
1Scientific Reports |         (2020) 10:5436  | https://doi.org/10.1038/s41598-020-62338-8

www.nature.com/scientificreports

Application of random forest based 
approaches to surface-enhanced 
Raman scattering data
Stephan Seifert1,2

Surface-enhanced Raman scattering (SERS) is a valuable analytical technique for the analysis of 
biological samples. However, due to the nature of SERS it is often challenging to exploit the generated 
data to obtain the desired information when no reporter or label molecules are used. Here, the 
suitability of random forest based approaches is evaluated using SERS data generated by a simulation 
framework that is also presented. More specifically, it is demonstrated that important SERS signals 
can be identified, the relevance of predefined spectral groups can be evaluated, and the relations of 
different SERS signals can be analyzed. It is shown that for the selection of important SERS signals 
Boruta and surrogate minimal depth (SMD) and for the analysis of spectral groups the competing 
method Learner of Functional Enrichment (LeFE) should be applied. In general, this investigation 
demonstrates that the combination of random forest approaches and SERS data is very promising for 
sophisticated analysis of complex biological samples.

Surface-enhanced Raman scattering (SERS) is an analytical approach that is capable to study small structures in 
biological materials1 and that is even able to detect single molecules2,3. Because SERS can also be applied as in 
vitro analytical tool4, e.g. to analyze living cells5,6 it has the potential to become the next generation sensor tech-
nology to monitor cells and tissues7. Hence, SERS has been widely applied, for example to study blood8, bacteria9, 
viruses10, cancer11, and to develop a pH sensor in living cells12. SERS analyzes the local environment of nanoparti-
cles that are utilized as nanoprobes which can result in very diverse SERS spectra in environments with many dif-
ferent biomolecules. Hence, one of the main challenges of biological SERS applications is the question of how to 
obtain reliable and interpretable results. One possible solution is the application of SERS labels, nanoparticles that 
are combined with functionalized reporter molecules for specific binding and, hence, to obtain more reproducible 
and specific SERS spectra7. However, in this case, usually only the signals of the reporter molecules are detected.

Another approach that can also be applied to the spectra of reporter molecules is the analysis of the SERS 
data with multivariate statistical methods. This combination has for example been used to classify bacteria13 and 
for cell imaging14. In this context, usually unsupervised methods like principal component analysis (PCA) and 
hierarchical cluster analysis (HCA) are applied. However, in label-free SERS experiments it has been shown that 
variation due to the nature of SERS can hamper analysis with PCA and HCA when biological samples containing 
multiple molecules are analyzed15. This can be circumvented when supervised methods like artificial neural net-
works (ANN) are applied. Although ANNs have been utilized, e.g. to quantify caffeine16, food dye17, and metabo-
lite gradients18 and to discriminate DNA19, they have not been applied to SERS data to a great extend. One reason 
for this rare use and a major drawback of many machine learning methods including ANN is that the resulting 
prediction models are black boxes. Random forest (RF)20, however, is a machine learning approach that consists 
of multiple decision trees, which makes it relatively easy to peek into the black box. As a result multiple random 
forest based approaches have been developed for the identification of important predictor variables mainly for 
the purpose of analyzing high dimensional omics data like gene expression data21–26. The objective of this study 
is to apply different RF based approaches to SERS data to evaluate the possibilities that they provide to extract 
useful information from this challenging and unique data type. More precisely the RF based methods Vita23, 
Boruta24, minimal depth (MD)25 and surrogate minimal depth (SMD)26 are applied to select important variables 
and Learner of Functional Enrichment (LeFE)27 and prediction error (PE)28 to evaluate predefined groups. In 
addition, SMD is also utilized to analyze variable relations. To comprehensively evaluate the validity and power 
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of the different methods, the true properties of the data needs to be known which is why a framework for the 
simulation of SERS data was established for this study.

Methods
SERS data simulation.  For the simulation a compromise between two opposite characteristics had to be 
found: A relatively simple structure should be used that can easily be interpreted and shows clear findings. On 
the other hand surface-enhanced Raman scattering (SERS), especially when it is applied to complex, biological 
samples, generates quite complex data. This results from the nature of the SERS experiment where the current 
environment of nanoparticles is probed. Thus, in the presence of various biomolecules the observed SERS signals 
can be very different and the simulated spectra should be very diverse.

As an easily understandable basis for the simulation, so-called single spectra were generated and used as 
a straightforward proxy for SERS information that originate from one analyte or from various analytes that 
co-occur in the SERS spectra. In order to obtain realistic and diverse SERS spectra these single spectra were sub-
sequently combined with random proportions. Consequently the simulation can be subdivided into two parts: 
The simulation of twelve single spectra and the combination of these single spectra to obtain SERS data sets.

In order to generate single spectra in the wavenumber region from 300 to 1700 cm−1 with a resolution of 1 
cm−1, for each spectrum 1401 spectral data points were obtained from a normal distribution with a mean of 200 
and a standard deviation of 50 corresponding to baseline and noise of the spectra, respectively. Subsequently, 
a randomly selected number of bands between three and ten consisting of a random band maximum position 
and a randomly selected band width between 5 and 20 cm−1 were drawn for each of the spectra. For each band a 
gaussian curve with a maximum value between 1000 and 10000 and a standard deviation of the respective band 
width was simulated and added to the spectrum at the respective positions, so that the maximum of the gaussian 
curve corresponds to the band maximum position.

In the second step two different groups of spectra were built combining two to five of the twelve single spectra 
for each SERS spectrum. The first 500 spectra contained single spectrum 1 as characteristic spectrum with char-
acteristic bands and the second 500 spectra single spectrum 2. The other ten single spectra appear in both groups 
and, hence, are group unspecific SERS signals that determine the variable background of the group characteristic 
bands. Only a fraction f of the spectra of the respective group contains the characteristic single spectrum and this 
fraction was altered utilizing the values 0, 0.05, 0.2, 0.5, and 0.8. The data set with f = 0 represents a null scenario 
with SERS spectra for both groups that do not contain any characteristic bands. For the characteristic spectra in 
the SERS data sets the proportion w of the respective characteristic single spectrum was randomly chosen from 
values between 0.1 and 0.8. The remaining proportion of the SERS spectrum (0.9 to 0.2 in total) was defined 
by one to four of the additional single spectra. The SERS spectra were obtained by adding up the contributing 
single spectra multiplied by the respective proportions. For each value of f 50 replicates, each containing 1000 
SERS spectra (500 for each group), were simulated. Hence, the total data set for each value of f contained 50000 
spectra (50  ⋅  1000 spectra) and, in total, 250000 spectra were obtained. Finally, all of the SERS spectra were 
vector-normalized, meaning that the intensity of each spectral variable was divided by the sum of the intensities 
of the respective spectrum.

A schematic overview of the simulation process is given in Fig. S1 and an R markdown script to generate the 
data is provided as supplementary material.

Random forest (RF).  Random forest is a machine learning approach that utilizes a large number of indi-
vidual decision trees that are obtained by different subsets (bootstrap samples) of the training data20. In the tree 
building process the optimal split for each node is identified from a set of randomly chosen candidate variables. 
Besides their application to predict the outcome in classification and regression analyses, RF can also be applied 
to select important variables and groups, and to enable a deeper understanding of variable relations.

Software and analyses.  The software R (version 3.5.2) and the R packages Pomona in version 1.0.0 (for 
Boruta and Vita, https://github.com/silkeszy/Pomona), SurrogateMinimalDepth in version 0.1.9 (for MD and 
SMD, https://github.com/StephanSeifert/SurrogateMinimalDepth), and PathwayGuidedRF in version 0.2.3 (for 
PE and LeFE, https://github.com/szymczak-lab/PathwayGuidedRF) all using the ranger package29 for random 
forest generation were utilized. The parameters applied for ranger and the RF based approaches are summarized 
in Table 1. For each analysis, classification mode to differentiate the two groups with different characteristic 
spectra was used.

Selection of important variables.  Various methods have been developed to identify important variables 
based on random forests. Most of them use the permutation importance that is calculated as the difference of the 
prediction performance of a variable before and after the permutation of the variable’s values. Approaches differ 
in the way they distinguish important variables with a large permutation importance from unimportant variables 
with a small permutation importance.

The main idea of the Boruta algorithm24 is to compare the importance of the real variables to those of so-called 
shadow variables that are added to the data set. Shadow variables are obtained by permuting a copy of the real 
variables across observations to destroy the relationship with the outcome. Subsequently a RF is trained on the 
extended data set, the permutation importance values are collected and for each real variable the respective 
importance is compared to the maximum value of all shadow variables using a statistical test. Afterwards varia-
bles with significantly larger or smaller importance values are labeled as important or unimportant, respectively. 
The unimportant variables are removed and the whole process is replicated until all variables are labeled or a 
predefined number of runs has been performed.
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The Vita algorithm23 is based on the idea that most variables in omics data sets are unimportant and can be 
used to estimate importance values of null variables. Here, the observed non-positive permutation importance 
scores that are obviously obtained from unimportant variables are used to estimate a distribution that is sym-
metric around zero. Based on this empirical distribution, p-values for all variables are calculated and important 
variables can be separated from unimportant variables based on a p-value threshold.

A different approach to select important variables independently of the permutation importance is based on 
the tree structures of the random forest. Minimal depth (MD) variable importance is calculated by the average 
layer of first appearance of a variable in the decision trees25. Here, variables with MD values below a threshold are 
labeled as important. The threshold is calculated based on the average MD of non-relevant variables in a hypo-
thetical setting where the outcome is independent of all predictor variables.

In order to include variable relations in tree structure based variable importance measures, surrogate mini-
mal depth (SMD) has been developed that incorporates surrogate variables into the concept of MD26. Surrogate 
variables have originally been proposed to replace missing values in the data30 and are obtained in addition to the 
primary split, in order to be able to replace this split as good as possible. In SMD the importance measure of first 
appearance is not only applied to the primary split variable but also to the surrogate split variables. The threshold 
to identify important variables with low SMD values is calculated based on the average SMD of non-relevant var-
iables in a hypothetical setting where the outcome and all of the variables are independent of each other.

The performance of Boruta, Vita, MD and SMD was compared using different evaluation criteria. In addition 
to the selection frequencies of each variable in comparison to the characteristic spectra, the sensitivity and the 
false positive rate of variable selection was calculated. The false positive rate was obtained by the fraction of the 
falsely identified variables and the total number of variables that are not part of any characteristic band. The sen-
sitivity was determined by the division of the correctly identified variables and the total number of variables of 
the characteristic bands. Furthermore, the sensitivity of band identification was determined by the division of the 
number of bands from which any variable was selected by the total number of characteristic bands.

Selection of related variables.  The concept of surrogate variables in RF decision trees can not only be 
exploited to optimize the selection of important variables but also to analyze variable relations26. For this pur-
pose the parameter adjusted agreement that is used in the process of finding the best surrogate variables can be 
utilized and mean adjusted agreement values for potentially related variables are obtained. These mean adjusted 
agreement values are compared to a threshold that is calculated from the mean adjusted agreement of a hypothet-
ical setting with unrelated variables to identify related variables with higher values. In order to demonstrate the 
selection of related variables one replicate of the data set with f = 0.8 was analyzed and mean adjusted agreement 
values for the band maximum at 1323 cm−1 were reported.

A detailed analysis of the variable relations was conducted between the 13 maxima band variables of the char-
acteristic single spectra and the results are summarized in a relation matrix. Each cell of the matrix gives the pro-
portion of replicates in which the relation was detected, i.e. the mean adjusted agreement exceeded the threshold. 
For visualization the R package ComplexHeatmap31 was used and the ordering of the variables was determined 
by k-means clustering that is performed separately for the rows and columns utilizing Euclidean distance. For the 
null scenario the previously described characteristic band analysis was also performed for the nine band maxima 
of the single spectra 8 and 12.

Evaluation of predefined spectral groups.  In order to include group membership information in the 
RF analysis, pathway-guided RF approaches have been developed. Here pathways, meaning variable groups, are 
analyzed instead of individual variables and the approaches Learner of Functional Enrichment (LeFE)27 and 
prediction error (PE)28 were applied.

LeFE trains RFs on a variable data set that consists of the group variables and a multiple number of randomly 
selected variables that are not part of the group. Subsequently a statistical test is applied to decide if the impor-
tance scores of the group are significantly larger than the scores from outside the group. Because the number of 

Approach Parameter Description Value

RF ntree number of trees 1000 (LeFE and PE)

10000 (Vita, Boruta, SMD, MD)

mtry number of candidate predictor variables 228 (number of variables(3∕4))

nodesize number of spectra in terminal node 1

Vita p.t threshold for p-values 0

Boruta pValue confidence level 0.01

maxRuns maximal number of importance source runs 100

SMD s predefined number of surrogate splits 70 (number of variables ∗0.05)

t user defined factor to calculate threshold 1

PE no.perm number of permutations 100

LeFE sample.factor multiple of number of variables selected 1

outside of variable group (“pathway”)

sample.runs number of repetitions of comparison 75

Table 1.  Parameters used for the random forest based approaches.
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total variables in SERS data is considerably smaller than in omics data the same number of variables inside and 
outside of the group (and consequentially a sample factor of 1 in Table 1) was used.

PE trains a RF for each group and compares the prediction error of out-of-bag samples (samples that are not 
part of the respective bootstrap sample) to an empirical null distribution that is obtained by permuting the out-
come values. For this comparison a statistical test is applied, as well32.

As variable groups the variables of the bands of the twelve single spectra were utilized and the selection fre-
quency of each group over all replicates was determined.

Results and discussion
Simulated SERS data.  In order to evaluate the results of the comparison of different random forest (RF) 
based approaches accurately the underlying mechanisms and effects have to be known which is why simulated 
data were used (see Fig. S1 for a schematic overview of the data simulation). In the simulation process twelve sin-
gle spectra (see Fig. S2a–l) as a proxy for co-occuring SERS signals were generated and combined to obtain realis-
tic SERS spectra. To create a classification setting for the analysis two different groups of spectra were built. Each 
group exclusively contained one of the first two single spectra called characteristic spectra, while both groups 
contained the other ten single spectra called background spectra.

Figure 1a,b show the characteristic single spectra of the two groups and the simulated bands show different 
peak positions, width and intensities. In Fig. 1c,d representative SERS spectra containing the characteristic spec-
tra in high (0.76 and 0.73), medium (0.44 and 0.42) and low (0.10 and 0.12) proportions w are depicted exempla-
rily and Fig. 1e,f show spectra of the two groups that only contain background single spectra. It can be concluded 
that SERS spectra were obtained that show realistic characteristics, e.g. diverse signals that are partially charac-
teristic for the respective group. Because the two different groups were generated utilizing one respective single 
spectrum exclusively, the analysis results can simply be compared to the characteristic single spectra to assess the 
performance of the random forest based approaches.

Selection of important variables.  First, various RF based methods to select important variables were 
evaluated. Vita and Boruta clearly performed best in a recent comparison study of permutation based approaches 
on high-dimensional data sets34 and, hence, they were also applied here. In addition, the decision tree structure 
based minimal depth (MD) and surrogate minimal depth (SMD) were utilized.

Figures S3–S7 show the selection frequencies of each individual variable for the different SERS data sets with 
different fractions f of the characteristic spectra. Since the characteristic spectra are defined as the SERS signals 
that are different between the two groups, the bands of these spectra are the true important variables that should 
be identified by the variable selection approaches. The figures show that all of the approaches frequently select 
variables of the characteristic bands. However, a comparison of the different methods based on this visualization 
is not straightforward, which is why sensitivity and false positive rate were calculated. Because the actual aim of 
the selection is the identification of important bands and not the identification of all band variables the sensitivity 
was calculated for the identification of bands. This means that a characteristic band is correctly identified when 
any of the bands variables is selected.

Figure 2 shows the results for the different SERS data sets and approaches. An optimal approach would be 
in the upper left corner of each of the plots. Vita shows the highest sensitivities (about 0.7 and almost 1) of all 
approaches for data sets with medium (f = 0.5) and high (f = 0.8) amounts of characteristic spectra, respectively. 
For the latter data set, however, this method also features a relatively high false positive rate of ca. 2%. The reason 
for this can be attributed to inaccurate assumptions of this method. Here it is assumed that a very high number of 
unimportant variables are present to obtain an accurate estimation of null variables by non-positive permutation 
importance scores. However, this assumption is flawed when a data set with high amounts of important variables 
is analyzed. The difficulties of this approach were also indicated by the developers23 expecting a poor performance 
if only few non-positive importance scores are observed. Probably the impact of this false assumption will be 
more serious in experimental SERS data since they are much more complex and, consequently will contain even 
less completely unimportant bands and variables.

In contrast, Boruta shows very few falsly detected variables indicated by a false positive rate of close to zero for 
all data sets. However this approach features the lowest sensitivity of about 0.4 to 0.5 and 0.2 to 0.4 for data sets 
with low (f = 0.2) and very low (f = 0.05) amounts of characteristic SERS spectra, respectively.

Minimal depth (MD) performs comparatively weak in this comparison study: For high (f = 0.8) and medium 
(f = 0.5) amounts of the characteristic spectra it shows the lowest sensitivities of around 0.4 and for low (f = 0.2) 
and very low (f = 0.05) amounts it shows very high false positive rates reaching nearly 8%. The reason for the 
latter probably is that in situations when few or no causal variables are present, variables from the bands of the 
background spectra are preferably chosen in the decision trees leading to selection of those variables by MD. This 
assumption is supported by the results of the null scenario that features high false positive rates for MD (Fig. S8) 
and that shows that individual variables are preferably falsly selected by MD (Fig. S7). This problem, however, 
probably is less expressed in more complex experimental data because a higher amount of non-important back-
ground signals is present here due to high numbers of different biomolecules in the samples.

The relatively low sensitivity of MD for the first two data sets (Fig. 2(a,b)) is probably caused by the fact that 
all of the variables containing similar information for the separation are in competition to be selected as primary 
split variable in the decision trees. Hence, only a small amount of the variables is needed in the trees for reliable 
separation and high numbers of variables, even though they contain the relevant information for classification, 
are not needed in the tree. This assumption is supported by the Figs. S3 and S4 because MD does not select 
any individual variable with a selection frequency of more than 70%. Experimental SERS data sets also contain 
co-occuring SERS signals that provide similar information for the classification. Nevertheless, this difficulty is 
expected to be less expressed here, as well, because this information is not static and completely interchangable 
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like in the simulated data that is based on fixed single spectra. Instead, individual SERS signals in experimental 
data are influenced by the local environment and interactions of biomolecules with each other and the SERS 
nanoprobes. Hence, the causalities in experimental data are generally more complex than in this simulation and 
co-occuring SERS signals contain more different information.

Interestingly surrogate minimal depth (SMD) performs similarly for all four data sets. The sensitivity is at 
around 0.6, which is the second and third highest value for data sets with medium (f = 0.5) and high (f = 0.8) 

Figure 1.  Characteristic single spectra for the two groups (a,b) and examples for SERS spectra of the two 
groups containing (c,d) and not containing (e,f) the respective characteristic spectrum. The parameter w 
displays the proportion of the respective characteristic single spectrum in the SERS spectrum. This figure was 
generated using the software R33 (version 3.5.2).
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amounts of characteristic spectra, respectively, and the highest values for data sets with low (f = 0.2) and very 
low (f = 0.05) amounts. For this approach the false positive rate is also relatively constant at ca. 1%. The reason 
for this constant and very different performance to MD results from the incorporation of variable relations in the 
selection process. As a result, the similarity of the variables regarding their classification abilities enhances the 
abilities of the method to select important variables instead of reducing it. This is also why the sensitivities of SMD 
utilizing all important variables in comparison to the sensitivities of band identification show more similar values 
than the respective sensitivities of the other methods (compare Figs. 2 to S9). In the null scenario (Figs. S7d and 
S8) SMD selects the variable 679 cm−1 very frequently. Since this variable is never selected by MD, the reason for 
this must be that it shows high correlations to many other variables and, thus, is selected frequently as surrogate 
variable in the decision trees. This demonstrates the susceptibility of SMD to select variables exclusively because 
of their relations, which is also discussed in the original publication of this method26.

In conclusion, Boruta should be applied when the number of falsely detected variables should be mini-
mized. SMD should be preferred when data is analyzed that is characterized by low amounts of characteristic 
information.

Figure 2.  Performance comparison of the variable selection approaches on the SERS data sets with f = 0.8 (a), 
0.5 (b), 0.2 (c), and 0.05 (d). Sensitivity of band identification and false positive rate are shown. Each subfigure 
displays the median over all 50 replicates of each method using different plotting symbols and colors. This figure 
was generated using the software R33 (version 3.5.2).
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Analysis of variable relations.  The second characteristic of the SERS data sets that was analyzed was the 
relations of the variables. To find related variables SMD calculates the mean adjusted agreement and compares it 
to a threshold to select variables with higher values. Figure 3 exemplarily displays the mean adjusted agreement 
of all variables to find related variables for the band maximum at 1323 cm−1.

In order to accomplish a straightforward analysis of the relations of the characteristic bands, a detailed analysis 
was conducted for the 13 maxima band variables of the characteristic single spectra using only them as potentially 
related variables. Figure 4 shows heatmaps visualizing the proportion of replicates in which the respective rela-
tions were detected. The heatmaps are obviously not symmetric, meaning that the relation of variable a to variable 
b is not the same as the relation of variable b to variable a. This is reasonable, since the selection frequencies are 
based on the non-symmetric parameter mean adjusted agreement26. For the data sets with high, medium and 
low numbers of characteristic spectra (f = 0.8, 0.5, 0.2) the evaluated variables clearly classify in two groups that 
can be assigned to the two characteristic single spectra (labeled as S1 and S2). However, the analysis of the data 
set with f = 0.05 does not show this clear separation, but a large proportion of the variables build small groups 
that only consist of variables of the same characteristic spectrum. These characteristic groups are not present in 
the null scenario, that is characterized by three clusters with bands from both spectra (Fig. S10a). This confirms 
that the relations in Fig. 4 are caused by the characteristic information in the data sets. Interestingly, also in this 
scenario related variables are identified that can be assigned to co-occuring bands of the other single spectra. This 
is especially apparent when the maximum peak positions of the single spectra 8 and 12 are analyzed (Fig. S10b).

Since the single spectra represent different types of SERS information that individually co-occur in the SERS 
data sets it is obvious that this analysis is capable to distinguish between co-occuring SERS signals, especially 
when they are causal for the analyzed outcome. In a first application to experimental SERS data it has been 
demonstrated that this information is very useful to illuminate complex biological processes in cells like the 
interaction of antidepressants and lipids35.

Evaluation of predefined spectral groups.  One advantage of machine learning approaches for the anal-
ysis of spectroscopic data is the possibility to include previous knowledge. In the results presented so far, only the 
class information was included in the RF classification. However, the evaluation of variable selection techniques 
was adapted to include preknowledge about the SERS bands to analyze their selection frequency instead of single 
spectral variables for convenient comparison. In this paragraph the idea to include pre-knowledge is further 
developed by the application of so-called pathway-guided approaches that were developed to include external 
biological information into the analysis of omics data. These methods evaluate predefined variable groups instead 
of individual variables and select groups that are important for the outcome. A recent comparison study shows 
that self-sufficient methods that only use group variables and competing methods that compare the performance 
of group variables to variables outside of the group perform differently in high-dimensional data sets32. Hence, 
one from both of these types was used in the comparison on SERS data sets: Learner of Functional Enrichment 
(LeFE) was used as competing method and prediction error (PE) as self-sufficient method.

Figure 5 displays the results for the analysis utilizing the bands of each of the twelve single spectra as a variable 
group. LeFE shows high selection frequencies for the characteristic groups ranging from 82% (S1) and 32% (S2) 
for data sets with very low amounts of characteristic spectra (f = 0.05) to over 90% for data sets with medium and 

Figure 3.  Mean adjusted agreement of the additional spectral variables for the variable at 1323 cm−1 using one 
replicate of the data set with f = 0.8. The threshold obtained with t = 1 (horizontal line) is applied to separate 
related variables with higher values from unrelated variables with lower values. This figure was generated using 
the software R33 (version 3.5.2).
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high amounts (f = 0.5, 0.8) (Fig. 5a). Furthermore, all data sets show selection frequencies of nearly 0% for the 
groups that were built from the background spectra (BS).

PE shows selection frequencies of 100% for SERS data sets with f = 0.8, 0.5 and 0.2 and of 22 to 26% for f = 
0.05 for the two characteristic groups S1 and S2 (Fig. 5b). However, PE obtains similar values for the background 
spectra 3 to 12 (BS). The reason for this probably is that the variables in the characteristic and non-characteristic 
groups overlap. Since PE features a very high empirical power32 this results in the selection of all predefined 
groups. Apparently self-sufficient methods are not suitable for the analysis of SERS data since overlapping varia-
bles will always be present here.

The comparison to other variables outside of the group as it is conducted in competing methods like LeFE is 
obviously necessary for reliable variable group evaluation of SERS data. Hence, LeFE could in future applications 
be utilized to evaluate SERS data sets for differences in specific SERS signals of biomolecule groups like proteins 
or lipids. In addition, the SERS signals of individual substances like drugs or biomolecules that are suspected to 
be relevant for the considered research question could be exploited to directly test for differences regarding those 
particular substances.

Conclusions and Outlook
In conclusion, this study shows that the combination of random forest (RF) based approaches and 
surface-enhanced Raman scattering (SERS) is very promising to analyze complex biological samples. To be more 
precise, RF approaches expand the possibilities of SERS data analysis to obtain accurate and sophisticated inter-
pretation of complex SERS data and enable the incorporation of previous knowledge about the SERS signals into 

Figure 4.  Results of variable relations analysis for the SERS data sets with f = 0.8 (a), 0.5 (b), 0.2 (c), and 0.05 
(d). Heatmaps of the selection frequencies using all band maxima of the characteristic spectra as chosen and 
also as potentially related variables over all 50 replicates are shown. K-means clustering with Euclidean distance 
was applied and groups that are characteristic for a single spectrum are labeled with S1 (single spectrum 1) 
and S2 (single spectrum 2). This figure was generated using the software R33 (version 3.5.2) and CorelDRAW 
(version 19.1.0.419).

https://doi.org/10.1038/s41598-020-62338-8


9Scientific Reports |         (2020) 10:5436  | https://doi.org/10.1038/s41598-020-62338-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

the analysis. Regarding the selection of important variables: Boruta should be applied for a minimum number of 
falsly detected variables and surrogate minimal depth (SMD) when the data contains few characteristic informa-
tion. SMD can additionally be applied to analyze variable relations and to separate different co-occuring SERS 
signals. In order to include knowledge about spectral groups it is shown that the competing method Learner of 
Functional Enrichment (LeFE) should be applied instead of the self-sufficient approach prediction error (PE).

In the future, it is planned to apply and validate the obtained results on experimental data and to expand the 
application of RF methods to analyze further characteristics of SERS data. As an example, peak shifts could be 
analyzed to derive environmental and structural changes of biomolecules. In this context, laboratory experiments 
will be combined with simulations based on the simulation framework presented here to obtain a comprehensive 
view on the complex properties of SERS experiments.

Data availability
An R markdown script to generate the SERS data is provided as supplementary material.
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