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SUMMARY

The connectivity principles underlying the emergence of orientation selectivity in primary visual 

cortex (V1) of mammals lacking an orientation map (such as rodents and lagomorphs) are poorly 

understood. We present a computational model in which random connectivity gives rise to 

orientation selectivity that matches experimental observations. The model predicts that mouse V1 

neurons should exhibit intricate receptive fields in the two-dimensional frequency domain, causing 

a shift in orientation preferences with spatial frequency. We find evidence for these features in 

mouse V1 using calcium imaging and intracellular whole-cell recordings.

In Brief

Pattadkal et al. show that orientation selectivity can emerge from random connectivity, and offer a 

distinct perspective for how computations occur in the neocortex. They propose that a random 

convergence of inputs can provide signals for orientation preference in contrast with the dominant 

model that requires a precise arrangement.
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Graphical Abstract

INTRODUCTION

Since its initial description by Hubel and Wiesel (1962), orientation selectivity has served as 

a platform for studying neocortical computations (Priebe and Ferster, 2012). V1 neurons in 

primates and carnivores are characterized not only by their preference for the orientation of 

bars or edges but also by the preference for a bar or edge of a specific orientation being 

invariant to the spatial structure of the object displayed. For example, a V1 neuron that 

responds best to a vertical orientation should maintain that orientation preference despite 

changes in the width or movement of a presented bar (De Valois et al., 1982; Jones et al., 

1987; Webster and De Valois, 1985).

Orientation selectivity emerges in V1 of primates and carnivores where a functional 

organization for this selectivity is also observed: neurons are organized in a columnar 

fashion with shared orientation preference across cortical layers and smooth changes in 

selectivity along the V1 surface (Hubel and Wiesel, 1977). This functional architecture is the 

product of the spatial arrangement of ON and OFF thalamocortical inputs that innervate V1 

(Kremkow et al., 2016; Lee et al., 2016a) and of the vertical bias of intracortical connectivity 

(Song et al., 2005). These spatially offset ON and OFF afferents converge on individual V1 

neurons to generate receptive fields that are orientation tuned (Alonso et al., 2001) and well 

described by Gabor functions (Jones and Palmer,1987) (Figure 1A).

Such a functional architecture for orientation selectivity, however, is not common to all 

mammals: V1 of rodents and lagomorphs lack it, but their neurons are still orientation 

selective (Dra¨ger, 1975; Girman et al., 1999; Me´tin et al., 1988; Murphy and Berman, 

1979; Van Hooser et al., 2005). This raises the question of what connectivity rules guide 

afferent and intracortical circuitry to generate orientation selectivity in mammals that lack a 

functional architecture for orientation selectivity (Ohki and Reid, 2007).
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We recently showed in a model of rodent V1 that layer 2/3 (L2/3) can inherit orientation 

selectivity from orientation selective neurons in layer 4 (L4) even if recurrent as well as 

feedforward (L4 to L2/3) connectivity is random (Hansel and van Vreeswijk, 2012). In this 

model, the L2/3 network operates in a “balanced” regime (van Vreeswijk and Sompolinsky, 

1996, 1998), in which excitatory and inhibitory inputs are both strong and roughly cancel 

each other (Hansel and van Vreeswijk, 2012; Pehlevan and Sompolinsky, 2014).

In this report, we address the question of whether orientation selectivity can emerge in 

rodent V1 from random connectivity. We present a strongly recurrent model of the rodent 

V1 network in which neurons receive inputs from randomly chosen nonselective lateral 

geniculate nucleus (LGN) cells. The model does not necessitate sparse connectivity to 

generate selectivity, as is required in previous random network-based models of orientation 

tuning (Ringach, 2004; Soodak, 1987; von der Malsburg, 1973). Remarkably, orientation 

selectivity emerges in this network despite the lack of a Gabor-like structure of the 

thalamocortical input with well-segregated ON and OFF subfields. Furthermore, orientation 

selectivity in this network is robust to changes in the number of inputs. A key prediction of 

this model is that the orientation selectivity of V1 neurons may vary with the spatial content 

of the presented stimulus (Miller, 2016). It thus predicts that in mouse V1 receptive fields in 

the frequency domain are intricate, containing dependencies between orientation and spatial 

frequency, in stark contrast to observations made in primates and carnivores, and predictions 

of Gabor receptive fields (De Valois et al., 1982; Jones et al., 1987; Webster and De Valois, 

1985). To test these predictions, we quantified in mouse V1 the degree to which orientation 

preference is linked to the stimulus spatial frequency using a combination of 

electrophysiological and imaging measurements. In agreement with our model, we found 

that orientation preference depends on spatial frequency for some V1 neurons

RESULTS

To contrast different circuitry that could give rise to cortical orientation selectivity, we 

constructed two model V1 neurons that receive input from the thalamus. In one model, the 

V1 neuron receives ON and OFF thalamic inputs that are sampled on the basis of a Gabor 

filter: ON and OFF inputs have spatial preferences elongated along the preferred orientation 

axis and are spatially segregated (Figure 1A). The temporally modulated component (F1) of 

the response is largest to horizontally oriented drifting gratings regardless of the spatial 

frequency (Figure 1B). We also constructed a model V1 neuron that receives ON and OFF 

inputs with nearby spatial preferences (dispersion SD, 7 degrees), which are randomly 

intermixed (Figure 1C). Remarkably, this random connectivity model also exhibits 

orientation selectivity in the F1 component of the response. It emerges from the imbalances 

in ON and OFF inputs onto the target neuron. Unlike the ordered receptive field neuron, 

however, the preferred orientation of the F1 response of the cell changes with the stimulus 

spatial frequency. At high spatial frequency, the F1 responses of the model neuron are 

largest for stimuli oriented at 30 degrees, while at low spatial frequency responses are largest 

at 10 degrees (Figure 1D). This shift in orientation preference is a product of the random 

connectivity onto the neuron: the imbalances of ON and OFF thalamic inputs are different as 

spatial scale changes, causing shifts in orientation preference.
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Orientation Selectivity Emerges in a Model of Rodent V1 with Random Wiring

To study whether orientation selectivity in mouse V1 could result from random connectivity, 

we constructed a large-scale conductance-based spiking network model of V1 (Figure S1) in 

which cortical neurons receive feedforward excitation from randomly chosen thalamic relay 

cells as well as other cortical cells of similar retinotopic preferences (Figure S1B; see STAR 

Methods). Previously it has been shown that orientation selectivity can emerge on the basis 

of random inputs alone (Ringach, 2004; Soodak, 1987; von der Malsburg, 1973). Orientation 

selectivity arises in these models because of asymmetries in the spatial preferences of the 

sparse inputs that converge onto a cortical neuron. As the number of convergent inputs 

increases, however, the selectivity declines because the tuned temporally modulated 

component of the LGN input decreases relative to the time-averaged untuned component. To 

surmount this dependence of orientation selectivity on the number of inputs, we employ a 

network model in which excitatory and inhibitory inputs are strong but balanced (van 

Vreeswijk and Sompolinsky, 1996, 1998) such that the mean and variance of the net input is 

on the order of the distance to threshold (Figure S1E).

Networks with random connectivity operating in a balanced regime have previously been 

shown to maintain preferences present in the input (Hansel and van Vreeswijk, 2012). We 

hypothesized that orientation selectivity would emerge in our model if the spatial 

inhomogeneity in the aggregate thalamic input were maintained in the output by the balance 

of excitation and inhibition. In the balanced state, the untuned time-averaged component of 

the input is largely suppressed by the intracortical feedback, leading to a net input in which 

the tuned modulation is comparable to the untuned component. Indeed, orientation 

selectivity emerges in our model (Figure 2A), varying between highly selective neurons 

(e.g., model neuron E10371) to weakly selective (e.g., model neuron E11763). This diversity 

of selectivity results in a distribution of orientation selectivity index (OSI) demonstrating 

that orientation selectivity emerges naturally in a random connectivity model (Figures 2, 

S1F, S2, and S3). The emergent cortical orientation preference is matched to the preferred 

orientation of aggregate thalamic input (Figures S2A and S2B), as observed in mouse visual 

cortex (Li et al., 2013). In this balanced model, the emergent orientation selectivity should 

be insensitive to the number of inputs. To verify this, we varied this number from 25 to 100 

and found that the degree of orientation selectivity was maintained (Figures 2C, 2D, and S3). 

The emergent selectivity is also robust to changes in network size and in synaptic strength 

(Figures S3A and S3B).

Orientation selectivity emerges in our random connectivity model because of the spatial 

inhomogeneity in inputs to cortical neurons. In particular, the convergence of ON and OFF 

thalamic inputs onto model neurons are spatially offset from one another. The orientation of 

this offset may be related to the emergent orientation preference of neurons (Lien and 

Scanziani, 2013; Liu et al., 2010). To assess this relationship, we estimated the ON and OFF 

subfields of the thalamic inputs by presenting spots at different locations to the model 

network as in Lien and Scanziani (2013) (see STAR Methods). The estimated ON and OFF 

subfields for four example neurons reveal different offsets. When ON and OFF subfields 

have large horizontal displacements (E14493, E14847) preference for the vertical orientation 

of the drifting grating at 0.03 cyc/deg tends to emerge, whereas when ON and OFF subfields 
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are vertically displaced preference for horizontal orientations tends to emerge (Figure 3A, 

E14664). The offsets in ON and OFF subfields that emerge from the random connectivity 

model (Figure 3B) are similar to those observed experimentally (Lien and Scanziani, 2013). 

When the ON/OFF offset is large, there is a strong correspondence between the axis of the 

offset and the preferred orientation of the thalamic input (Figure 3). The ON and OFF 

displacement, however, is not the only factor that contributes to this orientation preference. 

The randomness in the feedforward connectivity generates ON and OFF subfields of the 

thalamic excitation that deviate from circularity. The shape of the subfields, and the 

interaction between the subfields, can create orientation preferences that deviate from that 

predicted from the offset of ON and OFF subfields (Figure 3A, example 15022). In sum, the 

offset of ON and OFF subfields, their interaction, and their shape influence the emergent 

thalamic orientation selectivity. Because the thalamic input selectivity is directly related to 

the cortical output selectivity (Figures S2A and S2B), these factors impact the emergent 

cortical orientation selectivity in the same way. The emergent orientation preference, 

however, is particularly sensitive to the spatial structure of the stimulus (Figure 1).

Dependence of Preferred Orientation on Spatial Frequency in the Model

We then characterized how much the properties of the neuronal responses vary with spatial 

frequency in the model. First, we investigated how the population average peak response and 

OSI were affected when changing spatial frequency (SF). We found that, although the mean 

population response was modulated by SF (maximal response for SF, 0.035 cyc/deg), the 

overall selectivity of the population was less sensitive to SF (Figures S2D and S2E). This 

mild effect across the population contrasts with the effect of SF changes on the preferred 

orientation of individual neurons. As we varied SF, the preferred orientation of neurons often 

changed (top and bottom left panels in Figure 4A; Figures 4B and 4C, pink). We quantified 

this change by computing the circular correlation (CC, see STAR Methods) of the preferred 

orientation at different spatial frequencies across neurons. This correlation was strong for 

nearby spatial frequencies, whereas for spatial frequencies far apart it was weaker (Figures 

4B and 4C). It declined from 0.71 for 0.04–0.03 cyc/deg to 0.00 for 0.04–0.01 cyc/deg 

(Figure 5, DCC = 0.71). We found that this effect was robust to changes in the network size, 

the number of connections per neuron, and the synaptic conductance strengths (Figure S3). 

We also found that it was qualitatively robust to changes in the spatial dispersion of the 

thalamic feedforward connections but that the decorrelation was weaker for smaller 

dispersions (Figures S3C and S3D).

Dependence of Preferred Orientation on SF in Mouse V1

These theoretical results prompted us to determine whether SF has a similar effect on 

orientation preference in mouse V1. Varying SF yielded shifts in orientation preference for 

many, but not all, neurons when measured using intracellular, whole-cell, recordings (Figure 

4A, middle: top and bottom panels; Figure 4C, blue panels). Changes in orientation 

preference were observed both at the level of spike rate and membrane potential (38 total 

cells; Figure S4). To gain access to this effect in large populations of V1 neurons, we also 

examined it by measuring calcium responses using two-photon microscopy (606 total cells; 

Figure 4A, left: top and bottom panels; Figures 4B and 4C, green panels; Figure S5). As 
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with our electrophysiological data, we found a diversity of changes with SF: preference 

shifted dramatically for some neurons and not for others.

These differences in preferred orientation observed from our Ca2+ responses could be due to 

noise in our measurements. To be included in our population analysis, cells were required to 

have a minimum peak response of 8% at both frequencies. Using different thresholds to 

include cells yields similar declines in correlation when comparing orientation preference at 

0.04 cyc/deg to 0.03 and 0.01 cyc/deg (8%: ᐃCC = 0.46 with 90 cells for 0.01 and 0.04 

cyc/deg and 288 cells for 0.03 and 0.04 cyc/deg; 10%:ᐃCC = 0.4 with 43 cells for 0.01 and 

0.04 cyc/deg and 182 cells for 0.03 and 0.04 cyc/deg; 12%: ᐃCC = 0.52 with 22 cells for 

0.01 and 0.04 cyc/deg and 139 cells for 0.03 and 0.04 cyc/deg). To address whether the 

observed effect was influenced by differences in response amplitude for different spatial 

frequencies, we also restricted our analysis to neurons with differences in peak response 

amplitudes less than 10% (Figure S6). This also did not alter the decline in CC (ᐃCC = 

0.49, n = 86 for 0.01 and 0.04 cyc/deg and n = 259 for 0.03 and 0.04 cyc/deg). Furthermore, 

we examined whether the reduction in CC was related to the OSI of neurons by restricting 

our analysis to only those cells within the top 25% of our distribution. This restriction yields 

a similar ᐃCC of 0.45 (n = 23, 0.01–0.04 comparison, n = 72 for 0.03–0.04 comparison). In 

sum, orientation preference changed with SF in electrophysiology records as well as calcium 

imaging measurements.

We have found that both the model and actual mouse V1 neurons exhibit changes in 

orientation preference with SF in a similar fashion (Figure 5). That is, for small-frequency 

shifts, the model input. Orientation selectivity does exist in mouse thalamic neurons 

(Piscopo et al., 2013; Scholl et al., 2013; Zhao et al., 2013), so we also explored the impact 

of elongated thalamic receptive fields on the properties of the cortical model (Figure S7). 

This impact was modest, slightly altering the dependence of orientation preference on SF 

(Figure 5, elongated thalamic receptive field model, and actual neurons have similar 

orientation preferences, as indicated by a high CC, whereas large changes in SF cause 

substantial decreases in CC. One notable discrepancy between the model and actual data is 

that nearby spatial frequencies have higher correlations for the model than for the data. A 

factor that contributes to this discrepancy is the amount of data collected in the model 

records relative to the physiological records (between 10 and 24 s for each orientation and 

SF). When we limit the records from which the model data are based to 20 s, instead of 80 s, 

ᐃCC declines from 0.71 to 0.58. An additional factor we considered is the nature of the 

thalamocortical DCC = 0.73; Figures S7F and S7G), while increasing the overall orientation 

selectivity of V1 excitatory neurons (mean OSI = 0.32 versus 0.23 for circular thalamic 

receptive field; Figure S7B).

Two-Dimensional SF Filters of Neurons in Mouse V1 Are Non-separable

The observed dependence of orientation preference on SF for some V1 neurons indicates 

that these neurons’ receptive fields are not simple orientation detectors. Instead, they may be 

measuring components of the visual scene that are better characterized by a conjunction of 

two-dimensional SF filters. We therefore measured responses of V1 neurons while varying 

vertical and horizontal SF components (Ringach et al., 2016) (24 cells, Hartley gratings; see 
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STAR Methods; Figure 6A). Neurons whose orientation selectivity is invariant to SF, would 

exhibit preference profiles for which angle (orientation) does not change with the distance 

from the origin (SF). As before, different neurons revealed a diversity of behaviors (similar 

to kernels shown in Ringach et al., 2016), from invariance (Figure 6A, left) to systematic 

change in selectivity with SF (Figure 6A, middle). We also recorded from a small number of 

inhibitory neurons (identified based on spike rate and action potential width) with broad 

selectivity for orientation and SF (Niell and Stryker, 2008) (Figure 6A, right). Measures of 

orientation preference based on the Hartley stimulus qualitatively agree with those made by 

measuring orientation tuning curves at different spatial frequencies (compare top and bottom 

panels in Figure 6A). This indicates that many V1 neurons are better characterized as 

containing receptive fields that are a conjunction of horizontal and vertical SF filters instead 

of invariant selectivity for orientation. We performed a comparable analysis in our V1 

network model (see STAR Methods) and found a similar behavior (Figures 6B and S8).

DISCUSSION

We have presented a network model for rodent V1 that demonstrates that orientation 

selectivity can emerge from random connectivity even if LGN cells are not selective. It 

makes the specific prediction that this selectivity should be sensitive to spatial form for some 

V1 neurons. Testing that prediction in mouse visual cortex, we found a similar effect. Using 

a model that receives thalamic inputs that exhibited some orientation selectivity 

increasedthedegreeofcorticalorientationselectivityyieldingdistributionsofOSIclosertoexperim

entalestimates. Thismodelalso exhibited a similar dependence of orientation preference on 

SF.

In our models, there is a strong overlap of the ON and OFF subregions of the thalamic inputs 

as seen in experiments (Li et al., 2013; Lien and Scanziani, 2013; Liu et al., 2010). When the 

offset between the centers of the ON and OFF subfields is large, the orientation of this offset 

can be predictive of the orientation preference of the neuronal response. Nevertheless, even 

when this offset is large, the orientation preference can change substantially with SF. In our 

model, the orientation of the offset and the orientation preference of the neuronal response 

are strongly correlated for intermediate SF only (Figure S9).

Quantitatively, the decorrelation of preferred orientation with SF is somewhat weaker in 

experiments when compared to our models. One source of this discrepancy is related to the 

amount of data collected for the model and the experiments. When records for the model are 

limited to 20 s, the model ᐃCC was 0.59, close to the experimental value of ᐃCC = 0.46. 

The change in ᐃCC is due to the decline in CC between 0.03 to 0.04 cyc/deg from 0.71 to 

0.59. Another possible source for this difference is that we did not incorporate any feature-

specific component in the connectivity even though this has been shown to be present in 

mouse V1 after the critical period (Ko et al., 2011, 2013; Lee et al., 2016b).

We have demonstrated that V1 neurons’ receptive fields are surprisingly intricate (Figures 6 

and S8). This complexity stands in contrast to the V1 receptive fields in cats (Hammond and 

Pomfrett, 1990; Jones et al., 1987; Webster and De Valois, 1985) and primates (De Valois et 

al., 1982), where orientation preference is represented in a separable manner from spatial 
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form. A similar dependence in the mouse V1 was reported in a study based on calcium 

imaging (Ayzenshtat et al., 2016). There, it was demonstrated that a reduction in SF by one 

octave causes a mean shift in preferred orientation by 22.1°, comparable to our own 

estimates of the change in orientation when shifting from 0.04 to 0.02 cyc/deg (model, mean 

ᐃPO = 29.8°; ephys, ᐃPO = 30.2°; Ca2+, ᐃPO = 22.2°). They proposed that the dependence 

could arise from separable selectivity in frequency domain. We demonstrate here that while 

some V1 neurons do have separable frequency domain receptive fields, V1 receptive fields 

exhibit diverse dependencies that yield SF-invariant orientation preferences (Figure 6, first 

column) or SF-dependent orientation preferences (Figure 6, second column).

Such receptive field complexity likely has an impact on connectivity patterns within V1. In 

primates and carnivores where preferred orientations are similar for different spatial 

frequencies, neurons with similar orientation preferences are much more likely to be 

connected (Bosking et al., 1997; Wilson et al., 2016). In mice, neurons with similar 

orientation preference have been reported to be somewhat more likely to be connected (Ko 

et al., 2011, 2013). However, in these experiments, difference in preferred orientation was 

measured at only one SF (0.045 cyc/deg). As we have shown, this difference varies with SF 

and the connectivity is likely to depend on the similarity in response at all spatial 

frequencies. Indeed, correlation in the response to natural stimuli was found to be a stronger 

factor than orientation preference at one SF in determining connection probability (Cossell 

et al., 2015; Ko et al., 2013).

The intricate receptive field profiles described here are akin to those observed in primary 

auditory cortex. Auditory cortex neurons are sensitive to the combination of many auditory 

cues (Wang et al., 2005), which may comprise a synthesis sufficient to detect auditory 

objects (Bar-Yosef and Nelken, 2007). The frequency domain receptive field profiles 

observed in mouse V1 neurons may therefore reflect a similar progression toward a 

representation for objects using a random connectivity scheme that occurs as information 

flows through the visual pathway.

To conclude, our investigation demonstrates that random connectivity can be the dominant 

component accounting for emergent properties such as orientation selectivity. An important 

advantage of random wiring schemes is that they occur naturally, following the broader 

patterns of retinotopy that are formed by biochemical gradients. This natural emergence may 

thus reflect a wiring strategy that allows for selectivity without the cost associated with 

constructing specific afferent wiring connections.

STAR⋆METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

C57BL/6J mouse strain Jackson Labs 000664

Software and Algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

MATLAB 7.4.0 Mathworks (https://www.mathworks.com) N/A

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, David Hansel (david.hansel@parisdescartes.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—Experiments were conducted using normal, adult male and female C57 mice (n = 33, 

P34 - P60). All procedures were approved by The University of Texas at Austin Institutional 

Animal Care and Use Committee.

METHOD DETAILS

Detailed Experimental Methods

Physiology: Procedures for two-photon imaging and physiology were based on those 

previously described (Scholl et al., 2015, 2017). Mice were anesthetized with intraperitoneal 

injections of 1000 mg/kg urethane and 10 mg/kg chlorprothixene. Brain edema was 

prevented by intraperitoneal injection of up to 10 mg/kg dexamethasone. Animals were 

warmed with a thermostatically controlled heat lamp to maintain body temperature at 37°C. 

A tracheotomy was performed and the head was placed in a mouse adaptor (Stoelting). A 

craniotomy and duratomy were performed over visual cortex. Eyes were kept moist with a 

thin layer of silicone oil. Primary visual cortex was located and mapped by multi-unit 

extracellular recordings with tungsten electrodes (1 mΩ, Micro Probes). The V1/V2 

boundary was identified by the characteristic gradient in receptive locations (Dräger, 1975; 

Mé tin et al., 1988). Eye drift under urethane anesthesia is typically small and results in a 

change in eye position of less than 2 degrees per hour (Sarnaik et al., 2014).

Dye Loading and In Vivo Two-Photon Microscopy: Bulk loading of a calcium sensitive 

dye under continuous visual guidance followed previous protocols in V1 (Golshani and 

PorteraCailliau, 2008; Kerr et al., 2005; Mrsic-Flogel et al., 2007; Ohki et al., 2005; Stosiek 

et al., 2003). Dye solution contained 0.8 mM Oregon Green 488 BAPTA-1 AM (OGB-1 

AM, Invitrogen) dissolved in DMSO (Sigma-Aldrich) with 20% pluronic acid (Sigma-

Aldrich) and mixed in a salt solution (150 mM NaCl, 2.5 mM KCl, 10 mM HEPES, pH 7.4, 

all Sigma-Aldrich). 40–80 mM Alexa Fluor 594 (Invitrogen) was also included for 

visualization during and immediately after loading. Patch pipettes (tip diameter 2–5 mm, 

King Precision Glass) containing this solution were inserted into the cortex to a depth of 

250–400 mm below the surface with 1.5% agarose (in saline) placed on top the brain. The 

solution was carefully pressure injected (100–350 mbar) over 10–15 minutes to cause the 

least amount of tissue damage. OGB-1-AM is only weakly fluorescent before being 

internalized, so the amount of dye injected was inferred through the red dye. To ensure full 

loading we waited 1 hour before adding a glass coverslip for imaging. Metal springs were 

fastened on the attached head plate to place pressure on the glass coverslip and reduce brain 

pulsations. Fluctuations in calcium fluorescence were collected with a custom-built two-
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photon resonant mirror scanning microscope (Scholl et al., 2015) and a mode-locked (925 

nm) Chameleon Ultra Ti:Sapphire laser (Coherent). Excitation light was focused by a 16X 

or 40x water objective (0.8 numerical aperture, Nikon). Images were obtained with custom 

software (Labview, National Instruments). A square region of cortex 300 mm wide was 

imaged at 256×455 pixels. In all experiments, multiple focal planes, separated by 20–25 

mm, were used to collect data, starting around 150 mm below the cortical surface. Before 

each experiment neuron drift was measured over a 2–3 min period. If drift occurred then the 

glass coverslip and agarose were readjusted to stabilize the brain during stimulus protocol 

(7–20 minutes each focal plane).

Stimuli: Visual stimuli were generated by a Macintosh computer (Apple) using the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) for MATLAB (Mathworks). Gratings 

were presented using a Sony video monitor (GDM-F520) placed 25 cm from the animal’s 

eyes. The video monitors had a non-interlaced refresh rate of 100Hz,a spatial resolution of 

1024×768 pixels, which subtended 40×30 cm, and a mean luminance of 40 cd/cm2. Drifting 

gratings (38 deg diameter for imaging, variable diameter for electrophysiology, 0.01–0.04 

spatial frequency, 100% contrast, 2 Hz temporal frequency) were presented for 2–3 s. Each 

stimulus was followed by a 3 s blank (mean luminance) period in the imaging protocol. 

Spontaneous activity was measured during blank (mean luminance) periods interleaved with 

drifting grating stimuli, all presented in a pseudorandom sequence. Direction presented 

ranged from 0–330 deg. Different spatial frequencies used were either presented individually 

in separate blocks (n = 15) or interleaved (n = 591) within the same block. Hartley stimuli 

were presented for each spatial frequency combination for 250 ms (Malone and Ringach, 

2008; Ringach et al., 2016). For each spatial frequency combination four phases were 

presented and the response to these phases were averaged. These were repeated 5–30 times 

per cell. During imaging sessions, each stimulation protocol was repeated 7–10 times at each 

focal plane. For each orientation and spatial frequency data was recorded between 10 and 24 

s. The microscope objective and photomultiplier tubes were shielded from stray light and the 

video monitors.

Detailed Computational Model of Mouse V1—The model is composed of two 

networks. One represents LGN and has NL neurons. The second network represents layer 4 

and layer 2/3 in mouse V1. For simplicity these two layers are collapsed into one single 

network, with NE excitatory and NI inhibitory neurons. In both networks the neurons are 

arranged on a square grid and the position (xiA, yiA), where (i,A) denotes the neuron i = 

1,...,NA of population A=E,I,. The position of neuron (I,A) is given by 

xia = M ix/ NA ; yia = M iy/ NA  where M is the size of the network (2mm), 

ix = (i − 1)mod NA and iy = (i − 1)/ NA. Here x is the largest ineteger equal to or smaller than 

x. All NA are square integers so that ix and iy are integers between 0 and NA − 1. Unless 

said otherwise we take NE = 32400, NI = 8100, NL = 25600.

Cortical Neurons: They are described in terms of conductance-based models. The 

membrane potential of neuron (i,A), A = E,I, evolves in time according to
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C
dV iA

dt = − II, iA − INa, iA − IK, iA − Iadapt, iA + ILGN, iA + Irec, iA + Ib, iA (1)

where C is the membrane capacitance, II, iA, is the leak current, and INa,iA, IK,iA are the 

intrinsic sodium and potassium currents that shape the action potentials and Iadapt,iA is an 

adaptation potassium current which included in E neurons, only. The dynamics of these 

currents are as in (Hansel and van Vreeswijk, 2012). The current ILGN,iA describes the input 

from LGN, Irec,iA is the recurrent input from other cortical neurons and Iback, iA represents a 

background input from other cortical regions not explicitly included in the model.

LGN Neurons: LGN cells are modeled as Poisson neurons with time varying rates that 

depend on the visual stimulus. Neuron (i,L) responds to a luminosity field L(x,y,t) with an 

instantaneous firing rate

riL(t) = r0 + ∬ dxdyRil(x, y)L(x, y, t)
+

(2)

where r0 is the spontaneous firing rate of the neuron, assumed to be the same for all LGN 

cells, RiL(x,y) is its receptive field and [x]+ = x for x > 0, [x]+ = 0 for x < 0. The luminosity 

field of a sinusoidal drifting grating with orientation q, spatial wavelength λ, and temporal 

frequency ω, is

L(x, y, t) = L0 1 + εcos kx x + kyy − ωt (3)

where L0 is the average luminosity, ε is the contrast, and the wave-vector of the grating is: 

k= (kx, ky) = (k cosθ, k sinθ) with k = 2 π/λ. The parameters used in our simulations are 

listed in Tables S1 and S2.

The receptive field of neuron (i,L) has the form

Ril(x, y) = ± R

exp − x′2

2σcx
2 − y′2

2σcy
2

2πσcxσcy
− β

exp − x′2

2σsx
2 − y′2

2σsy
2

2πσsxσsy
− U

S (4)

where x′=(x–xil)cosθiL + (y–yil)sinθiL, y′ = (x – xil)sinθiL + (y–yil)cosθiL, β is a parameter 

that controls the relative weights of the two subfields, R is a constant (1 Hz). U is a constant 

such that ∬
S

dx dy Ril(x, y) = 0. The integral is performed over a surface of size S that is much 

larger than the size of the network. The long and short axis of the center (resp. surround) 

region are denoted here by σcx and σcy (resp. σcx and σcy). The global sign is +1 if the 
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receptive field is ON center and 1 if it is OFF center. We take this sign at random with equal 

probability to be +1 or 1.

In all simulations except those in Figure S7 we assume circular receptive fields for both 

center and surround subfields. In the simulations described in Figure S7 surrounds are 

circular but centers are elongated. We use the following parametrization: 

σcx = 1 + ασ, σcy = (σ / 1 + α), σsx = σSy ≡ σs with σ ≡ σcxσcy. Therefore, α= 0 corresponds 

to a circular center and surround subfields. In this case the LGN cell is not selective to 

orientation. The degree of selectivity increases with a. The response of the LGN cells to a 

drifting grating can then be calculated based on

riL(t) = r0 + εr iL(θ, λ)cos ωt − ΔiL(θ, λ) + (5)

where, in the limit of large S,

r iL(θ, λ) = RL0 exp −
(kσ)2 A + Bcos 2 θ − θiL

2 − βexp −
kσs

2

2 (6)

with A = α2 + 1 /2α and B = α2 − 1 /2α, with α = 1 + α

The phase ΔiL(θ,λ) is: ΔiL(θ,λ)=2π(XiL cos θ + YiL sin θ)/λ ΔiL(θ,λ)=π+2π(XiL cos θ + 

YiL sin θ)/λ) for an ON (OFF) cell.

Thalamo-cortical and Recurrent Connectivity: The connectivity between model LGN and 

cortex is random and does not depend on the functional properties of the cells. The 

probability that cortical neuron (i,A) is connected to LGN cell (j,L) is

Pi j, AL = KALG xiA − x jL, σAL G yiA − y jL, σAL (7a)

where KAL is the mean number of LGN inputs received by a cortical cell in population A 

and

G(x, σ) = 1
2πσ2 ∑

k, l = − ∞

+∞
exp − [x − Mk]2

2σ2 (7b)

is the periodic Gaussian with variance σ2.

The recurrent interactions in the cortical network are also random and non specific. The 

probability of connection between neuron (j,B) and (i,A) (A = E,I; B = E,I) is
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Pi j, AB = KABG xiA − x jB, σAB G yiA − y jB, σAB . (8)

The Feedforward and Recurrent Synaptic Currents: Thalamo-cortical synapses on 

cortical population A are all excitatory, have a reversal potential VE, a strength gAL and a 

synaptic time constant τL. The thalamo-cortical current, ILGN,iA, in neuron (i,A) is

ILGN, iA(t) = − giL(t) ρ V iA − VE + (1 − ρ) VL − VE (9)

with: giL(t) = gAL/τL ∑ j = 1

NL
Ci j

AL∑k exp − t − tk, j /τL , where CAL is theALij NAXNL 

connectivity matrix of the thalamo-cortical projections (Ci j
AL = 1 if there is a connection from 

neuron (j,L) to neuron (i,A); Ci j
AL = 0 otherwise), and tk,j is the time of the k-th spike 

generated by neuron (j,L). The sum over k is over all the spikes with tk,j < t.

The total recurrent current into neuron (I,A) is Irec,iA = IiA,E + IiA,I where

IiA, B = − giA, B(t) ρ V iA − VB + (1 − ρ) VB − VL (10)

with giA, B(t) = gAB/τAB ∑ j = 1

NL
Ci j

AB∑k exp − t − tk, j /τAB .

Finally, the background current in Equation (1) is modeled as

Ib, iA = − gb, iA(t) ρ V iA − VE + (1 − ρ) VL − VE (11)

where gb,iA(t) is a random Gaussian variable with mean Kbgbr0 and variance Kbgbr0. This 

represents the effect of Kb uncorrelated Poisson inputs, each of synaptic strength gb:

Note that in Equations (9,10) the right hand-sides comprise two contributions. The first is 

proportional to the driving force ViA–VB. Thus it modifies the input conductance of the 

neuron. This contrasts with the second contribution which does not depend on the membrane 

potential of the post-synaptic cell. We adopted this description to incorporate in a simplified 

manner the fact that the change in input conductance induced by a synapse depends on its 

location on the dendritic tree. Proximal synapses which substantially affect the neuron’s 

input conductance are represented by the first contribution. The second contribution 

accounts for the synapses which are distal and which affect the input conductance of the 

neuron less (see also Hansel and van Vreeswijk, 2012).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Experimental Analysis

Two-Photon Calcium Imaging Analysis: Images were analyzed with custom MATLAB 

software (Mathworks). Cells were identified by hand from structure images based on size, 

shape, and brightness. Cell masks were generated automatically following previous methods 

(Nauhaus et al., 2012). Glia were easily avoided due to their different morphology from both 

OGB-1 AM filled neurons. Time courses for individual neurons were extracted by summing 

pixel intensity values within cell masks in each frame. Responses (Ft) to each stimulus 

presentation were normalized by the response to the gray screen ðF0Þ immediately before 

the stimulus came on:

ΔF /F = Ft − F0 /F0 .

For each stimulus, the mean change in fluorescence ᐃF/F was calculated from a 0.66 s 

window of the response centered at the time of the global peak to all visual stimuli. Visually 

responsive cells were required to fulfill 4 criteria in order for them to be included in our 

analysis. First, the response to the preferred orientation was significantly different than the 

spontaneous response (t test for unequal variances, p < 0.05). Second, the response 

amplitude must be greater than 8% ᐃF/F. Third, responses were required to have distinct 

different trial-to-trial fluorescence time courses, as determined by measuring the type II 

regression of the time course of each cell’s response and the neuropil response, extracting 

the slope of that relationship and determining if it was significantly different from unity 

(Sokal and Rohlf, 1995). Finally we restricted our analysis to cells with OSI greater than 

0.08 at the spatial frequencies being compared. Fewer cells meet our inclusion criteria for 

comparison of 0.01 cyc/deg to 0.04 cyc/deg (8%) than 0.02 cyc/deg to 0.04 cyc/deg (40%). 

Mean changes in fluorescence from visually responsive neurons were used to generate 

tuning curves for orientation selectivity. 95% confidence intervals (CI) were generated on 

the preferred orientation of the neurons at different spatial frequencies using method 

described below. The mean CI length on preferred orientation for 0.04 cyc/deg was 5.1 

degrees whereas for 0.01 cyc/deg it was 6.4 degrees and the distributions of CI are not 

significantly different (unpaired t test, p < 0.5).

Electrophysiology Analysis: Spiking responses for each stimulus were cycled-averaged 

across trials after removing the first cycle. The Fourier transform of mean cycle-average 

responses was used to calculate the mean (F0) and modulation amplitude (F1) of each cycle-

averaged response, after mean spontaneous activity was subtracted. The subthreshold 

membrane potential responses were also similarly computed after median filtering the 

voltage traces to remove spikes. Peak responses were defined as the sum of the mean and 

modulation (F0 + F1).

Peak responses per trial across each condition for neuronal responses measured using 

electrophysiology and imaging were bootstrapped to compute the vector average orientation 

(number of bootstrap resamples = 10000). This was used as the preferred orientation for the 

neuron. For electrophysiology, cells were only included in the analysis, if the bootstrapped 
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confidence intervals on mean of the maximum amplitude spiking response (number of 

bootstrap resamples = 10000) did not include zero. A double Gaussian curve was fit to the 

responses for characterizing orientation tuning (Carandini and Ferster, 2000):

R(θ) = αe
− θ − θpre f

2/ 2σ2
+ βe

− θ − θpre f + π
2/ 2σ2

+ k .

Here R(θ) is the response of the neuron to different orientations (θ), s is the width of the 

tuning curve, k is the mean background activity, α and β are peak amplitudes, and θpref is 

the orientation preference. Gaussian fits were used only for qualitative description of the 

tuning. The actual fit parameters have not been used in the analysis. The orientation 

selectivity index was also computed (Ringach et al., 2002; Tan et al., 2011):

OSI =
∑ R(θ)sin(2θ)

2
+ ∑ R(θ)cos(2θ)

2

∑ R(θ)
.

The circular correlation (cc) between the preferred orientations (PO) is defined as:

cc =
∑i, j sin POi − PO j sin POi′ − PO j′

∑i, j sin2 POi − PO j ∑i, j sin2 POi′ − PO j′

where POi is the preferred orientation of neuron i for one spatial frequency and PO’i is the 

preferred orientation of the same neuron for another spatial frequency. This number is 

always in the range [−1:1], reaching 1 for perfect linear correlation between the preferred 

orientations in the two conditions. 95% confidence intervals are generated on the circular 

correlation using bootstrapping (Sokal and Rohlf, 1995) (number of bootstrap resamples = 

10000).

Statistical Analysis: For both calcium data and electrophysiological data we determined if 

the difference in the preferred orientations estimated at different spatial frequencies was 

statistically significant using the studentized method of generating 95% confidence intervals 

(Sokal and Rohlf, 1995). The same method was used for generating 95% confidence 

intervals on the circular correlation.

Model Analysis

Numerical Procedures and Analysis: Numerical simulations were performed using a 4th-

order Runge-Kutta scheme to integrate the neuronal dynamics (Press, 1992). The synaptic 

interactions and the noise were treated at first order. The time step is δt = 0:05ms.

For each cortical neuron the mean firing rate, F0(θk), and firing rate temporal modulation 

(first Fourier component of the response) F1(θk), were estimated for each orientation, θk = 

(k-1)20°, k = 1,..,9, by averaging the response upon 40 s of stimulation, unless specified 

otherwise. We then computed the orientation averaged responses
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Fn = 1
9 ∑

k = 1

9
Fn θk n = 0, 1

and the complex numbers

Zn = 1
9 ∑

k = 1

9
Fn θk e

2iθk n = 0, 1.

The Orientation Selectivity Index (OSI) and the Preferred Orientation (PO) of the peak 

response is then estimated from

OSI =
Z0 + Z1
F0 + F1

PO = Arg Z0 + Z1 .

The OSI is 0 if the response has no tuning and 1 if the neuron responds at only one 

orientation. These definitions for the OSI and PO are equivalent to those used in the analysis 

of the experimental data (see above).

The definition of correlation coefficient is same as described above.

We also fit the tuning curves of the mean, F0(θk),.., and temporal modulation, F1(θ), of the 

spike to periodic Gaussian functions

Fn(θ) = An + Bn ∑
k, l = − ∞

+∞
exp −

θ − kπ − θn
2

2σn
2

with n = 0,1. We estimated the parameters An, Bn, θn, σn, for each neuron by minimizing the 

quadratic error: E(An, Bn, θn, σn) = (1/9)∑k = 1
9

(Fn(θk) − Fn(θk))2.

Robustness of the Results: To check that a time step, δt = 0:05ms, was sufficiently small, 

we also performed several simulations with δt= 0:025ms. To verify that our results were also 

robust to changes in system size we performed several simulations on networks with NE = 

78560, NI = 19600, NL = 40000, keeping the average number of connections into E and I 

cells the same.

Structure of the ON and OFF Subfield of the Thalamic Input: We characterized the 

thalamo-cortical input in the model by performing simulations with a protocol similar to the 

one in the experiments of Lien and Scanziani (2013). The stimuli used to map the receptive 
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fields were Gaussian spots with a standard deviation of 5.6 degrees. The spots were 

presented in one of 64 locations arranged regularly in a square of 8×8 in the center of the 

network. The distance between the centers of adjacent spots was 7°. In order to characterize 

both ON and OFF receptive fields the stimuli were either brighter or dimmer than the 

background illumination. Each stimulus was presented during 1sec. During that time we 

evaluated the average of the conductance of the thalamic to each cortical neuron. We 

checked that the results were robust with respect to longer simulation times. The intensity of 

the stimulus (with respect to the background value) at the center of the Gaussian was l0 = 

± 0.075. After performing the simulations, the centers of the ON and OFF subfields were 

estimated by evaluating their center of mass: < r > = Σi fi ri /Σi fi, where fi is the average 

thalamic input for a stimulus at position is ri. In order to reduce the noise level we 

performed the sum only over the locations for which the average input is larger or equal than 

30% of the maximal average input.

Let us note that this way of estimating the center of the fields is only valid for cortical 

neurons whose feedforward inputs do not come from the border of the LGN network. 

Otherwise, because of the periodic boundary conditions of the LGN receptive fields, the 

linear estimation could combine inputs from opposite sides of the visual field. As the 

feedforward connectivity profile is topographically organized, neurons in the center of the 

cortex receive inputs from neurons in the center of the LGN. Therefore, boundary effects can 

be avoided by evaluating the center of mass only for neurons in the central part of the 

cortical network. In particular all the statistics of the ON and OFF subfields were estimated 

from neurons the square region of 14°x14° at the center of the network (361 neurons).

Parameters of the Computational Model: The cortical network is assumed to have a size 

of 2mm x 2mm representing 140° x 140ig° in the visual field (Kalatsky and Stryker, 2003).

The synaptic dispersion of the recurrent connectivity is taken to be 200 mm, consistently 

with values reported in Reyes and Sakmann (1999). Unless indicated otherwise, the 

dispersion of the feed-forward connectivity was 100 mm.

The synaptic efficacies were as in Table S1. With these parameter values post-synaptic 

potentials have peak size is 0.5 mV (E- > E interaction), 0.3 mV (I- > E), 2.7 mV (E- > I), 

0.9 mV (I- > I), 0.9 mV (LGN- > E), 0.8 mV (LGN- > I). See Figure S1A.

We introduced heterogeneity in the parameters σcx, σsx, α, β. For each thalamic neuron 

these parameters were chosen from a lognormal distribution

P(x) = 1
xs 2π

e
− (ln x − m)2

2s2
,

where the parameters m and s are given by σcxm,σcxs, σsxm, σsxs, αm, αs, βm, βs 

respectively. The values of these parameters are given in Table S2. Examples of receptive 

fields of LGN neurons in the model are plotted in Figure S1B. The heterogeneity in the LGN 

receptive fields is depicted in Figure S1C.
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In the simulations of Figure S7, the preferred orientations of LGN neurons are chosen 

randomly with a distribution PðqÞ= P0 aq

P(θ) = P0 aθ + bθexp − θ2

2cθ
2 ,

where P0 is a normalization constant. The parameters we used in these simulations are given 

in Table S3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Random connectivity explains orientation selectivity in visual cortex

• Preferred orientation depends on spatial frequency

Pattadkal et al. Page 22

Cell Rep. Author manuscript; available in PMC 2018 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Receptive Fields, Random Connectivity, Spatial Frequency (SF) Tuning, and 
Orientation Tuning
(A) Hubel and Wiesel connectivity in which ON (red) and OFF (blue) thalamo-cortical 

afferents, with spatial receptive fields indicated by each circle, converge onto a neuron in 

primary visual cortex. The summation of these afferent receptive fields generates a Gabor-

like receptive field in visual cortex (inset).

(B) Orientation preference does not change with SF for such receptive fields. Tuning curves 

of the temporal modulation of the response for low (red), medium (green), and high (blue) 

spatial frequencies are plotted. In frequency space, these receptive fields maintain a peak 

response at a consistent angle that points toward the origin at the midpoint of the graph 

(inset).

(C) Random connectivity from the lateral geniculate nucleus (LGN) in which ON and OFF 

thalamo-cortical neurons with similar spatial receptive fields converge on cortical neurons 

also generates orientation selectivity in the temporal modulation of the response. The linear 

summation of LGN ON and OFF neuron receptive fields shows oriented profiles (inset). 

Scale bar indicates 35 degrees.

(D) Orientation preference shifts for random connectivity as SF changes. Orientation tuning 

curves are plotted as in (B). In frequency space, these receptive fields tilt in a manner that 

does not project back to the origin.
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Figure 2. Orientation Selectivity Emerges in the Mouse V1 Model
(A)Examples of tuning curves (peak firing rate) of three excitatory V1 neurons in the model. 

SF of the drifting grating is 0.03 cyc/deg. OSIs from left to right are as follows: 0.62, 0.23, 

and 0.15. Error bars represent the SEM.

(B)Distribution of OSI (peak response) over all the neurons (neurons in the central part of 

the network; see STAR Methods; n = 5,041). Mean OSI = 0.24 (mean OSIs of the F0 and F1 

components of the response are 0.29 and 0.19).

(C)Examples of tuning curves of excitatory neurons in networks with different average 

number of thalamic inputs per neuron. From left to right: OSI = 0.47, 0.48,and 0.49.

(D)Population average OSIs versus average number of thalamic inputs. Red: Peak spike 

response. Black: F1 component of the spike response. Blue: F1 component of the thalamic 

excitatory input.
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Figure 3. The Contribution of the Offset of ON and OFF Subregions of the Thalamic Excitation 
to Its Orientation Preference
The ON and OFF subfields of the thalamic inputs were estimated by presenting spots at 

different locations to the model network as in Lien and Scanziani (2013) (see STAR 

Methods).

(A) Top panels: ON (red) and OFF (green) subfields of the thalamic excitation for four 

example neurons. Dark spots: Center of mass of the subfields. The solid line indicates the 

axis of the offset of the two centers of mass. Receptive fields based on the summed ON and 

OFF thalamic inputs are shown on the right. The scale bar on the right applies to all 

receptive fields. Bottom panels: Tuning curves of the thalamic excitation for these neurons. 

The SF of the drifting grating is 0.03 cyc/deg. Vertical dashed line indicates the orientation 

of the offset axis (0 corresponds to an horizontal axis). Offset amplitude and orientation and 

preference of the thalamic excitation are as follows: E14493, 11.4°, 166.1°, 160.3°; E14847, 

4.7°, 18.2°, 31.1°; E14664, 3.9°, 111.4°, 80.7°; E15022, 2.8°, 20.6°, 88.0°.

(B) Offset distribution across neurons (n = 361;neurons are at the center of the network, see 

STAR Methods). Mean offset: 4.1°.

(C) Orientation preference of the thalamic input conductance (drifting grating with 0.03 cyc/

deg) versus orientation from the offset axis (perpendicular to the offset axis) for all neurons 

with an offset larger than 4 (n = 170). The CC is 0.24.
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Figure 4. SF and Orientation Selectivity in the Model and Mouse V1
(A) Example orientation tuning curves based onspike rate are plotted for neurons in the 

spiking network model (left), electrophysiology (middle), and based on fluorescence 

changes from calcium imaging experiments (right). Orientation tuning curves are plotted for 

different spatial frequencies, from 0.01 to 0.04 cyc/deg, indicated by line thickness. If the 

error bars are not visible, they are smaller than the symbol size. Error bars represent SEM.

(B) Top row: The relationship between preferred orientation in the model. Left: 0.04 cyc/deg 

and 0.01 cyc/deg. Middle: 0.04 cyc/deg and 0.02 cyc/deg. Right: 0.04 cyc/deg and 0.03 cyc/

deg. Bottom row: The same for the calcium and electrophysiological records (green and blue 

Pattadkal et al. Page 26

Cell Rep. Author manuscript; available in PMC 2018 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



symbols, respectively). The bootstrapped vector average is used as the estimate of the 

preferred orientation. For calcium and spiking data, statistically significant shifts in 

orientation preference are indicated by filled circles. Number of cells in the imaging data for 

comparison of 0.01 and 0.04 cyc/deg is 90, for comparison of 0.02 and 0.04 cyc/deg is 228, 

and for comparison of 0.03 and 0.04 cyc/deg is 288. Number of cells in the 

electrophysiological data for comparison of 0.01 and 0.04 cyc/deg is 19, for comparison of 

0.02 and 0.04 cyc/deg is 19, and for comparison of 0.03 and 0.04 cyc/deg is 17.

(C)Histograms of the difference in orientation preference between 0.04 cyc/deg and 0.01 

(left), 0.02 (middle), and 0.03 (right) cyc/deg. Filled bars for electrophysiology and calcium 

imaging data indicate statistically significant changes in orientation preference.
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Figure 5. Comparison between Model and Experimental Results
Graph indicates the observed CC between preferred orientations of single neurons at two 

spatial frequencies. The pairs of spatial frequencies being compared are indicated on the x 

axis. Green: Calcium imaging. Blue: Electrophysiology. Purple: Model with circular 

thalamic receptive fields (same as in Figure 4). Red: Model with elongated thalamic 

receptive fields (see Results and Figure S9). Error bars are bootstrapped 95% confidence 

intervals on the CC. For calcium: CC for 0.01–0.04 cyc/deg = 0.08, for 0.02–0.04 cyc/ deg = 

0.33, and for 0.03–0.04 cyc/deg = 0.53. Electrophysiological data: CC for 0.01–0.04 cyc/deg 

= 0.03, for 0.02–0.04 cyc/deg = 0.28, and for 0.03–0.04 cyc/deg = 0.67.
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Figure 6. Neuron Receptive Fields in the Frequency Domain Are Intricate
(A) Mean membrane potential responses to Hartley stimuli (see STAR Methods) are plotted 

for combinations of horizontal and vertical spatial frequencies (top row). Circles indicate 

stimulus combinations corresponding to oriented gratings at fixed spatial frequencies. The 

red and black dots indicate the peak response at those spatial frequencies. Each panel 

corresponds to a different example cell. Orientation tuning curves for drifting gratings at 

0.014 cyc/deg (red) and 0.044 cyc/deg (black) are shown for these four neurons (bottom 

row). Error bars represent SEM.

(B)Example frequency receptive fields for four neurons in the model. Orientation tuning 

curves at 0.01 cyc/deg (red) and 0.04 cyc/deg (black) are shown for these neurons (bottom 

row) based on responses to drifting gratings.
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