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Abstract: The diesel engine has been a significant component of large-scale mechanical systems for the
intelligent manufacturing industry. Because of its complex structure and poor working environment,
it has trouble effectively acquiring the representative fault features. Further, fault diagnosis of
the diesel engine faces great challenges. This paper presents a new fault diagnosis method for
the detection of diesel engine faults under multiple operation conditions instead of conventional
methods confined to a single condition. First, an adaptive correlation threshold process is designed
as a preprocessing unit to enhance data quality by weakening non-impact region characteristics.
Next, a feature extraction method for sound signals based on the Mel frequency cepstrum (MFC)
is improved and introduced into the machinery fault diagnosis. Then, the combination of the
improved feature and vibrational mode decomposition (VMD) is proposed to incorporate VMD into
an effective adaptive decomposition of non-stationary signals to combine it with an excellent feature
representation of the vibration signal. Finally, the vector quantization algorithm is adopted to reduce
the feature dimensions and generate codebook model bases, which trains the K-Nearest Neighbor
classifiers. Five comparative methods were carried out, and the experimental results show that the
proposed method offers a good effect of the common valve clearance fault of diesel engines under
different conditions.

Keywords: fault diagnosis; diesel engine; Mel frequency cepstrum (MFC); vibrational mode
decomposition (VMD); vibration signals

1. Introduction

Diesel engines are the driving force of large-scale mechanical systems widely used in ships and
nuclear power plants. Mechanical components of diesel engines will inevitably be prone to break down
with high probability because of their severe working environments, featuring problems such as a high
speed-variable load, high pressure-high temperature, heavy impact, and serious noise [1–5]. If incipient
faults are not discovered in time, they will reduce the reliability and efficiency and eventually cause
serious personal safety problems. Therefore, fault detection and diagnosis systems have deservedly
attracted an increasing amount of attention, in order to detect potential faults and determine the fault
severity so the situation’s further deterioration can be prevented [6–8]. Compared with the acoustic
signal and thermal parameters, the vibration signal often contains significant dynamic information
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about mechanical parts, such as the piston-connecting rod assembly reciprocation, crankshaft rotation,
and valve train opening and closing. In addition, the signal acquisition is simple and non-embedded,
so vibration signal analysis has been an alternative, effective data-driven method [9–12].

Great progress has been made in mechanical fault diagnosis, but some challenges still remain to
be addressed for real practical applications, such as fault feature extraction under multiple operation
conditions, which determines the efficiency and effectiveness of detection and diagnosis based on
vibration signals to a large extent [13]. There exist three intrinsic drawbacks: (1) The vibration
signals acquired from actual sites are generally nonlinear and nonstationary under multiple operation
conditions; (2) the valuable fault features are often contaminated by some uncorrelated components,
such as serious noise; (3) although multiple hierarchical nonlinear transformation can automatically
learn features from the original data, it is necessary for deep learning to tune enough hyper parameters
with sufficient normal-fault data and also use expensive computing tools. Consequently, some advanced
feature extraction techniques for machinery systems are expected to be developed. Traditional artificial
features are mainly extracted by statistical methods performed in various space domains [14–18].
Time-domain methods are only applicable to stationary and linear signals. Although frequency-domain
or time-frequency domain methods are considered as the methods appropriate for non-stationary
signals, they have difficulty in selecting basic functions and require significant experience. Unlike the
fix function decomposition methods, the biggest advantage of the adaptive decomposition methods is
that there is no need to set any basis function in advance, such as empirical mode decomposition (EMD),
local mean decomposition (LMD), or ensemble empirical mode decomposition (EEMD), which can
decompose non-stationary signals based on itself [19–21]. Despite freeing the system from its basic
functions, the above methods still present some limitations, such as mode mixing and an end-point effect
in the EMD method, as well as parameter selections of white noise in the EEMD method. As an optimal
variant of EEMD, an iterative non-recursion adaptive method called variational mode decomposition
(VMD) was invented to decompose multiple component nonstationary signals by Dragomiretskiy
and Zosso in [22]. Here, intrinsic mode functions (IMFs) are acquired adaptively from the multiple
component nonstationary signals with the disadvantage of no end-point effect, no mode mixing,
and good adaptability. Cai et al. used the VMD method for compound fault detection of gear cracks
and rollers [23]. Huang et al. applied the VMD method for the fault diagnosis of rolling bearings on a
high speed railway [24]. Mao et al. proposed a novel decomposition rule based on variational mode
decomposition for conrod small end bearing knock fault diagnosis [25]. It is no surprise that variational
mode decomposition has achieved satisfying results for a variety of applications. Nevertheless, it is still
at a very early stage for reciprocating machinery systems. Furthermore, vibration signals are always
disturbed by different conditions and strong noise. In addition, the existing research has primarily
treated the variational mode decomposition method as a tool to reduce strong noise, which neglected
implicit feature information in each component. Thus, the study of a new analysis method for each
component has been the most pressing task.

Maintenance Technicians (Ma Tec) have an excellent ability to achieve a “one-listen” of the
operation status of system through binaural means. The reason is that the human acoustical system is
a highly intelligent sound recognition system, so an approach to generate fault features of multiple
operation conditions is referenced to analyze the probability of the Mel frequency cepstrum (MFC)
for mechanical fault diagnosis based on each component of the variational mode decomposition.
Balsamo et al. introduced an adapted MFCC as a feature and used the Mahalanobis distance to
calculate these features for damage detection of structural health monitoring [26]. Combining the
independent component analysis with a radial basis function network, Ramuhalli et al. used MFCC to
remove the noise of of concrete bridge decks and overcome the subjectivity of the inspector [27]. It can
be seen that MFCC features generated by MFC have drawn the attention of numerous researchers
in the field of structural health monitoring (SHM). Thus, it would also be a good and innovative
way to introduce MFCC features into the fault detection and diagnosis of diesel engines. However,
as a simple feature limited to noise-free sound systems, it is evident that MFCC will not meet the
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requirements for the fault detection and diagnosis of diesel engine [28]. More worrying is that the raw
vibration signal collected from sensors usually contains a large amount of invalid data due to high
frequency acquisition, which may contaminate impact features and increase computational burden.
To solve the issues described above, an adaptive correlation threshold method is developed as a data
pre-processor to weaken the invalid data, and then an improved VMD-MFCC feature (IVMD-MFCC)
is proposed, which incorporates VMD into the effective adaptive decomposition of non-stationary
signals to combine it with the excellent feature representation of the vibration signal. A fault detection
and diagnosis system generally consists of signal acquisition, feature extraction, dimension reduction,
and pattern recognition. Once the relevant features have been extracted from the acquired signals
through signal analysis methods, the next steps are dimension reduction and pattern recognition.
Most popular dimension reductions include linear discriminative analysis (LDA), principal component
analysis (PCA), and isometric feature mapping (ISOMap) [29–31]. However, these methods are used
to select principal components and remove redundant information, which inevitably results in some
useful data loss. Comparatively, vector quantization (VQ) finds a set of a parts-based representation of
the original data or feature vectors, which can compress data and retain original information to the
greatest extent simultaneously, so it is widely applied in signal encoding and image synthesis [32].
As far as we know, no papers have reported on the VQ of mechanical fault detection and diagnosis,
especially the reciprocating machinery. As a result, by using the compressed features as the input of
the K-nearest neighbor (KNN), a new fault detection and diagnosis method has been investigated for
the application of a diesel engine under multiple operation conditions based on IVMD-MFCC. Finally,
the efficiency of the proposed method is confirmed by practical application to the fault diagnosis of
three common diesel engine problems, including small valve clearance faults and large valve clearance
faults. The first problem is solely the inlet valve faults. The second problem is solely the exhaust
valve faults. The third problem is concurrently the inlet and exhaust valve faults of a single cylinder.
The results confirm that the proposed method is more efficient compared with other methods. The main
innovations of this paper are as follows:

1. In order to overcome the interference of complex operation conditions, this paper presents a novel
representative feature from vibration signals by incorporating VMD into the effective adaptive
decomposition of non-stationary signals to combine it with the excellent feature representation
of MFCC.

2. In order to wipe out the strong noise and enhance signal improvement, an adaptive correlation
threshold method is first proposed to weaken the invalid data before the feature extraction.

The rest is organized as follows. The diesel engine testbed and signal analysis are described in
Section 2. Methodologies based on the improved MFCC are developed in Section 3. The comprehensive
procedure of the proposed method is presented in Section 4. Diagnosis results of valve clearance fault
are presented in Section 5. Lastly, the conclusions are described in Section 6.

2. Diesel Engine Test-Bed and Signal Analysis

2.1. Diesel Engine Equipment and Data Acquisition

The diesel engine TBD234V12, as a research object, is a V-type, four-stroke, direct injection marine
diesel engine. The corresponding technical parameters are that cylinder bore and cylinder stroke are
128 mm and 135 mm, respectively, with a compression ratio of 15:1, and the consecution power/speed
is 373/1500 kW/rpm. The load is regulated by a hydraulic dynamometer connected to a diesel engine
through an elastic coupling. Vibration signals are collected by accelerometers installed on cylinder
heads. The sample frequency is set as 51.2 kHz, and each sample length is intercepted at 4096. Pictures
of the experimental device, and its intake and exhaust valves, are presented in Figure 1.
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Figure 1. Diesel engine and valve: (a) V-type 12 cylinder diesel engine and sensors; (b) installation 
position and intake and exhaust valve. 

2.2. Establishment of Diesel Engine Valve Fault 

The valve is very essential to the performance of a diesel engine to control air suction and the 
exhaust of the combustion chamber, which consists of an intake valve and an exhaust valve. 
Nevertheless, its structures has a high probability of failures, such as valve wear, due to its working 
environment featuring high temperature, high pressure, and intense impact, which leads to 
improper valve timing, thereby reducing diesel engine performance. In consideration of thermal 
expansion, the normal valve clearance (NVC) should be a constant, of which the intake valve and 
exhaust valve is 0.3 mm and 0.5 mm, respectively. Six typical valve clearance faults are summarized 
based on the diesel engine maintenance records of TBD234V12. Table 1 shows detailed situations of 
valve clearance.  

Table 1. Description of the valve state. 
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Table 2. In this experiment, the dataset is made up of twelve subsets under twelve operating 
conditions, and a total of 1100 integer cycle vibration signals are collected in each valve state. 
The 120 samples and other 980 samples are stochastically assigned as training samples and 
testing samples, severally. The calculations are run in an Intel® Xeon® Gold 6142 workstation 
with 128 GB RAM. The original vibration signals of the seven valve clearance states and 
corresponding frequency spectrums are depicted in Figure 2. 

Figure 1. Diesel engine and valve: (a) V-type 12 cylinder diesel engine and sensors; (b) installation
position and intake and exhaust valve.

2.2. Establishment of Diesel Engine Valve Fault

The valve is very essential to the performance of a diesel engine to control air suction and
the exhaust of the combustion chamber, which consists of an intake valve and an exhaust valve.
Nevertheless, its structures has a high probability of failures, such as valve wear, due to its working
environment featuring high temperature, high pressure, and intense impact, which leads to improper
valve timing, thereby reducing diesel engine performance. In consideration of thermal expansion,
the normal valve clearance (NVC) should be a constant, of which the intake valve and exhaust valve is
0.3 mm and 0.5 mm, respectively. Six typical valve clearance faults are summarized based on the diesel
engine maintenance records of TBD234V12. Table 1 shows detailed situations of valve clearance.

Table 1. Description of the valve state.

Case Intake Valve Exhaust Valve Number of
Training Samples

Number of
Testing Samples

Normal valve clearance (NVC) 0.3 0.5 120 980
Small clearance fault of intake

valve (SFI) 0.25 0.5 120 980

Large clearance fault of intake
valve (LFI) 0.4 0.5 120 980

Small clearance fault of exhaust
valve (SFE) 0.3 0.45 120 980

Large clearance fault of exhaust
valve (LFE) 0.3 0.6 120 980

Small clearance fault of intake and
exhaust valve (SFIE) 0.25 0.45 120 980

Large clearance fault of intake and
exhaust valve (LFIE) 0.4 0.6 120 980

The multiple operation conditions are simulated under twelve operating conditions in Table 2.
In this experiment, the dataset is made up of twelve subsets under twelve operating conditions,
and a total of 1100 integer cycle vibration signals are collected in each valve state. The 120 samples
and other 980 samples are stochastically assigned as training samples and testing samples, severally.
The calculations are run in an Intel® Xeon® Gold 6142 workstation with 128 GB RAM. The original
vibration signals of the seven valve clearance states and corresponding frequency spectrums are
depicted in Figure 2.
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Table 2. Twelve experiment operating conditions.

Number Speed (rpm) Load (N·m) Number Speed (rpm) Load (N·m)

1 1500 700 7 1800 1600
2 1500 1000 8 2100 700
3 1500 1300 9 2100 1000
4 1800 700 10 2100 1300
5 1800 1000 11 2100 1600
6 1800 1300 12 2100 2200
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In short, speech recognition is a process that depends primarily on frequency components for
phoneme analysis. Figure 3 shows the original signal waveforms and the short time Fourier
transform (STFT) spectrum of four sound words. The sound signals were obtained from literature
[33]. It is observed from Figure 3a that the pronunciation of each word generates a signal impulse in
the original signal waveforms. In Figure 3b, each sound word has different frequency distributions
for four sound words whereas the main frequency components are mainly concentrated on the low
frequency and close to 1.5 kHz (red imaginary line in Figure 3b). In order to illustrate the similar
frequency distribution characteristics and verify the feasibility of extracting features from the
vibration signal based on MFC, the time-frequency distribution of the vibration signal from
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short time Fourier transform spectrum (STFT) images are presented in Figures 4 and 5,
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2.3. Time-Frequency of Sound and Vibration Signals

In short, speech recognition is a process that depends primarily on frequency components for
phoneme analysis. Figure 3 shows the original signal waveforms and the short time Fourier transform
(STFT) spectrum of four sound words. The sound signals were obtained from literature [33]. It is
observed from Figure 3a that the pronunciation of each word generates a signal impulse in the original
signal waveforms. In Figure 3b, each sound word has different frequency distributions for four sound
words whereas the main frequency components are mainly concentrated on the low frequency and
close to 1.5 kHz (red imaginary line in Figure 3b). In order to illustrate the similar frequency distribution
characteristics and verify the feasibility of extracting features from the vibration signal based on MFC,
the time-frequency distribution of the vibration signal from different valve clearance states is also
studied in this section. The original signal waveforms and short time Fourier transform spectrum
(STFT) images are presented in Figures 4 and 5, corresponding to vibration signals of normal valve
clearance (NVC) and small clearance fault of intake valve (SFI), respectively. From Figures 4a and 5a,
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it is obvious that both vibration signals and sound signals have some similar impulse characteristics,
but the difference is that they have different physical meanings, as the sound signal corresponds to a
word pronunciation and the vibration signal corresponds to the impact of a specific state, such as a
valve opening, a valve closing, or fire combustion. Similarly, it can be seen from Figures 4b and 5b that
the STFT spectrums of vibration signals of NVC and SFI have also a certain frequency range, in which
the frequency range of the NVC state is about 0–10 kHz, and frequency range of the SFI state is about
0–15 kHz. In addition, the sound signal and vibration signal have a common feature in the frequency
range, that is, there are more frequency components in the low frequency range and fewer frequency
components in the high frequency range, which conforms to the Mel frequency distribution. In general,
it is obvious that the vibration signal of diesel engine is highly similar to the sound signal, which is a
good choice for constructing the feature representation methods of the vibration signal similar to the
“acoustical system” based on the Mel scale principle.
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valve respectively.
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3. Methodology Based on Improved MFCC

3.1. Mel Frequency Cepstrum Coefficient

The early papers about cepstrum analysis were primarily used to analyze seismic or communication
signals. The cepstrum has been widely used in the fault detection of rotating machinery [34,35].
However, little research has been done on cepstrum for reciprocating machinery fault diagnosis,
in which frequency domain analysis methods were considered to be less effective. MFC is also a
special cepstrum analysis, whose original idea is to imitate how human being perceive their own
acoustical system. MFC distributes more weight to lower frequencies while traditional cepstrum
analysis distributes equal weight. The situation is similar to frequency distribution in fault detection
and diagnosis since the information covered in the lower frequency range is generally more valuable
in the higher frequency. It has come to light that human ear perception frequency is 20–20,000 Hz.
In 1937, Volkmann and Newman [36], through experimentation, reached the conclusion that there
existed a non-linear relationship above 1000 Hz between the Mel frequency and Hertz frequency. So far,
there is no sole transformation formula, but a formula that is widely used is shown as Equation (1).
The corresponding diagram is presented in Figure 6:

Mel( f ) = 2595 log 10(1 +
f

700
) (1)

where f is Hertz frequency and Mel(f ) is Mel frequency.

Figure 6. Transformation between the Hertz and Mel frequencies.
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Unfortunately, as shown by the imaginary and solid lines in Figure 7, it is observed that the
conventional transformation curve is very close to a linear relationship between 0 and 1000 Hz, which is
mainly contributed to the focus on the frequency above 1000 Hz omitting frequencies below 1000 Hz,
in order to imitate the acoustical system [37]. Considering the fact that a frequency below 1000 Hz
is still linearly relevant (as per Equation (1)), we have made a supplement to the original formula to
mimic the trends above 1000 Hz, as shown in Equation (2). A corresponding relationship of less than
1000 Hz is shown by the dash dotted line in Figure 7:

Mel( f ) = 175 log 2(1 +
f

20
) 0 ≤ f < 1000. (2)
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3.2. Variational Mode Decomposition

VMD belongs to a novel adaptive decomposition technology, which can decompose non-stationary
signals into k mode components. Basic procedures are considered as the establishment and solution of
a constrained variational model. The goal of the resulting constrained variational model is to minimize
the summation of the estimated bandwidth for all mode components using the Hilbert transform,
exponential tune, and Gaussian smooth, e.g. the squared L2-norm. The constrained variational model
is shown as follows:

min
{uk,ωk}

{∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e− jωkt

‖
2

2

}
s.t.

∑
k

uk = x(t)
(3)

A castigatory quadratic α and Lagrangian multiplicator operator λ(t) are integrated into
Equation (3), of which the former ensures a nice convergence property and the latter provides
constrained strict enforcement. Hence, after converting the constrained problem into an unconstrained
problem, the extended Lagrangian function L is described in Equation (4):

L({uk}, {ωk},λ) = α
∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e− jωkt

‖
2

2

+‖ f (t) −
∑
k

uk(t)‖
2

2
+

〈
λ(t), f (t) −

∑
k

uk(t)
〉 (4)

where t denotes time, δ(t) is the Dirac distribution function, uk denotes the decomposed k mode
components, j is an imaginary unit, ωk is defined as the central frequency, and x(t) is the original signal.
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We use the alternate direction of multiplicators (ADMM) to continually update each mode
component and central frequency. In this way, the saddle point of the extended Lagrangian function is
obtained. The L2-norm Parseval/Plancherel Fourier equidistance can decompose the optimal solution
in time-domain into a series of iterative sub-optimal problem in frequency-domain. The quadratic
optimization of mode component, central frequency and Lagrangian multiplicator can be expressed in
Equations (4)–(6):

_
u

n+1
k (ω) =

_
f (ω) −

∑
i,k

_
u i(ω) +

_
λ(ω)

2

1 + 2α(ω−ωk)2 (5)

ωn+1
k =

∞∫
0
ω
∣∣∣∣_u k(ω)

∣∣∣∣2dω

1 + 2α(ω−ωk)2 (6)

_
λ

n+1
(ω) =

_
λ

n
(ω) + τ

_f (ω) −∑
k

_
u

n+1
k (ω)

 (7)

In Equations (4)–(6),
_
u

n+1
k (ω), ωn+1

k and
_
λ

n+1
(ω) are the corresponding Fourier transformations.

τ is a noise tolerance parameter, and the default parameter is 0.
Finally, each mode component can be obtained until the convergence criteria are satisfied or

the number of iterations, namely n, are equal to N. γ is set to 1e−6, and the formula is presented in
Equation (8): ∑

k

_
u

n+1
k (ω) −

_
u

n
k (ω)

‖
_
u

n
k ‖

< γ. (8)

4. Comprehensive Procedure of the Proposed Method

As mentioned in Section 1, the advantages of VMD and MFC are combined in a complementary
way that uses VMD for decomposing non-stationary signals and MFC to extract features from the
mode components above, as acquired by VMD. However, under the influence of strong noise and
high frequency collection, the signal impact features are not obvious, and its proportion is low, so it is
not applicable to directly introduce VMD and MFC into the fault detection and diagnosis of a diesel
engine. Therefore, an adaptive correlation threshold method is first proposed to weaken the invalid
data before the feature extraction.

4.1. Signal Improvement

The correlation coefficient is a general statistical indicator used in signal processing, which can
quantitatively characterize signal similarity. To calculate the correlation coefficient, the sliding window
is used to traverse through the integer cycle signal, and the adaptive threshold is applied to locate the
impact features. The equations are as follows:

Ra =

Nwl∑
m=1

xa−1(m)xa(m + Nss) (9)

y(t) =
{

x(t), Ra > Rrms

θ, otherwise
(10)

Rrms = κ

√
1
M

M∑
i=2

Ra

M = (L−Nwl)/Nss + 1

(11)
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where Ra is the correlation coefficient between the (a − 1)th and ath sliding window (a = 2,3, . . . ,M).
Nwl represents the length of sliding window (default Nwl = 256) and Nss is the moving step size of
the sliding window (default Nss = 100). x(t) is the raw signal, while y(t) is the processed signal via
signal improvement of the adaptive correlation threshold. θ is the substitute valve of non-impact data
(default θ = 10−4). Rrms is the mean square root of the correlation coefficient of the integer cycle signal.
M is the sliding window number, and L is the integer cycle signal length.

In Equation (11), κ is a scale parameter, which can control the proportion of the impact and
non-impact data. If the κ value is too large, it will hide the “true impact” and leave out some useful
information. Nevertheless, a lower value may generate a “false impact” and lead to frequent false
alarm. In this experiment, the scale parameter κ is finally adjusted to 0.5 and can successfully capture
all impact characteristics of the raw vibration signal. As shown in Figure 8, the results of an adaptive
correlation threshold processing are obtained. These results include the impact location and correlation
coefficient calculation. In Figure 8a, the red box stands for the sliding window with the length Nwl
and moving step Nss, solid line and dotted lines represents the impact start point and the impact end
points respectively, of which the middle part is the impact region. It is observed from Figure 8 that
through the adaptive correlation threshold, the six impacts of the raw vibration signal are completely
captured, which is beneficial for improvement of the original vibration signal.
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Figure 8. Adaptive correlation threshold processing: (a) impact location; (b) correlation coefficient.

Considering the influence of high frequency collection and strong noise, the original vibration
signal is selectively weakened to strengthen the impact characteristics through Equation (10). Figure 9
exhibits the effectiveness of this method, in which the top portion is the raw vibration signal and the
bottom portion is the processed signal after using an adaptive correlation threshold. As can be seen
from the figures (where the arrows are pointing), it is apparent that the processed vibration signal has
significantly weakened the invalid data region, which highlights the impact characteristics.



Sensors 2019, 19, 2590 11 of 22
Sensors 2019, 19, 2590 11 of 23 

 

 

Figure 9. Comparison results of preprocessing: (a) original vibration signal; (b) processed signal. 

4.2. IVMD-MFCC 

Based on the principle of VMD and MFC, the detailed descriptions of feature extraction are as 
follows:  

 Step 1: Input the raw signal x(t) and obtain a processed signal y(t) by utilizing the adaptive 
correlation threshold. 

 Step 2: Initialize the parameters
1{ }ku ,

1{ }k ,
1 , n and step-wise decomposition by using VMD to 

obtain mode components    1 2, ,...,k ku u u u (default k = 3).  

 Step 3: Preprocess mode components ku . To compensate for high frequency loss, each mode 
component is first weighed, and the weighted filter is shown in Equation (12), where ρ 
represents a constant (default ρ = 0.96): 

1( ) 1H z z   . (12)

Then, a framing and hamming window are used successively to convert non-stationary signals 
into quasi-stationary signals, thereby reducing frequency leakage.  

 Step 4: To carry out fast a Fourier transform (FFT). The FFT transformation is presented in 
Equation (13), where p represents the pth line in frequency-domain, N is the data point number 

of (s)l
ku , and l refers to the lth sub-frame signal: 

21

0
( ,p) (s)

N pl N
k

s
Y l u e

 


  . (13)

 Step 5: To calculate the linear spectrum energy of each frame signal. Linear spectrum energy 
corresponding to the lth sub-frame signal is represented in Equation (14): 

2( , ) [ ( , )]E l p Y l p . (14)

 Step 6: Design a series of triangular filters named Mel filter banks, calculate the Mel-frequency 
spectrum energy of each frame signal, and then take the logarithm: 

1

0
lg[ ( ,p)] lg[ ( ,p) (p)] 0

N

f r
p

S l E l H fr F



     (15)

 Step 7: To introduce discrete cosine transform (DCT) and extract the IVMD-MFCC features. 
This relationship is expressed as Equation (16): 

Figure 9. Comparison results of preprocessing: (a) original vibration signal; (b) processed signal.

4.2. IVMD-MFCC

Based on the principle of VMD and MFC, the detailed descriptions of feature extraction are
as follows:

• Step 1: Input the raw signal x(t) and obtain a processed signal y(t) by utilizing the adaptive
correlation threshold.

• Step 2: Initialize the parameters
{
u1

k

}
,
{
ω1

k

}
, λ1, n and step-wise decomposition by using VMD to

obtain mode components {uk} = {u1, u2, . . . , uk} (default k = 3).
• Step 3: Preprocess mode components {uk}. To compensate for high frequency loss, each mode

component is first weighed, and the weighted filter is shown in Equation (12), where ρ represents
a constant (default ρ = 0.96):

H(z) = 1− ρz−1. (12)

Then, a framing and hamming window are used successively to convert non-stationary signals
into quasi-stationary signals, thereby reducing frequency leakage.

• Step 4: To carry out fast a Fourier transform (FFT). The FFT transformation is presented in
Equation (13), where p represents the pth line in frequency-domain, N is the data point number of
ul

k(s), and l refers to the lth sub-frame signal:

Y(l, p) =
N−1∑
s=0

ul
k(s)e

−p 2π
N . (13)

• Step 5: To calculate the linear spectrum energy of each frame signal. Linear spectrum energy
corresponding to the lth sub-frame signal is represented in Equation (14):

E(l, p) = [Y(l, p)]2. (14)

• Step 6: Design a series of triangular filters named Mel filter banks, calculate the Mel-frequency
spectrum energy of each frame signal, and then take the logarithm:

lg[S(l, p)] = lg[
N−1∑
p=0

E(l, p)H f r(p)] 0 ≤ f r ≤ F (15)



Sensors 2019, 19, 2590 12 of 22

• Step 7: To introduce discrete cosine transform (DCT) and extract the IVMD-MFCC features.
This relationship is expressed as Equation (16):

IM =

√√√√
2
F

F−1∑
p=0

lg[S(l, p)] cos[
πn(2p− 1)

2F
] (16)

where IM stands for the IVMD-MFCC feature of lth sub-frame signal, S(l, p) represents the
Mel-frequency spectrum energy, and F is the number of Mel filters or features (fr = 0,1, . . . ,F),
(default F = 20).

In order to better understand the new feature IVMD-MFCCs, Figure 10 shows the new features of
two states (NVC and SFI) after being extracted and represented by the proposed method from a certain
mode component. The framed number stands for the number of segments of the vibration signal by
sliding window, the feature dimension stands for the new feature number of IVMD-MFCC, and the
vertical axis stands for the value of IVMD-MFCC. Note that since the IVMD-MFCC with a higher
dimension is close to 0, only features of the first 19 dimensions are selected as the input for the purpose
of improving the efficiency in this paper. Figure 10a shows detailed information for the IVMD-MFCC
of the NVC state, of which the maximum absolute value occurs in the 35th framed vibration signal and
the sub-maximum absolute value is located at the 5th framed vibration signal. However, for the SFI
state in Figure 10b, the maximum and sub-maximum absolute value occurs in the 24th and 5th framed
vibration signals, respectively. It can be seen that IVMD-MFCC changes with the diesel engine valve
clearance state. Furthermore, the characteristic differences of NVC and SFI are mainly reflected in the
first-dimension feature. Figure 11 shows that the first-dimension feature diagrams of IVMD-MFCC
with various faults. The variations of first dimension features between the normal state and various
fault states are easy to determine from the figures.
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Figure 11. First feature diagrams of the improved VMD-MFCC (IVMD-MFCC) with various states.

4.3. Vector Quantization

The IVMD-MFCC features belong to high-dimensional feature sets, which will undoubtedly
increase the model calculation and complexity. To address this difficulty, a novel dimension reduction
method called VQ is proposed in this section. It is noticed that the codebook generated by
VQ can dramatically reduce the feature dimensions, which removes redundant information and
strong disturbances.

The basic principle of VQ is to separate feature vectors into some subspaces and find the
corresponding vector representation. The codebook directly determines the signal compression
performance of VQ. In this paper, the Linde-Buzo-Gray (LBG) algorithm is used to design the codebook.
The principle is simplified, as shown in Equation (17):

Yc = Q(Xii) 1 ≤ c ≤ J, 1 ≤ ii ≤ F. (17)

Supposing that the training set is X = {x1, x2, . . . , xF}, the initial codebook is Y(0) =[
y(0)1 , y(0)2 , . . . , y(0)c

]
, and λ represents the distortion threshold (initial value is an infinite number).

According to the principle of the nearest neighbor condition, spatially partitioning the J subspaces of
training set:

X :→ SU :
[
SU(n)

1 , SU(n)
2 , . . . , SU(n)

c

]
. (18)
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To calculate the total distortion of all subspaces, the equations are shown in Equation (19) and

Equation (20), where d
(
X, Y(n−1)

c

)
represents the Euclidean distance between the training set X and

codebook Yc at n iteration.

d
(
X, Y(n−1)

c

)
=

1
F

F∑
ii=1

(xii − yc)
2 (19)

D(n) =

J∑
c=1

∑
x∈SUn

c

d
(
X, Y(n−1)

c

)
(20)

To calculate the relative error of total distortion between two adjacent iterations and find a new

codebook vector, if Equation (21) is satisfied, then stop the iteration and Y(n) =
[
Y(n)

1 , Y(n)
2 , . . . , Y(n)

c

]
is

considered to be the new codebook vector, otherwise return to Equation (18):

D(n−1)
−D(n)

D(n)
≤ ψ. (21)

4.4. K-Nearest Neighbor (KNN)

KNN is a machine learning method to calculate the distance between a testing sample and
K training samples rather than a single training sample, which has a good time efficiency and
identification accuracy. Suppose the training sample set is Tts = {T1, T2, . . . , TTS}, the label set is
Wls = {W1, W2, . . . , WLS}, and the testing sample set is Sss = {S1, S2, . . . , SSS}. The distance set is
obtained between each testing sample Wls and training samples Tts. We can select the first K points in
ascending order, and the sample label Wls the with highest frequency is considered the category of the
testing sample. Euclidean distance (L2-norm) is adopted as a similarity criterion, where the distance
between the testing sample and training sample is shown in Equation (22):

d(ts,ls) =

√
(Tts −Wls)

2 (22)

where Tts is the tsth training sample (ts = 1, 2, . . . , TS), Wls is the lsth testing sample (ls = 1, 2, . . . , SS).

4.5. Outline of the Proposed Method

As mentioned in the above sections, a comprehensive fault detection and diagnosis method for
a diesel engine under multiple operation conditions is proposed, based on IVMD-MFCC-VQ-KNN,
where IVMD-MFCC is allocated to feature extraction, Vector quantization (VQ) is allocated to dimension
reduction, and KNN is allocated to fault identification. The availability of the proposed approach is
examined by diesel engine valve clearance fault experiments under different conditions. The flow
diagram containing the main implementation steps is described in Figure 12.
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5. Diagnosis Results of Valve Clearance Fault

5.1. Results Analysis of the Proposed Method

Considering some actual engineering occasions, in this work, the proposed methods are validated
with two datasets of diesel engine valve faults. However, in one of the datasets, the vibration signals
are purely experimental signals, in which the noise level is relatively low. However, in the other
dataset, the noise level of the vibration signal is strengthened by the strong noise with an extremely
low signal-to-noise ratio (SNR = −5 dB). The datasets and other parameters remained invariable when
the experiment of each valve state was carried out repeatedly six times on two datasets. The confusion
matrix, as is common in studies, is used to evaluate the classifier effect in this paper, where the columns
represent the predicted class and the rows plot the actual class of the testing samples. The performance
of the proposed method is evaluated in six time experiments using three indicators of the confusion
matrix, including accuracy (AC), precision (PR), and sensitivity (SE). AC is used to evaluate the
classification of the performance of the overall model, and PR detects whether a testing sample is
normal or faulty, while SE can measure the sensitivity level of a certain state.

The first trial detailed results for seven valve clearance states with low-level noise and high-level
noise, as listed in Tables 3 and 4, respectively. It can be seen from Table 3 that, for the inlet valve faults
occurring separately, some inaccurate results are gained for SFI and LFI due to being mistaken for NVC,
with lower PR values of 97.76% and 95.71%, respectively, whereas the PR in the SFE, SFIE, and LFIE
classes is equal to 100%. This shows that the probability of correctly detecting the exhaust valve faults



Sensors 2019, 19, 2590 16 of 22

from vibration signals is higher than the correct detection of intake valve faults. Similarity, in Table 4,
the PR values in SFI and LFI are 97.14% and 94.70%, whereas the PR values related to exhaust valve
faults are higher than 98%. All these also prove that the probability of recognizing exhaust valve fault
signals is higher compared to the intake valve fault signals with strong noise. It can be also observed
that, out of 980 normal clearance samples, approximately 2.45% of the signals are wrongly classified as
fault signals. Likewise, for the SFI, LFI, and LFE faults, a total of 6.93% of fault clearance samples were
mistaken as normal clearance samples. Similarity, in Table 4, approximately 4.08% of the signals are
wrongly classified as faults and 10.4% are wrongly recognized as fault signals. Furthermore, both with
the low-level noise and with the high-level noise, the results indicate excellent performance, in light of
sensitivity, with a high SE value, which exceeds 90%, except for NVC, whose lowest value is 87.52%.

Table 3. Confusion matrix of seven valve clearance states of first trial with the low-level noise.

Predicted Class

NVC SFI LFI SFE LFE SFIE LFIE AC (%) PR (%) SE (%)

Actual Class

NVC 956 4 8 3 2 5 2 97.55 93.36
SFI 22 958 0 0 0 0 0 97.76 99.58
LFI 42 0 938 0 0 0 0 95.71 99.15
SFE 0 0 0 980 0 0 0 100 99.69
LFE 4 0 0 0 976 0 0 99.59 99.80
SFIE 0 0 0 0 0 980 0 100 99.49
LFIE 0 0 0 0 0 0 980 100 99.80

Overall
Performance 98.66 98.66 98.70

Table 4. Confusion matrix of seven valve clearance states of first trial with the high-level noise.

Predicted Class

NVC SFI LFI SFE LFE SFIE LFIE AC (%) PR (%) SE (%)

Actual
Class

NVC 940 5 11 5 3 7 9 95.92 87.52
SFI 28 952 0 0 0 0 0 97.14 94.48
LFI 52 0 928 0 0 0 0 94.70 98.83
SFE 12 0 0 968 0 0 0 98.78 99.49
LFE 10 0 0 0 970 0 0 98.98 99.69
SFIE 17 0 0 0 0 963 0 98.27 99.28
LFIE 15 0 0 0 0 0 965 98.47 99.08

Overall
Performance 97.46 97.47 96.91

The overall performance of the proposed method is also described in Tables 3 and 4. The higher
overall accuracy, average precision, and sensitivity of 98.66%, 98.66%, and 98.70% were obtained using
experimental signals with a low-level noise. Furthermore, the overall accuracy, average precision,
and sensitivity (97.46%, 97.47% and 96.91%) of the proposed method slightly reduce under the influence
of strong noise.

In conclusion, strong noise has little influence on the performance of the proposed method.
In order to verify the robustness to the number of samples, the proportion of each state samples of
dataset without noise was predefined to five levels: 60/1040, 120/980, 180/920, 240/860, 300/800. Table 5
exhibits the effects of training and testing the sample proportion on the performance of the proposed
method. It can be observed from Table 5 that the proposed method exhibits good performance for
all training/testing samples in terms of average accuracy, precision, and sensitivity. The average
accuracy and precision is higher with more training samples, of which the average accuracy of 99.72%
with a proportion of 240/860 and the average precision of 99.15% with a proportion of 300/800 were
highest. The major reason is that a greater number of training samples means ore fault information,
which contributes to the feature learning of vibration signals. However, the average calculation
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time increases with the number of training samples. Thus, it is also a great challenge to define the
number of training/testing samples for improving the overall performance of the diesel engine fault
diagnosis system. As can be seen from Table 5, 120/980 of the training/testing samples show the
best proportion according to four synthetically appraisable factors, which not only ensure accuracy,
precision, and sensitivity, but also save calculation time.

Table 5. The effects of the sample proportion on the performance of the proposed method.

Number of Training/
Testing Samples

Average
Accuracy (%)

Average
Precision (%)

Average
Sensitivity (%)

Average Calculation
Time (s)

60/1040 95.71 93.18 96.12 52.32
120/980 98.54 97.50 98.50 55.30
180/920 98.86 97.66 98.17 65.15
240/860 99.72 98.80 98.35 80.38
300/800 99.70 99.15 98.30 100.86

5.2. Results Analysis of Comparative Methods

To further prove the effectiveness of the proposed method, the process of fault diagnosis for valve
clearance are automatically accomplished by using a deep autoencoder with no human intervention
such as signal preprocessing, manual feature extraction, and feature dimension reduction. In this paper,
the architecture of the deep autoencoder is set to five layers, including the input layer, three hidden
layer, and output layer, of which the number of units are 1024, 500, 260, 60, and 7, respectively.
The hyper-parameters are initially selected by a few general principles and finally tested by the
experimental dataset, of which learning rate, sparsity parameter, momentum, and weight of the
sparsity penalty terms and weight decay are 0.02, 0.01, 0.08, 0.017, and 4.736 [38,39]. This method
consists entirely of five steps including signal improvement (SI), variational mode decomposition (VMD),
Mel frequency cepstrum coefficient (MFCC), and K-Nearest Neighbor (KNN), which is abbreviated as
IVMD-MFCC-VQ-KNN. Meanwhile, four comparative methods are also presented to demonstrate
the importance of each step. The first comparative method is the VMD-MFCC-VQ-KNN without the
process of signal improvement (VMVK). The second comparative method is the SI-MFCC-VQ-KNN
without the process of VMD (SMVK). The third comparative method is the SI-VMD-MFCC-KNN
without the process of vector quantization (SVMK) and the fourth comparative method is the
SI-VMD-MFCC-VQ-SVM replacing KNN classifiers with SVM classifiers (SVMS). The kernel function
of SVM is RBF, and the penalty index and radius of RBF are set to 20 and 0.081, respectively [40].
The single diagnosis results of the contrastive methods depicted in Figure 13 and Table 6 exhibits
the average accuracy, average precision, average sensitivity, and calculation time of six experiments.
The single diagnosis results in Figure 13 demonstrate that the proposed method can detect the valve
clearance faults effectively, yielding good performance for AC, PR, and SE, for which the values are
more than 95% for each testing experiment. From the average diagnosis results of the contrastive
methods in Table 6, it is evident that the average values of AC, PR, and SE are 98.54%, 97.50%,
and 98.50%, respectively, which were calculated by the proposed method, which yielded higher results
than other methods. For example, the average values of AC, PR, and SE of VMVK and SMVK are
slightly lower than the proposed method, due to the absence of the signal improvement and VMD,
although the average calculation time is reduced. Furthermore, the average calculation time of the
proposed method is 55.30 s, and the processing speed is increased significantly compared to the SVMK
method, of which the average calculation time is 80.20 s. It is noteworthy that the calculation time of
each experiment is always less than 60 s through the proposed method. The results also show that due
to the insufficient training data and calculation complexity, the deep autoencoder does not perform as
well as the proposed method.
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Table 6. The average diagnosis results of the contrastive methods for the six experiments.

Methods Average
Accuracy (%)

Average
Precision (%)

Average
Sensitivity (%)

Average Calculation
Time (s)

The proposed method 98.54 97.50 98.50 55.30
VMVK 94.31 92.15 93.08 50.15
SMVK 85.27 86.56 83.25 40.76
SVMK 93.50 91.31 89.95 80.20
SVMS 58.72 60.30 59.22 42.38

Deep autoencoder 89.11 91.20 90.15 70.86
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6. Conclusions

In this study, a novel detection and diagnosis approach is investigated to diagnose diesel engine
faults under multiple operation conditions. Introducing an improved Mel frequency transformation
and adaptive correlation threshold processing into the VMD and MFCC framework, we proposed
a representative feature called IVMD-MFCC under multiple operation conditions. The vector
quantization plays a vital role in dimension reduction for removing redundant information and
improving model performance. The K-Nearest Neighbor is used as the classifier. The vibration signal
collected from diesel engine cylinder head is utilized to demonstrate the availability of proposed
approach under the seven valve clearance states and twelve operating conditions. In light of the
experimental results, it will undoubtedly be concluded that the proposed approach gives good overall
performance in the light of AC, PR, and SE. In particular, it is no doubt proven that this will be a good
start for constructing a vibration signal fault feature similar to the “acoustical system” based on the
Mel scale principle.
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Abbreviations

Abbreviations ss The ssth label of testing sample
AC Accuracy Mel Mel frequency

EEMD
Ensemble empirical mode
decomposition

f Hertz frequency

EVCI Exhaust valve closing impact Y
Fast Fourier transform of mode
component ul

k(s)
FFT Fast fourier transform t Time

FI Fire impact E
The linear spectrum energy of pth
line of each frame signal

FINC Fire impact adjacent cylinder uk
The kth decomposed mode
components

IVCI Intake valve closing impact ωk Central frequency

IVMD-MFCC
Improved vibrational mode
decomposition and Mel
frequency cepstrum coefficient

_
u

n+1
k (ω), ωn+1

k ,
_
λ

n+1
(ω)

The corresponding Fourier
transformation

LBG Linde -Buzo-Gray x(t) Original signal
LDA Linear discriminative analysis j Imaginary unit

LFE
Large clearance fault of exhaust
valve

p The pth line in frequency-domain

LFI
Large clearance fault of intake
valve

N The data point number of ul
k(s)

LFIE
Large clearance fault of intake
and exhaust valve

s The sth data of ul
k(s)

LMD Local mean decomposition L the integer cycle signal length
Ma Tec Maintenance technicians M Number of sliding windows

MFC
Mel frequency cepstrum
coefficient

IM IVMD-MFCC feature

MFCC
Mel frequency cepstrum
coefficient

l the lth sub-frame signal

NVC Normal valve clearance Rrms
Mean square root of correlation
coefficient

PCA Principal component analysis d
Euclidean distance between X and
Yc

PR Precision n Number of iterations
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IMFs Intrinsic mode functions J
The number of feature vector
subspaces

ISOMap Isometric feature mapping ρ A constant

SE Sensitivity F
The total number of Mel filter
banks

SHM Structural health monitoring fr The frth Mel filter bank
SI Signal improvement X Training set of vector quantization

SFE
Small clearance fault of exhaust
valve

Yc Codebook of cth subspace

SFI
Small clearance fault of intake
valve

S
Mel-frequency spectrum energy of
each frame signal

SFIE
Small clearance fault of intake
and exhaust valve

SU Number of training set subspaces

SMVK
The proposed method without
VMD

Tts Training sample of KNN

SVMK
The proposed method without
vector quantization

Wls Label set of Tn

SVMS
The proposed method replacing
KNN with SVM

SSS Testing sample of KNN

STFT
Short time Fourier transform
spectrum

Nwl Length of sliding window

VMD Variational mode decomposition Nss
Moving step size of sliding
window

VMVK
The proposed method without
signal improvement

m
The mth data point of the sliding
window

VQ Vector quantization
Convergence criteria of
vector quantization

The mth data point of the sliding
window

Symbols Ψ Total distortion of all subspaces

γ Convergence criteria Ra
Correlation coefficient between (a
− 1)th and ath sliding window

α A castigatory quadratic TS Number of training sample

λ
Lagrangian multiplicator
operator

SS Number of testing sample

L extended Lagrangian function ts The tsth training sample
δ Dirac distribution function ls The lsth label of training sample
τ Noise tolerance parameter
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