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Abstract

Genome-wide association studies (GWAS) have successfully identified common variants

associated with BMI. However, the stability of aggregate genetic variation influencing BMI from

midlife and beyond is unknown. By analysing 165,717 men and 193,073 women from the

UKBiobank, we performed BMI GWAS on six independent five-year age intervals between 40

and 72 years. We then applied genomic structural equation modeling to test competing hypoth-

eses regarding the stability of genetic effects for BMI. LDSR genetic correlations between BMI

assessed between ages 40 to 73 were all very high and ranged 0.89 to 1.00. Genomic struc-

tural equation modeling revealed that molecular genetic variance in BMI at each age interval

could not be explained by the accumulation of any age-specific genetic influences or autore-

gressive processes. Instead, a common set of stable genetic influences appears to underpin

genome-wide variation in BMI from middle to early old age in men and women alike.

Author summary

We used a new method called genomic structural equation modeling to analyse data from

165,717 men and 193,073 women from the UKBiobank. Our results revealed that genetic

influences on BMI were very stable between ages 40 and 73. In other words, there did not

appear to be any age-dependent genetic influences on BMI during this period. The same

results were seen in men and women.

Introduction

The recent decade has witnessed significant advances in the detection of multiple loci under-

pinning variation in complex traits [1]. Among the most successful endeavors has been
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genome-wide association scan (GWAS) analyses of adult BMI [2–4]. Notwithstanding the pre-

dictive validity of common BMI variants [5], GWAS BMI loci are based on large, aggregated

meta-analytic samples derived from varying geographic and economic regions, derived from

different birth cohorts and age distributions. Here, we examine this last caveat for it remains to

be empirically determined if the genome-wide variation associated with adult BMI is age-

invariant or age-specific. This has public-health consequences. For example, given the positive

association between increased age and BMI with COVID19-related hospitalization and mor-

tality [6,7], determining if genetic variants in BMI at older ages are qualitatively distinct is

important.

BMI heritability & longitudinal genetic correlations

Despite moderate stability across time [8–12], average adult BMI increases from age 20 to age

65 at which time it levels off until age 80 [12] before beginning to decline. Such changes might

be attributed to variable contributions of genetic and environmental risks across the lifespan.

Apart from birth cohort differences, Dahl et al. [12], found that factors such as an obesity

genetic risk score, type-2 diabetes mellitus, cardiovascular disease, substance use, and educa-

tional attainment were all differentially predictive of both average BMI and changes in BMI

before age 65. In contrast, many of these risks were no longer predictive after age 65. In terms

of genetics, whereas the overall lifetime BMI heritability is 0.75 [13], heritability actually

increases throughout infancy and adolescence [14] before decreasing during adulthood [13].

In terms of cross-temporal associations, genetic influences in BMI are correlated across time

[8–11,14–16], sometimes very highly [17], which indicates continuous expression of the same

genetic influences [18]. However, longitudinal genetic correlations for BMI never reach unity.

Indeed, there is considerable variability in longitudinal genetic correlations [13,15,16]. This is

also consistent with age-specific genetic influences, which could be obscured in GWAS meta-

analytic results based on data aggregated across age or GWAS analyses with age as a covariate.

Linkage Disequilibrium Score (LDSC) regression

Until recently, estimates of heritability (h2) and genetic correlations (rG), have typically relied

on twins reared together or family studies within a structural equation modeling (SEM) frame-

work. The development LDSC [19] has circumvented the need for twin studies by now making

it possible to estimate h2 and rG using unrelated and independent samples that have GWAS

summary test statistics. Briefly, LDSC regression works by leveraging external linkage disequi-

librium (LD) reference panels, which summarize correlations between genetic markers across

the human genome, to produce genetic covariance matrices from GWAS summary statistics.

In addition to estimating rG, these matrices can then be used within a traditional SEM frame-

work to test hypotheses about comorbidity, or the nature of change. In terms of BMI, this

approach could be used to address the question of whether or not genetic risks in BMI are cor-

related across time.

Currently however, there is a paucity of molecular-based reports examining h2 and rG

between BMI assessed at different ages, and they have relied on different approaches to pro-

duce mixed results. For instance, Trzaskowski et al. [20] used LDSR to report a genetic correla-

tion (rg = 0.86) between BMI assessed at age 11 and 65. Winkler et. al. [21] estimated

Spearman rank genetic correlations between BMI assessed in populations above and below age

50, which revealed much smaller correlations (rg = 0.05 to 0.12). Notwithstanding the need for

greater precision regarding longitudinal genetic correlations, such correlations are descriptive

and provide no insight regarding competing theories underlying developmental processes in

BMI.
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We argue that at least two theoretical mechanisms [22] can be invoked to explain observed

continuity in genetic correlations. The first is a common factor process whereby common

genetic or environmental factors determine the levels and rates of change in BMI over time. In

this model, variances and covariances between longitudinal measures of BMI depend on indi-

vidual genetic or environmental differences in growth patterns unfolding with age i.e., random

growth curves [23–27]. We are aware of three twin studies that have applied genetically infor-

mative growth models to longitudinal BMI data [28–30]. Unfortunately, random growth

curves do not determine the extent to which stability or changes in BMI are governed by time-

invariant versus age-specific genetic influences. To address this question, the second mecha-

nism predicts that variances and covariances are determined by random, time-specific genetic

and environmental effects, which are more or less persistent over time i.e., autoregressive

effects’ [31–33]. Illustrated in Fig 1, this approach predicts a causal process of inertial effects,

whereby BMI genetics at one time causally affect BMI at the next. We have applied this vali-

dated approach to personality [34], anxiety and depression [35,36], substance use [37] and

brain aging [38]. We are aware of two reports that have tested autoregression models with

respect to BMI data [9,18]. Cornes et al. [9] found evidence of distinct, age-specific genetic

influences on BMI at ages 12, 14 and 16. To our knowledge, autoregressive effects have never

been tested in adult BMI, especially across a wide window comprising narrow age intervals in

adulthood. Fortunately, the recent, innovative application of structural equation modelling

(SEM) [39,40] to LDSC regression genetic correlations [39] based on available GWAS results

can now address the aforementioned gaps.

By applying genomic structural equation modeling or “genomicSEM” to BMI GWAS sum-

mary statistics from the UK Biobank [41], our aim was to determine if genetic influences

across middle to early old age were best explained by age-dependent versus age-invariant pro-

cesses. We also tested if alternative, more parsimonious theoretical explanations i.e., common

factor models, whereby covariance between genetic influences across time could be better cap-

tured by a single latent factor [42], provided a better fit to the data. Given that standardized

estimates of BMI heritability for men and women are statistically equal [13] and that there

appear to be no sex differences in terms of the observed adulthood decline in heritability [43],

we hypothesized that developmental processes governing changes in heritability over time

likewise ought to be comparable across sex.

Methods

All BMI and GWAS summary statistics came from the UK Biobank, a major biomedical data-

base. The UK Biobank is a large-scale biomedical database and research resource containing

genetic, lifestyle and health information from half a million UK participants. UK Biobank’s

database, which includes blood samples, heart and brain scans and genetic data of the 500,000

volunteer participants, is globally accessible to approved researchers who are undertaking

health-related research that’s in the public interest [41].

BMI data

Described in detail elsewhere [44], weight was collected from subjects using a Tanita

BC418MA body composition analyzer. Standing and sitting height measurements were col-

lected from subjects using a Seca 240cm height measure. Body mass index (BMI) was calcu-

lated as weight divided by height squared (kg/m2). We divided the BMI data into six age

intervals: 40–45; 46–50; 51–55; 56–60; 61–65; and 66–73 years. The range was based on avail-

able data whereas the number of age tranches was selected to maximize our power to choose

between competing longitudinal and multivariate models without minimizing the statistical
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power of the GWAS analyses at each interval. The number of subjects with complete BMI and

GWAS summary statistics are shown in S1 Table.

Genotypic data

Genotype data were filtered according to the Neale Lab pipeline, using filtration parameters

and scripts publicly available from the lab GitHub [45]. Samples were filtered to retain only

unrelated subjects of British ancestry (n = 359,980.) Imputed variants [46] were filtered for

INFO scores > 0.8, MAF > 0.001, and HWE p-value > 1e-10.

GWAS analyses

This is proof-of-principle illustration of the application of structural equation modelling (SEM) to

GWAS summary data to test competing longitudinal hypotheses. Since the number of UKB sub-

jects with repeated BMI measures and GWAS summary statistics was insufficient to be divided

into a minimum of three age tranches needed to test the autoregression hypothesis, we treated the

GWAS summary statistics at each 5-year age interval as pseudo-longitudinal. This resulted in 6

separate and independent age tranches for GWAS. Three separate GWAS analyses were con-

ducted for each age tranche (men, women and combined) using the BGENIE (version 1.3.) [46].

The first 20 ancestry principal components were included as covariates in all models. Sex was

included as a covariate in the combined (men + women) model.

Genomic structural equation modelling

We then applied the GenomicSEM software package [39] in R (version 4.0.3) [47] to the BMI

GWAS results to estimate separate genetic variance-covariance (S) and asymptotic sampling

covariance ‘weight’ (V) matrices for the male, female and then the combined GWAS results.

Estimation of the S and V matrices is a 3-step process. In step 1, the raw GWAS summary

statistics were manipulated using the GenomicSEM munge option to remove all SNPs with

MAF < 1%, information scores < 0.9, and SNPs in the MHC region. In step 2, we used the

GenomicSEM ldsc option to run multivariate LD score regression [39] to estimate the S and V

matrices between the GWAS summary statistics. This method has been successfully applied to

detect genetic correlations between bio-medical, psychiatric and behavioural phenotypes [48–

68], which are commensurate with previous biometrical genetic correlations [69–76] while

revealing extensive pleiotropy across a wide variety of phenotypes. In step 3, the S and V matri-

ces were then read into the lavaan (version 0.6–7) [77] SEM software package in R (version

4.0.3) [47] to fit and compare competing longitudinal and multivariate models. All Genomic-

SEM and lavaan scripts used here are publicly available at https://github.com/ToddWebb/

UKBiobank_VIPBG/tree/master/LongitudinalGenomicSEM.

The autoregression model predicts that time-specific random genetic or environmental

effects are more or less persistent over time (autoregressive effects) [31]. As described by Eaves

and others [31–33], autoregression models assume that the covariance structure arises because

of random, age-specific genetic or environmental effects, which are, at least partially, carried

forward. As illustrated in Fig 1, innovations at each assessment reflect novel, time- or age-spe-

cific genetic or environmental influences, which are uncorrelated with previous genetic influ-

ences. Genetic differences at each occasion are therefore a function of new random effects on

the phenotype that arise as well as a (linear) function of individual genetic differences

expressed at the preceding time. Here, we assume that cross-temporal correlations arise

because the innovations have a more or less persistent effect over time and may, under some

circumstances accumulate, potentially giving rise to developmental increases in genetic vari-

ance and increased correlations between adjacent measures. One consequence of the
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autoregressive model is the tendency of cross-temporal correlations to decay as a function of

increasing lag-time. Depending on the magnitude of an innovation and its relative persistence,

the observed variances and cross-temporal covariances may increase towards a stable asymp-

totic value. We began by fitting innovations at all six time-intervals, which were then succes-

sively dropped. We also specified an autoregression model that included a single innovation at

BMI 40–44 accounting for all subsequent genetic variances. Technically, this first innovation

includes all genetic variance accumulated up to this first age interval. Finally, we fitted a factor

analysis comprising a single factor.

Model fit indices & comparisons

In GenomicSEM analyses there is no one sample size to speak of. This is because GWAS studies

from which the summary statistics are derived can vary in size and subject overlap. Thus, poten-

tially, a different (effective) sample size may apply to each element of S. We were therefore limited

to fit indices that do not explicitly depend upon sample size: the pseudo Akaike Information Cri-

terion (pseudoAIC); Comparative Fit Index (CFI); Tucker Lewis Index (TFI); and the Standard-

ized Root Mean Square Residual (SRMR) to judge the best-fitting model. Both the CFI and TFI

are incremental fit indices that penalize models with increasing complexity. The SRMR is an abso-

lute measure of fit based on the difference between the observed and predicted correlations under

each model, such that a value of zero indicates a perfect fit. The pseudoAIC is a comparative fit

index, whereby the model with the lowest AIC values is interpreted as the best-fitting.

Fig 1. Autoregression model depicting genome-wide variation in BMI at each age interval. This development model predicts that

genetic variation at each time interval can be decomposed into time-specific variation or ‘innovations’ & the causal contribution of

genome-wide genetic variation from previous age intervals. Innovations refer to novel or age-specific genetic influences that are

uncorrelated with previous genetic influences. This model also includes residual genetic variation not otherwise explained by the

autoregression process. Double-headed arrows denote variation associated with innovations & residuals at each age interval. Beta (β)

denotes the causal contribution of genetic variance from one age interval to the next.

https://doi.org/10.1371/journal.pgen.1010303.g001
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Results

Combined male & female analyses

The LDSR-based genome-wide genetic correlations between the six GWAS summary statistics,

including GWAS sample sizes and the SNP-based heritability for each age interval, are shown

in Table 1. The correlations do not decline with increasing time intervals, which would be

indicative of a simplex structure best explained by autoregression models. For example, the

LDSR genetic correlation (rg) between BMI at ages 40–45 and 66–73 years was higher than the

rg between BMI at ages 40–45 and 56–60 years (rg = 0.97 vs 0.93). Overall, the genetic correla-

tions were very high and ranged from 0.93 to 1.00.

Formal model fitting comparisons are shown in Table 2. We began with a fully saturated auto-

regression model comprising unique genetic influences or innovations at each age interval (Fig

1). This provided a reasonable fit to the data as judged by the non-significant chi-square, very

high CFI and TLI values and very low SRMR. Autoregression sub-models in which the genetic

innovations at ages 66 to 73, 61 to 65, and 51 to 55 years were each successively removed provided

only marginal improvements in terms of their pseudoAIC values. In contrast, the factor analysis

with a single factor provided the overall best fit in terms of the smallest chi-square, lowest pseu-

doAIC and lowest SRMR. In this model (see Fig 2), genetic variance at each five-year age interval

was best explained by a single factor with a genome-wide SNP heritability of 24%.

Sex specific analyses

An identical pattern emerged when the model fitting was repeated by sex. Male and female

sample sizes at each age interval are shown in S1 Table. Table 3 shows the LDSR genetic corre-

lations for men and women. Varying only slightly, the separate male and female correlations

Table 1. Sample sizes, estimates of SNP-based heritability (including standard errors along diagonal) & linkage disequilibrium score regression genetic correlations

between the six age intervals based on the combined male & female GWAS summary statistics.

Sample size 1. 2. 3. 4. 5. 6.

1. BMI GWAS 40–44 yrs 34,001 0.23 (0.02)

2. BMI GWAS 45–49 yrs 45,294 1.00 0.26 (0.02)

3. BMI GWAS 50–54 yrs 53,602 0.99 1.00 0.26 (0.02)

4. BMI GWAS 55–59 yrs 64,891 0.93 0.93 0.95 0.29 (0.01)

5. BMI GWAS 60–64 yrs 89,824 0.95 0.94 0.93 0.90 0.24 (0.01)

6. BMI GWAS 65–73 yrs 71,178 0.97 0.96 0.95 0.93 1.00 0.22 (0.01)

https://doi.org/10.1371/journal.pgen.1010303.t001

Table 2. Multivariate modeling fitting comparisons based on the combined male & female GWAS summary statistics.

Models Chi-square(df) p pseudoAIC CFI TLI SRMR

Full auto-regression (AutoReg) 21.113(13) 0.071 55.113 0.999 0.999 0.039

AutoReg: genetic innovation at 65–73 yrs dropped 22.419(14) 0.070 54.419 1.000 0.999 0.039

AutoReg: genetic innovation at 60–64 yrs dropped 20.872(14) 0.105 52.872 1.000 0.999 0.039

AutoReg: genetic innovation at 55–59 yrs dropped 25.403(14) 0.031 57.403 0.999 0.999 0.041

AutoReg: genetic innovation at 50–54 yrs dropped 21.768(14) 0.084 53.768 0.999 0.999 0.040

AutoReg: genetic innovation at 45–49 yrs dropped 34.073(14) 0.002 66.073 0.998 0.998 0.051

AutoReg: genetic innovations at 45–73 yrs dropped 46.133(14) 0.000 70.133 0.998 0.998 0.056

Factor analysis—1 factor 13.005(9) 0.162 37.005 1.000 1.000 0.016

Note: AIC = Akaike Information Criterion, CFI = Comparative Fit Index, TLI = Tucker Lewis Index, SRMR = (Standardized) Root Mean Square Residual. Innovations

refer to novel or age-specific genetic influences that are uncorrelated with previous genetic influences.

https://doi.org/10.1371/journal.pgen.1010303.t002
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were again high and ranged from rg = 0.88 to rg = 1.00. S1 Table also shows the SNP-based her-

itability estimates by sex, which were very similar at each age interval.

As shown in Table 4, the genetic innovations at ages 46 to 66+ years for men and women

could each be dropped from the full autoregression model as judged by the non-significant

chi-square value. Overall, for both sexes, the factor analysis with a single common factor again

provided the best fit to the data in terms of the lowest chi-square, pseudoAIC and SRMR values

(see Fig 3). This suggests that there is no evidence of age-specific genome-wide variation in

BMI for either men or women.

Discussion

This is the first study to test a developmental theory regarding BMI heritability using molecu-

lar data and structural equation modeling. Between ages 40 and 73, changes in BMI heritability

Fig 2. Best fitting factor analytic model with a single common factor (CF) based on the combined male and female

data. The CF explains covariation between the six GWAS summary statistics each based on five-year intervals between

ages 40–73 years. To identify this model, the first factor loading from the CF to BMI GWAS at 40–45 years was

constrained to one. The double-headed arrow on the CF denotes the standardized variance, or SNP-based heritability,

for BMI. Double-headed arrows on the residuals denote genetic variation at each age interval not otherwise explained

by the CF.

https://doi.org/10.1371/journal.pgen.1010303.g002

Table 3. Linkage disequilibrium score regression genetic correlations based on the male (below diagonal) &

female (above diagonal italics) GWAS summary statistics at six age intervals.

1. 2. 3. 4. 5. 6.

1. BMI GWAS 40–44 yrs 1 0.99 0.99 0.91 0.95 0.92
2. BMI GWAS 45–49 yrs 0.98 1 1.00 0.96 0.93 0.93
3. BMI GWAS 50–54 yrs 1.00 0.99 1 0.95 0.91 0.90
4. BMI GWAS 55–59 yrs 0.93 0.89 0.93 1 0.88 0.93
5. BMI GWAS 60–64 yrs 0.97 0.90 0.95 0.88 1 0.98
6. BMI GWAS 65–73 yrs 0.97 0.90 0.96 0.93 0.99 1

https://doi.org/10.1371/journal.pgen.1010303.t003
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could not be explained by detectable age-specific genome-wide variation or an accumulation

of genetic variants over time. Instead, individual differences in the molecular genetics of BMI

across this time span were best explained by a single or common set of stable, genetic influ-

ences that are observable in early midlife. This pattern was observed in men and women.

Our results are consistent with Silventoinen et al.’s meta-analysis of twin data that revealed

only minor differences in BMI heritability estimates across cultural-geographic regions and

measurement time [78,79]. Dahl et al.’s [12] analysis of Swedish twin data revealed that for

men and women, BMI increases across midlife, before leveling off at 65 years and declining at

approximately age 80. The extent to which Dahl et al.’s observed inflexion at age 65 years is

indicative of age-specific, distinct genetic influences or variance components was inconsistent

with our results. Instead, we found that the genetic correlations between BMI at ages 61–65

years and the remaining four age tranches were all equally high. Thus, the molecular genetic

variance at age 65 does not appear to be linked to age-specific or distinct genetic processes

occurring around this time.

An outstanding question is whether or not our results generalize to earlier stages in life.

Here, a number of reports, relying on different methods, suggest that genetic risks spanning

childhood, adolescence and early adulthood likely comprise a combination of age-specific and

age-invariant influences. For example, several studies have shown that the PRS for childhood

BMI predicts adult BMI, metabolic outcomes and other complex traits [80–84]. Other studies

relying on twin data have reported genetic correlations between BMI assessed at shorter age

intervals spanning infancy, adolescence and teenage years that are much higher compared to

genetic correlations based on wider age intervals [8,14,85,86]. This pattern is consistent with

autoregressive features. Cornes et al.’s [9] application of autoregressive modelling found evi-

dence of largely age-invariant genetic influences on BMI at 12, 14 and 16. The authors also

reported smaller but significant age-specific genetic influences on BMI, depending on sex, at

14 and 16 years that were uncorrelated with BMI at age 12 [9]. The pattern of age-invariant

Table 4. Multivariate modeling fitting comparisons based on the combined MALE GWAS summary statistics at six age intervals.

Women ChiSquaredf p pseudoAIC CFI TLI SRMR

Full auto-regression (AutoReg) 15.019(13) 0.306 49.019 1.000 1.000 0.043

AutoReg: genetic innovation at 65–73 yrs dropped 14.866(14) 0.387 46.866 1.000 1.000 0.043

AutoReg: genetic innovation at 60–64 yrs dropped 14.883(14) 0.386 46.883 1.000 1.000 0.043

AutoReg: genetic innovation at 55–59 yrs dropped 16.813(14) 0.266 48.813 0.999 0.999 0.046

AutoReg: genetic innovation at 50–54 yrs dropped 14.213(14) 0.434 46.213 1.000 1.000 0.043

AutoReg: genetic innovation at 45–49 yrs dropped 21.482(14) 0.090 53.482 0.998 0.998 0.057

AutoReg: genetic innovations at 45–73 yrs dropped 25.617(14) 0.109 49.617 0.998 0.999 0.059

Factor analysis—1 factor 8.832(9) 0.453 32.832 1.000 1.000 0.023

Men

Full auto-regression (AutoReg) 11.858(13) 0.539 45.858 1.000 1.000 0.054

AutoReg: genetic innovation at 65–73 yrs dropped 12.814(14) 0.541 44.814 1.000 1.000 0.054

AutoReg: genetic innovation at 60–64 yrs dropped 12.085(14) 0.599 44.085 1.000 1.000 0.053

AutoReg: genetic innovation at 55–59 yrs dropped 11.889(14) 0.615 43.889 1.000 1.000 0.053

AutoReg: genetic innovation at 50–54 yrs dropped 21.826(14) 0.082 53.826 0.998 0.998 0.064

AutoReg: genetic innovation at 45–49 yrs dropped 12.718(14) 0.549 44.718 1.000 1.000 0.059

AutoReg: genetic innovations at 45–73 yrs dropped 1628.983(14) 0.000 1652.983 0.168 0.001 0.803

Factor analysis—1 factor 4.398(9) 0.883 28.398 1.001 1.000 0.018

Note: AIC = Akaike Information Criterion, CFI = Comparative Fit Index, TLI = Tucker Lewis Index, SRMR = (Standardized) Root Mean Square Residual

https://doi.org/10.1371/journal.pgen.1010303.t004
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Fig 3. Best fitting factor analytic model with a single common factor (CF) for men (A) & women (B). To identify

this model, the first factor loading from the CD to BMI GWAS at 40–45 years was constrained to one. The double-

headed arrow on the CF denotes the standardized variance, or SNP-based heritability, for BMI. Double-headed arrows

on the residuals denote genetic variation at each age interval not otherwise explained by the CF.

https://doi.org/10.1371/journal.pgen.1010303.g003
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influences is consistent with the study by Couto Alves et al. [87], which examined BMI span-

ning ages 2 to 18 years and reported a robust overlap between the genetics of child and adult

BMI. The same study also identified a completely distinct genetic architecture in infancy [87].

The reports by Warrington et al. [88] and Felix et al. [89] have shown how numerous repli-

cated adult BMI loci also reach genome-wide significance in childhood GWAS studies of BMI.

In terms of other LDSR studies, Trzaskowski et al. [20] reported a genetic correlation between

BMI at 11 and 65 years of 0.86. The same study also found that the adult PRS for BMI

explained at most 10% of the phenotypic variance in childhood BMI. Combined, the findings

based on twin and molecular studies suggest that variability in heritability estimates spanning

childhood, adolescence and early adulthood is likely explained by combination of mostly age-

invariant plus age-specific genetic influences, which could potentially be better captured by

autoregressive modeling.

Limitations

Our findings should be interpreted in the context of four limitations.

First, the BMI data used here were not repeated measures, but pseudo longitudinal. This

approach assumes no year of birth or cohort-related genetic heterogeneity. Until now, Geno-

micSEM reports have typically leveraged LDSR-derived genetic covariances in the context of

cross-sectional hypotheses. Our pseudo longitudinal modeling is not unlike standard cross-

sectional GenomicSEM analyses. Both approaches depend upon the GWAS summary statistics

being derived from a homogenous ancestral group. There is also no requirement for summary

statistics to be based on the same subjects. It remains important to reduce the likelihood that

our age-specific GWAS results comprised subjects from heterogenous populations. This is

important because cohorts can have different BMI heritability, different environmental influ-

ences on BMI, or differences in the genetic control of sensitivity to the environment, which

can bias the covariance estimates. Danish and Swedish twin studies have illustrated differential

heritability by showing how increases in mean BMI in successively younger cohorts has been

accompanied by increasing genetic variance [90,91]. Therefore, to determine if cohort effects

existed, we inspected the LDSR genetic correlations between the youngest and oldest age

tranches i.e., two maximally age-discrepant samples of unrelated individuals. Here, the rg was

0.97 (see Table 1), which suggests that the likelihood of any cohort-related genetic heterogene-

ity was minimal. Note, we also performed GWAS on a subset of men (N = 8,337) and women

(N = 7,681) with repeated BMI measures at any time from 48 to 61 years and then from 62 to

72 years. Here, the test-rest LDSR correlations were rg = 0.99 (p = 1.04e-03) and rg = 0.95

(p = 1.68e-04) for men and women respectively. Thus, genetic correlations were very high

between and within subjects.

In another attempt to reduce the possibility of systematic differences between putative sub-

populations in terms of allele frequencies, we re-ran the GWAS analyses using 40 PCs as covar-

iates. As shown in S1 Table, there were only very minor differences in genomic inflation and

SNP heritability between the 20 versus 40 PC results. Therefore, not only did genomic inflation

remain the same regardless of the number of PCs, it did not change across age intervals. These

results further reduce the likelihood of birth or cohort-related genetic heterogeneity.

Second, the UKB recruitment process did not represent a random sample of the UK popu-

lation [92]. Subjects were predominately European, more likely to be older, female, to live in

less socioeconomically deprived areas than nonparticipants, and when compared with the gen-

eral population, were also less likely to be obese, to smoke, and to drink alcohol daily while

reporting fewer self-reported health conditions [93,94]. Although Silventoinen et al.’s meta-

analysis of twin data reported only minor differences in BMI heritability across divergent
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cultural-geographic regions [78,79], the extent to which the molecular-based genetic covari-

ance structure observed here generalizes to non-European populations remains to be

determined.

Third, while our results illustrate the flexibility of SEM in terms of its application to GWAS

summary statistics to test a theory of longitudinal change, our modeling was not exhaustive.

For instance, we did not test the hypothesis that changes in heritability could be better

explained by latent growth or latent growth mixture models [95,96]. We note that the current

method is limited to the analysis of summary variance-covariance matrices derived from the

analysis of common variants. GenomicSEM does not model observed phenotypic information.

Consequently, there was no mean information to model latent growth or mixture distribu-

tions. We also did not test hypotheses regarding sex differences other than to report results by

sex. Dubois’ meta-analysis of 23 twin birth-cohorts found evidence of sex-limitation in terms

of greater genetic variance in boys in early infancy through to 19 years [97]. In contrast, Elks

et al.’s meta-regression of 88 twin-bases estimates of BMI heritability found no evidence of sex

effects [13]. It remains to be determined if the observed minor differences in the genetic

covariances and the ultimate, best fitting single-factor structure are empirically equivalent

across sex.

Finally, our genomic modelling was based on aggregated GWAS summary data and so was

entirely independent of environmental risks, which are known to be significant in the etiology

of psychiatric and behavioral traits [98]. Consequently, our current approach precludes model-

ing the contribution of environmental influences with increasing age [99] or making allow-

ances for any genetic control of sensitivity to the environment i.e. G x E interaction [78]. In

this regard, methods that can simultaneously model the joint effect of genes and environment

are likely to prove more informative. For instance, innovative approaches capable of applying

genomic-relatedness based restricted maximum-likelihood [100] to structural equation

modeling in the OpenMx [40] software package have the potential to analyze individual

GWAS and phenotypic data and hold promise.

Conclusion

Structural equation model of GWAS summary statistics between the ages of 40 and 73 revealed

that molecular genetic variance in BMI at successive 5-year age intervals could not be

explained by the accumulation of age-specific genetic influences or autoregressive processes.

Instead, a common set of stable genetic influences appears to underpin all genome-wide varia-

tion in BMI from middle to early old age in men and women.
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