ¼ k1A(t)
km þ A(t)

, (2:2)

and Yinhibition is an equation that represents the specific mechanism of

inhibition of CORT synthesis for each of the four considered models

model I (no inhibition)

Yinhibition(t) ¼ 0; (2:3a)

model II (inhibition)

Yinhibition(t) ¼ k3Ba; (2:3b)

model III (delayed inhibition)

Yinhibition(t) ¼ k3H(t� td)Ba(t� td); (2:3c)

model IV (disinhibition)

Yinhibition(t) ¼ k3H(t� tb)Ba(t): (2:3d)

Here H is a Heaviside function assuming that the time delay (tp)

in the increase in plasma CORT (figure 2) is due to its diffusion

out of the adrenal, then

Bin
a (t) ¼ K Bout

a (t� tp),

where K � 1 [27]. From here, we may rearrange equations (2.1a)

and (2.1b) to express the level of adrenal CORT (Ba) in terms of



700

600

500

400

300

200

100

4000

2000

0

0 20 40 60 0 20 40 60 80 0 20 40 60 80 100 120
0

ACTH (pg ml–1)

pCORT (ng ml–1)

aCORT (ng mg–1)

noise stress constant CRH ACTH pulse

time (min) time (min) time (min)

ho
rm

on
e 

co
nc

en
tr

at
io

n
ra

tio

(b)

(a)

(c)

(d )

Figure 2. Dynamics of ACTH (orange), adrenal CORT (black) and plasma CORT (grey) during exposure to (a) a mild stress (noise stress), (b) intravenous constant CRH
infusion (constant CRH) and (c) intravenous ACTH injection (ACTH pulse). Each data point represents the mean+ s.e.m. from n ¼ 4 – 9 rats. For each experiment,
the ratio of peak plasma CORT to peak ACTH is shown in (d ).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20140875

4

the level of plasma CORT (Bp)

_Ba(t� tp) ¼ f (A(t� tp))� k5[ _Bp(t)þ CdecayBp(t)]

� Yinhibition(t� tp): (2:4)
2.3. Assessing goodness of fit through integrating the
mathematical model and experimental data

To test the validity of our four candidate models, for each model

we substituted experimentally measured levels of plasma ACTH

(A) and plasma CORT (Bp) (both interpolated using piecewise

cubic Hermite interpolating polynomials (pCHip)) in place of

their equivalent variables in equation (2.4). Parameters in

equation (2.4) were then optimized by minimizing the least-

squares error (LSE) between experimentally measured and

model-predicted adrenal CORT (Ba):

LSE ¼
X

ti

(Bmeasured
a (ti)� Bmodel

a (ti))
2
: (2:5)

The model whose output produces the best goodness of fit

in comparison with experimentally measured levels of adrenal

CORT might be considered the optimal model. However, in gen-

eral, the accuracy of a model (i.e. reduction in LSE score) scales

with the number of free parameters. For our four candidate models,

the number of free parameters increases from 3 (model I), to 4

(model II) and 5 (models III and IV). Therefore, to accurately
compare models, we penalized the LSE according to the Akaike

information criterion (AIC), which describes the trade-off bet-

ween the goodness of fit of the model and the model complexity

(i.e. number of parameters) [28]:

AIC ¼ n log
LSE

n

� �
þ 2k, (2:6)

where n is number of data points, and k is number of model par-

ameters. Because AIC effectively offers a relative estimate of the

information lost, the model with the lowest score gives the best rep-

resentation of the data and is thus considered most likely. We also

calculated p-values between LSE arrays for model pairs using

Wilcoxon’s rank-sum method, and used the Bonferroni correction

to account for multiple comparisons.
3. Results and discussion
If our hypothesis—that CORT levels within the adrenal are

important for regulating steroidogenesis over the timescales

of both the basal ultradian rhythm and the response to acute

stress—is a valid one, then levels of CORT within the adrenal

cortex must themselves be dynamic over these time frames. To

determine whether this is in fact the case, we performed three

different experiments: the first a 10 min acute noise stress that

activates the whole HPA axis [24,25]; the second a constant

CRH infusion which activates only the pituitary–adrenal
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subsystem to generate an ultradian rhythm in both ACTH and

CORT [2]; and the third an i.v. pulse of ACTH which activates

only the adrenal gland [7]. We collected the adrenal glands at

regular intervals throughout each of the three experiments

and measured CORT levels within the adrenal gland, in

addition to plasma levels of both ACTH and CORT (figure 2).

As can be seen in figure 2a–c, each experiment resulted in a

rapid pulse of ACTH and subsequent increase in plasma

CORT, and this was accompanied by a pulsatile pattern of

CORT within the adrenal itself. It is also apparent that the

peak levels of plasma CORT response do not scale linearly

with the peak levels of plasma ACTH (figure 2d), but are in

fact reduced from the level that would be expected from a

purely linear response. Given that the levels of plasma CORT

observed during severe acute stressors are much greater

than those observed within our experiments in this study

[24,25,29,30], it is unlikely that this nonlinear reduction in

CORT results from a saturation effect. Therefore, these obser-

vations suggest that, in addition to the activation of CORT

synthesis by ACTH, there also exist additional mechanisms

regulating the level of CORT synthesis within the adrenal itself.

To explore the potential intra-adrenal mechanisms regulat-

ing the level of CORT synthesis and secretion, we used

experimentally measured levels of plasma ACTH and plasma

CORT as inputs into each of the four candidate mathematical

models represented schematically in figure 3, where model I
represents the null hypothesis of no intra-adrenal feedback

(no inhibition); model II represents non-delayed CORT nega-

tive feedback (inhibition), motivated by the presence of GR in

the adrenal [13,14]; model III represents delayed CORT nega-

tive feedback (delayed inhibition), motivated by the fact that

the CORT–GR interaction, and subsequent inhibition, may

be dependent on intermediate steps not explicitly modelled,

resulting in a time delay; and model IV represents a transient

block of the intra-adrenal inhibition (disinhibition).

Because our experimental data consisted of measurements

from individual animals at each time point, instead of using

the average time profiles for ACTH and plasma CORT as

model inputs, we created 400 time course trajectories using

data points selected at random from individual experimental

measurements of each hormone (figure 4). Each ACTH and

plasma CORT time course trajectory was then normalized to

the respective hormone level at time zero, and these values

were interpolated using pCHip and used as inputs to the four

mathematical models. To assess the fit of each model, we com-

pared the experimentally measured and model-predicted

adrenal CORT profiles by computing the LSE for each fit.

A schematic of this process is shown in figure 5a. Examples of

the fit between the experimentally measured and model-

predicted adrenal CORT profiles are presented in figure 5b–d,

along with the corresponding LSE value for each fit. Computing

the fit for all 400 time course trajectories results in an LSE
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distribution for each model, as shown in figure 5e–g. To control

for differences in model complexity, we also computed the AIC

(table 1).

We found it straightforward to reject the null hypothesis

of no intra-adrenal feedback inhibition (model I), reflected

in the visually poor fit to the experimental data for all three

experimental paradigms and the corresponding LSE values

(figure 5b–g; blue line). The inclusion of adrenal CORT-

dependent inhibition (model II) resulted in a dramatic improve-

ment in the match between the experimentally measured and

model-predicted levels of adrenal CORT, reflected by the order

of magnitude decrease in the LSE values for the acute noise

stress and constant CRH experiments (figure 5b,c,e,f; green

line). However, for the ACTH pulse experiment, there was a

poor fit between the experimentally measured and model-

predicted adrenal CORT data (figure 5d,g; green line). This

suggests that a CORT-dependent inhibitory mechanism does

not fully capture the intra-adrenal CORT dynamics when the

adrenal is directly activated by ACTH.
We then extended the simple model of adrenal CORT-

dependent inhibition (model II) to incorporate either a delay

in the onset of adrenal CORT negative feedback (model III),

or a transient disinhibition of this CORT negative feedback

(model IV). For the acute noise stress experiment, the best fit

occurs for model III, which has the lowest median LSE and

AIC scores (figure 5b,e; red line and table 1). On the other

hand, for both the constant CRH and ACTH pulse exper-

iments, the median LSE and AIC values are lowest for model

IV (figure 5c,d,f,g; turquoise line and table 1). It is important

to note, however, that for the noise stress experiment, the

LSE and AIC values for model IV are a close second to

model III (figure 5b,e; turquoise line and table 1). This is also

evident when comparing the LSE values for the two models

( pIII,IV ¼ 0.17), suggesting that, in fact, both model choices

have a similar ability to explain the observed dynamics for

the acute noise stress experiment.

While displaying the LSE for each model choice as a box

plot (figure 5e–g) enables us to ascertain the best overall
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model for a given experimental paradigm, this analysis

approach does not inform us about the best model choice for

a specific given trajectory. To assess this, we also considered

the LSE for each model on a trajectory-by-trajectory basis and

then ranked each model according to its LSE value (table 2).

As can be seen from table 2, the results of this trajectory-by-

trajectory analysis are in agreement with our analysis of the

LSE distributions in figure 5: for the noise stress study, model

III has the lowest LSE (i.e. best fit) for 58% of the trajectories,
compared with model IV which is the best fit for 37.5% of

the trajectories; for the constant CRH and ACTH pulse exper-

iments, model IV has the lowest LSE (i.e. best fit) for 86%

and 98.75% of the trajectories, respectively.

In the case of model III (delayed inhibition), we computed

the optimal delay time obtained by fitting the model to each

of the 400 trajectories and plotted the distribution for each

experiment (figure 6a–c). While the distribution of optimal

delay times for the noise stress experiment is tightly clustered



Table 1. Akaike information criterion (AIC) for models I – IV and the three
experiments.

noise stress constant CRH ACTH pulse

model I 178 100 134.5

model II 82 7.2 103

model III 19 222 105

model IV 26 257 16

Table 2. Proportion of 400 trajectories for which each model choice was
optimal (based upon LSE) for each of the three experiments.

noise stress constant CRH ACTH pulse

model I 0 0 0.0025

model II 0.045 0.035 0.005

model III 0.58 0.105 0.005

model IV 0.375 0.86 0.9875
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Figure 6. Distribution of optimal delay times for model III (delayed inhibition) for all 400 trajectories for the (a) noise stress, (b) constant CRH and (c) ACTH pulse
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around 10–15 min (figure 6a), the distributions for the constant

CRH and ACTH pulse experiments are more widely spread

(figure 6b,c). This is consistent with our findings that model

III provides a good fit for the noise stress experiment, but not

for the constant CRH or ACTH pulse experiments. Interest-

ingly, this optimal delay time for the noise stress experiment

is consistent with the time taken for plasma CORT to activate

GR in target tissues [31]. In addition, we have observed a

rapid phosphorylation of GR (which is a marker of GR

activation) within the adrenal following a rise in adrenal

CORT (2014, unpublished data). This supports the hypothesis

that CORT-dependent intra-adrenal inhibition occurs via a

GR-dependent signalling pathway.

In the case of model IV (disinhibition), we computed the

optimal duration of the block time obtained by fitting the

model to each of the 400 trajectories and plotted the distri-

bution for each experiment (figure 6d– f ). In addition to

this, we also plotted the average plasma ACTH for the 400

trajectories. Although the distribution of block time duration

varies with each experiment, a consistent finding across all

three experiments is that the peak in the distribution occurs

around 15 min after the peak in plasma ACTH. This impli-

cates a role for plasma ACTH in transiently disinhibiting

(e.g. temporarily blocking) the adrenal CORT negative feed-

back mechanism.
Although, overall, model IV provides the optimal fit

for the constant CRH and ACTH pulse experiments, in

the case of the noise stress experiment, model III is the opti-

mal fit. The reason for this difference is not clear, but it is

possible that, alongside activation of the HPA axis, hypo-

thalamic activation of the sympathetic nervous system

during stress may introduce addition levels of regulation

within the adrenal [32] that may, in turn, affect the dyna-

mics of the adrenal response to ACTH. This suggests that

mechanisms within the adrenal regulating steroidogenesis

may change according to the nature of the ACTH stimulus

(e.g. basal versus stress).

ACTH regulation of CORT synthesis involves both geno-

mic and more rapid non-genomic mechanisms (figure 1c). At

the genomic level, ACTH-mediated PKA activation leads to

an increase in steroidogenic gene transcription and protein

expression [6]. There is evidence that glucocorticoids can

inhibit the transcription of steroidogenic genes via a mechan-

ism involving GR-induced transcription of DAX-1, a

repressor of StAR and MC2R transcription [33]. In addition,

ACTH can antagonize glucocorticoid-induced inhibition of

StAR transcription by inhibiting DAX-1 transcription [33].

This provides support for the concept of a GR-mediated

intra-adrenal negative feedback mechanism, and a role for

both ACTH and CORT in regulating steroidogenesis within
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the adrenal gland. However, given the timescales of these

genomic signalling processes, it is unlikely that they underlie

the rapid intra-adrenal regulation described in this study.

In addition to regulating steroidogenesis at the genomic

level, GR has also been shown to associate with the catalytic

subunit of PKA and regulate its activity [34]. Because the

rapid non-genomic effect of ACTH on CORT synthesis

involves PKA-mediated activation of proteins involved in

cholesterol metabolism, a critical part of the CORT synthesis

pathway, it is possible that GR-mediated regulation of PKA

activity underlies the rapid intra-adrenal regulation proposed

in this study.

Glucocorticoids are well known to regulate their own syn-

thesis via rapid feedback inhibition at the level of the anterior

pituitary and the brain. In this study, we have shown that an

additional level of glucocorticoid autoregulation may exist

within the adrenal gland itself which operates over the

timescale of both the ultradian rhythm and the acute stress

response. These multiple feedback mechanisms within the

HPA axis have likely evolved to maintain a balance between

reactivity and control. On the one hand, the body needs to
respond rapidly to stress, but, on the other hand, it must

avoid levels of glucocorticoid spiralling out of control, resulting

in downregulation and subsequent inactivity of the system as a

whole. The complexity of these networks raises the potential

for their breakdown in disease [35]. Indeed, changes in the

ultradian rhythm of CORT and the response to stress have

been described in a number of pathological conditions [35],

and abnormalities in intra-adrenal steroidogenic pathways

have recently been implicated in the development of adrenal

tumours [36]. Motivated by our work, further studies are

necessary to elucidate the molecular components involved in

regulating this intra-adrenal inhibitory mechanism.
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