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Abstract: Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses
the principles of polarization and the motion of bioparticles in applied electric fields. This technique
has been proven to be beneficial in various fields, including environmental research, polymer research,
biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the
major research areas that could potentially benefit from DEP technology for diverse applications.
Nevertheless, many medical science research investigations have yet to benefit from the possibilities
offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges,
future directions and potential applications of research investigations in the medical sciences utilizing
DEP technique. This review will also act as a guide and reference for medical researchers and
scientists to explore and utilize the DEP technique in their research fields.
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1. Introduction

The need for the rapid detection of diseases is becoming crucial to prevent the loss of life. It is
often too late to take action if the disease is at the final stage. The patients’ chances to live and be
cured increase if the disease diagnosis is performed as early as possible [1]. There are many factors
that can cause diseases, such as autoimmune disorders, disruption of the balance in the human body
system, cancers, bacteria, viruses, and fungal and other microorganism infections [2–4]. During the
disease process, there are certain complex changes that occur in cells ranging from the molecular
integrity to cell morphology [5]. There are various schemes used to detect diseases, including the use
of dye marker labelling, enzyme-base labelling assays and nucleic acid-based assays [6–10]. All of
these methods form the basis for nearly all of the pathology laboratory tests in hospitals. Certain
assays use fluorescence substances to label the antibodies and antigens to quantify them. Some use
the antibody to label the antigen [11]. All of these methods feature high sensitivity and specificity
values; however, the procedures of conducting these tests often require trained clinical personnel and
expensive equipment [12]. Furthermore, while patients are on the verge of the right treatment, these
tests are time consuming, which could be a major drawback of these techniques [13]. Economically,
these tests are considered expensive to be run in small laboratories, typically located in small villages;
thus, there is the need send the samples to a central laboratory. This procedure takes time and causes a
delay in the treatment given to the patients. In addition, any contaminants or analytical errors during
the process will lead to false-negative results, placing technicians in charge of handling techniques at a
disadvantage [14].
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A fast and accurate disease diagnosis is the best first choice to save human life. This option
cannot be achieved without an in-depth understanding of the physiology of living cells [15,16].
Distinguishing the properties between a healthy and pathological state of cells has become the major
interest of study to researchers to unravel the mystery of the disease and deliver the unmet rapid
disease treatment [17]. Recently, a few researchers have directed their efforts to distinguish between
healthy and infected/unhealthy cells utilizing a technique called dielectrophoresis (DEP) [18–20]. DEP
is the movement of particles by a trapping force in a non-uniform electric field when the particles
and surrounding medium have different polarizabilities. The polarization of the charged or neutral
particles is induced by an electric field generated from alternating current (AC) or direct current (DC)
potentials. The polarized particles would array in various motions, including attraction or repulsion
from the electrode by changing the frequency of the applied electric field, and this motion is in response
to positive DEP (p-DEP) or negative DEP (n-DEP), respectively. These fundamentals were officially
named “dielectrophoresis” by Dr. Herbert A. Pohl, a scientist at the Naval Research Laboratory at
Anacosta (DC, USA) [21]. In Phol’s paper, he defined DEP as a phenomenon seen in the relative
motion of suspensions and media resulting from polarization forces produced by an inhomogeneous
electric field. Since then, DEP research has expanded into various fields in the industry, including
microfluidics [22,23], biosensors [24,25], environmental studies [26,27] and medical diagnostics [28,29].

This paper reviews the present studies and applications of DEP in the medical science field.
The paper starts with a brief explanation of the DEP background, theory and its advantages. Next, the
previous DEP investigations in medical sciences are reviewed including: eukaryotic and prokaryotic
cells, oncology, stem cells, drug delivery, virus, bacteria, microorganism, fungi, DNA, proteins and
enzymes. Finally, DEP current challenges and limitations are highlighted along with the potential
future applications that can be conducted using DEP in the medical science research field.

2. DEP Background

2.1. Dielectrophoresis (DEP) and Electrophoresis (EP)

Many confused on the terms of DEP and EP. DEP technique manipulates particles in non-uniform
electric field, while in electrophoresis the particles respond to the uniform direct current (DC) voltage
to energize the electrode and attract particles. The movement of particles in DEP is based on the
difference in polarizability between the particles and the surrounding medium [30]. If the particles
move towards the electrode edge, the region of high electric field gradient, then the response is called
positive DEP (p-DEP), while if the particles move away of the electrode edge, then the response is
called negative DEP (n-DEP) [31]. In DEP the particles itself carry electrical potential, and respond
uniquely to the different frequencies. On the contrary, the particles manipulation in the electrophoresis
technique is controlled by the particle size, density, molecular weight and purity. Electrophoresis of
positive charged particles (cations) is called cataphoresis, while electrophoresis of negatively charged
particles (anions) is called anaphoresis. Another difference between the two technique is that DEP
technique can create a trap of particles using electromagnetic fields [32], while electrophoresis cannot
create stable non-contact traps of particles.

2.2. DEP Theory

DEP force is initiated by applying a non-uniform AC electrical field that manipulates the motion
of particles by creating polarisability gradient between the particles and the suspending medium.
DEP technique is exploiting the mechanical and electrical properties of the cells and the binding
properties of the proteins and cell surface for the uniquely induce cell motion. When cells/particles are
exposed to this non-uniform electric field, two different forces occur between the cells and surrounding
medium leading to a resultant force. The motion of the cells/particles can be in response to pDEP
or nDEP effects depending on the relative polarisability between the cell and suspending medium.
Figure 1 shows the illustration of DEP phenomena, in which p-DEP effect occurs when the cell travels
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toward high electric field gradient, while n-DEP effect occurs when the cells travels toward the low
electric field gradient, both of this phenomena depends on Clausius-Mossotti (CM) factor.
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Figure 1. Schematic diagram of DEP vs. EP. (A) shows p-DEP and n-DEP effects where the dielectric
particles move towards the high and low electric field gradient, respectively; (B) shows EP in which
cations and anions move towards negative and positive electrode, respectively.

DEP force applied to homogeneous sphere of a radius r in a suspension medium of a relative
permittivity εm can be demonstrated by:〈→

F DEP

〉
= 2πr3εoεmRe[K(ω)]∇E2 (1)

where ω is the angular frequency of the applied field, ∇E denotes the electric field gradient; and
Re[K(ω)] is the real part of the CM factor. According to this formula, DEP force is controlled by

the CM factor which is frequency-dependent. CM factor (K(ω)) is expressed as
ε∗p−ε∗m

ε∗p+2ε∗m
, where ε∗p is

the complex permittivity of particles and ε∗m is the complex permittivity of medium. The complex
permittivity ε∗ is given by ε− j σ

ω , where j =
√
−1, σ is the material conductivity and ω is the angular

frequency. The direction of the DEP force is independent of the applied voltage; which means changing
the voltage would not interfere with the direction of the resultant DEP force. However, the relative
polarisability of the cells and the suspending medium can be manipulated by controlling the frequency
of the applied electric field. The DEP force becomes zero at a specific frequency and the particles
do not move. This specific frequency is known as the crossover frequency or zero force frequency [33].
This phenomenon takes place when the real part of the effective polarisabilities of the particle and the
surrounding medium equal each other (i.e., Re[K(ω)] = 0).

By studying carefully CM factor, it was established that the conductivity controls the low frequency
DEP behavior, while the permittivity controls the high frequency behavior [34]. Therefore, there are
two main cases that govern the relationship between applied signal frequency and Re[K(ω)]. The first
case occurs when σp < σm and εp > εm; making Re[K(ω)] negative at low frequencies and positive at
high frequencies. On the other hand, the second case is when σp > σm and εp < εm, then Re[K(ω)]
becomes positive at low frequencies and negative at high frequencies [34]. Figure 2 illustrates the
relationship between the applied signal frequency and Re[K(ω)] with respect to the particle and
surrounding medium permittivity and conductivity.
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2.3. Electrode Geometry

The non-uniform electromagnetic fields needed to generate the DEP forces are created by
microelectrodes patterned using various microfabrication methods. A number of techniques exist
for the fabrication of microelectrodes, including wet etching, reactive ion etching, conventional
machining, soft lithography, hot embossing, injection molding, laser ablation, in situ construction, and
plasma etching [35], however, photolithography is considered the basis for most of these processes.
Each microelectrode geometry is designed to investigate specific research purpose. Electrode geometry
is important factor to ensure stable and sufficient DEP forces being applied to the induced particles.
Since the DEP technique directly affects cell physiology, several electro-physiological effects need to be
considered when designing the electrode geometry. Factors such as overheating (Joule heating) by the
electric field may cause dehydration, membrane disruption and death to the cells. Table 1 summarizes
the electrode geometries used in DEP research and their applications. It can be concluded that there is
no specific electrode geometry can occupy all the research applications.

Table 1. Electrode geometries and arrangements used in DEP for biomedical applications.

Electrode Geometry Applications Advantages References

Electrodeless
Insulator-based DEP (iDEP)

Particle trapping of
nanoscale bio particles

High vast localized
electric field gradient [36–39]

Rectangular electrode

Determination of
nanoparticles concentration

Manipulate particle spacing to
observe various particle conditions [40]

Liquid pumping manipulation
in microchannel electrode

Obviate pumping and leakage
problems in close channel [41]

Cylindrical electrodes

Immobilization of
protein molecules

Label free protein
molecule quantification [42]

Single cells
characterization manipulation Antiparallel DEP field [43]

Interdigitated electrode

Cell differentiation Cell characterization based on
bio-electrical properties [44]

Nanoparticles quantification Real time image quantification
method of nanoparticles [45]

Particle motion prediction High throughput and low
energy consumption [46]

Circular electrode
Infected cell discrimination Simple results’ interpretation

by crossover frequencies [18]

Particle separation Low volume of sample [47]
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iDEP is a particle confining technique based on the movement of matter in inhomogeneous
electric fields that employs insulating structures embedded in a microchannel to produce electric field
gradients [36–39]. The inhomogeneous electric field required for iDEP platforms is induced when
the cross-sectional area of the microchannel is “pinched” by the presence of electrically insulating
structures between external electrodes [38]. It has been reported that the polarization of the post
(obstacles) depends on the ratio of the medium’s and the post’s permittivity [36]. The magnitude of the
polarization is increasing with deviation of the permittivity ratio from unity. The optimization of the
microchannel structures with arrays of posts in iDEP can result in single particle trapping. Furthermore,
it has been demonstrated that when lowering the depth of the highly constricted channels to submicron
sizes, the degree of Joule heating will substantially be reduced [37]. This will widen the range of
voltages and media conductivities that can be applied to achieve rapid enrichment of target particles
by DEP. While in [38], the iDEP showed that particles’ size and the shape of microelectrode have
significant effects on the magnitude, location, and shape of the DEP trapping regions. On the other
hand, in [39] the researchers were able to segregate certain bio-particles by using asymmetric shaped
insulating posts coupled with low-frequency electric potentials. Moreover, the electrodes in [40] were
fabricated onto quartz substrates using photolithography technique and were used for the direct
mapping of the suspended particles’ spatial concentrations. Whereas in [41], rectangular electrodes
that can be selectively and sequentially activated were utilized to provide sufficient DEP force to
manipulate liquids by modulating the input frequency.

The cylindrical electrodes in [42] were to immobilize proteins. The combination of alternating
electric fields with nanometer-sized electrodes allowed the permanent immobilization of proteins
by DEP force. Furthermore, yeast individual characterization was reported by applying different
consecutive frequencies [43]. The electrodes precisely controlled the translational movement of
microscopic particles by DEP for the determination of the cells’ electrical properties.

Interdigitated electrode is the most common geometry used in DEP. In [44], the cells were
characterized by measuring the DEP force by varying the applied frequencies. While the quantification
in [45] was done by the calculating the nanoparticles density variations by monitoring the distribution
of the frame pixel intensities. Moreover, researchers in [46] have replaced the common interdigitated
electrode plate by cylindrical interdigitated electrode array to avoid the Joule heating and reduce
power consumption.

The microarray dot electrode used in [18], was chosen because of the confined area for the DEP
manipulation. Induced cells were either collected at the dot center in the case of n-DEP, or travel
toward the dot edge in the case of p-DEP. The light intensity shifts in the central region of the dot were
analyzed, and the DEP spectrum of the induced cells was plotted. While in [47], the circular electrode
provided high separation efficiency without enlarging the device size. The particle separation method
is based on non-uniform circular travelling-wave electroosmosis (TWEO). This technique causes an
interaction between the electric double layer charge and the tangential electric field on the electrode;
leads to fluid flow in the direction of the wave.

3. DEP Applications in Biomedical Sciences

Medical sciences are an integrated multidisciplinary field of study that has mainly focused
on healthcare diagnostics [48–50]. It emphasizes the nature of human health and diseases and
attempts to achieve unmet medical needs. Many techniques and disciplines have been implemented
to help medical researchers and scientists to diagnose and assess diseases and patient medical
conditions [51–54]. Research in the medical field requires in depth understanding of multidisciplinary
fields with more innovative research programs to develop better solutions for healthcare problems [55].
To support research needs, major financial pillars become one of the grave factors to sustain research
development. However, financial support is difficult to be secure in villages, rural areas and developing
countries. Therefore, well-developed diagnostic techniques that can operate with minimal laboratory
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infrastructure are crucially required to deliver the necessary medical need to the population in
developing countries [56].

Bioelectric signals from cells have been proven to carry various useful information about the cell
status [57,58]. There many sources of bioelectric signals of cells; one is the sodium potassium pump
in the membrane cell matrix. The movements of the sodium and potassium ions through the cell
membrane create membrane excitability and an electrical gradient due to the different charges inside
and outside the cell membrane matrix [59–62]. The cell patterning, effect of chemical analytes, and
cell-to-cell interactions with the extracellular matrix can be determined by exploiting the dielectric
properties of the cells without the need for any tags or labels. In the following subsection, the DEP
applications in biomedical sciences are critically reviewed.

3.1. Cells

3.1.1. Eukaryotes and Prokaryotes

Cells can generally be categorized as eukaryotic and prokaryotic. This kingdom classification
is based on the differences in the cytology and molecular structures of the cells. The most distinct
different features between eukaryotes and prokaryotes cells are the presence of a membrane-bound
nucleus in eukaryotes [63]. Eukaryotic cells have complex membrane-bound organelles such as the
endoplasmic reticulum, lysosomes and peroxisomes, microtubules, mitochondria, and histones for
DNA wrapping. Meanwhile, prokaryotes possess much simpler cell structures with a smaller ribosome
size and single circular chromosomes [64,65]. An example of eukaryotic cells is human cells, while
bacteria are considered prokaryotic cells. Table 2 summarizes the previous investigations conducted
on eukaryotic and prokaryotic cells using the DEP technique.

Table 2. DEP investigations of eukaryotic and prokaryotic cells.

Type of Cell Applications Advantages References

Eukaryotes:
Cancer cells
Erythrocytes
HeLa

Sorting and trapping More efficient cell
sorting and trapping [66]

Prokaryotes:
Bacteria (Escherichia coli) Separation Improve assay sensitivity [36]

Bacteria (lactobacillus) and yeast Separation Independent fingerprinting and
label-free separation of microbes

[67]

Bacteria (Clostridium) Trapping [68]

DEP techniques are mainly being used in eukaryotic and prokaryotic cells. The electrophysiology
of the cell is being manipulated to serve different purposes such as trapping, sorting, isolation and
separation of cells or microorganisms. Since DEP technique enjoys certain features including label free,
fast and inexpensive, DEP has the potential to be implemented in the future diagnostic techniques that
can be applied in daily medical laboratory routines. Techniques such as immunohistochemistry that
need antibody and fluorescence labelling do have high sensitivity and specificity; however, for their
operation, a specific antibody, a fluorescent dye, and a dark-field microscope are needed. Furthermore,
sometimes, due to toxin reactions, cell degradation and the fluorescence dye fading during the washing
step may lead to false-negative results [68–70]. These problems can be countered using DEP techniques,
which are label free.

3.1.2. Cell Membrane

The cell membrane is also known as the plasma membrane; in eukaryotic cells, the membrane
is selectively permeable, enabling only certain compounds to pass through the membrane layer.
It acts as a controller for the movements of ions and molecules in and outside of the cells. The cell
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membrane structure is made of a phospholipid bilayer (see Figure 3), while the proteins are bound to
the membrane surface and within the membrane layer. Proteins on the extracellular membrane surface
are involved in cell-to-cell interactions, whereas the proteins located on the intercellular membrane are
responsible for the structures that build the protein channels and protein pores. Some small molecules
and ions can just diffuse through the plasma membrane, and some ions and molecules can just move
in or outside the cells by osmosis. However, for some large molecules, active transport is needed to
control molecular movement across the cell membrane. Active transport allows the molecules to move
against the concentration gradient, consuming energy [71–73].
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Figure 3. Plasma membrane with the ion/particle flow into and out of the cells. Certain ion/particles
can simply pass through the plasma membrane by diffusion, while others need to pass through the
protein channel or carrier protein.

The membrane potential, or transmembrane potential, is the difference in the electrical gradient
between the intracellular matrix and extracellular matrix, the potential gradient is caused by the ionic
imbalance on both sides in or outside the plasma membrane. The DEP response of a cell is mostly
determined by the physicochemical properties of the plasma membrane. When an external electric
field is applied, ions are transferred from the external and internal surfaces of the plasma membrane;
subsequently, the charges will join together to produce dipole movement [74].

Little research has been conducted on the plasma membrane using the DEP technique. In 2013,
Abdallah et al. [75] sorted crystallized membrane proteins by combining microfluidics and microbeads
for membrane protein structure studies. The study of cell membranes is highly important in biomedical
research. It can configure the functional access in cell membranes, for example the ion channel activity
in membrane surfaces, and which is an important prerequisite in drug discovery studies [76].

3.2. Oncology Research

Oncology is the study targeted on the diagnosis and treatment of cancer. The aim of oncology
research is to detect cancer as early as possible through screening and to identify the cancer stages.
Cancer is an abnormal malignant cell growth that has metastasized and travelled to nearby tissues
or other parts of the body invading organs and systems [77]. On the other hand, the treatments are
multilevel and multimodal depending on the cancer type and stage. Oncology also includes the
management of the side effects of treatment [78]. The critical challenges of oncology research include
the isolation of rare cancer cells from complex samples (i.e., blood), confirmation and differentiation
of cancer type, and monitoring the treatment progress by assessing the cell morphology. As the DEP
technique can differentiate the healthy and pathological states of cells by exploiting cell dielectric
properties, DEP has been used in several oncology investigations.
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Different cells have different sizes, surface area and morphology. The main parameters that
govern the DEP cell separations are attributed to the unique differences of cell electrical properties
“fingerprints”. Each cell at a certain pathological state feature a certain crossover frequency which can
be used for the characterizations of infected cells [79].

Despite DEP crossover frequency, the ionic conductivity of the suspending medium also has
a major effect on the DEP cell differentiation. A particular medium conductivity, can be adjusted
in a very narrow AC frequency band [19,79]. Table 3 reviews the research in oncology using the
DEP technique.

Table 3. DEP investigations in oncology.

Cell Type Applications Advantages References

CTCs Isolating CTCs
from blood

Rapid and label-free
cell isolation method [79]

Human oral cancer cells Cancer cell
characterization

Rapid and label-free cells
characterization method [80]

Osteosarcoma
(Bone cancer cells)

Identification and
monitoring of
tumour heterogeneity

Label-free cancer
subset characterization [81]

Breast and
colorectal cancer

Differentiations of
two cancer cells

Label-free isolation and
separation of cells [19]

Prostate cancer Rare cancer cell
isolation from blood

Improve immunocapture
performance [82]

Cancer cells are hard to detect and isolate from normal cells, because genes are mutated and
differentiated into subsets, and a specific biomarker is needed for their detection [83]. Sequencing, cell
sorting and the use of flow cytometry in cancer detection require highly trained workers and expensive
equipment at a high cost burden [84–86].

According to Table 3, DEP is fast and label-free technique and can improve the screening
performance of cancer cells when combined with other devices (i.e., microfluidic platforms).
For example in [79], the interdigitated electrode is combined with DEP field flow fractionation
(DEP-FFF) allowing high throughput cells isolation and characterization. The integrated techniques
also enhanced the cell recovery for future clinical analysis. Therefore, DEP can be used to reduce the
complexity of the current techniques for cancer cell identification.

3.3. Stem Cells

Stem cells are a class of undifferentiated cells that can differentiate into specialized cell types. It can
be found in embryos (embryonic stem cells), during the blastocyst phase of embryological development
and in adult tissue [87–89]. Adult stem cells, also called somatic stem cells, are undifferentiated
cells found among differentiated cells in a tissue or organ. The primary roles of adult stem cells
are to maintain and repair the tissues in the body [88]. Stem cells are considered the top of the
hierarchy of cells, and they generate progenitor cells (immature cells) in which the differentiation
and proliferation are restricted until they become mature specialized cells [89,90]. The condition of
being undifferentiated, mitotically active precursor cells enables the manipulation of stem cells to pose
distinct developmental potential and alternative growth [91].

Stem cells have become a trend of research because of their ability to differentiate, and either
remain as a stem cell or become specialized function cells such as muscle cells, red blood cells, and liver
cells. Stem cells can be used in the treatment of wound healing, cell therapy, and drug therapies and
have the potential to be developed into artificial organs [92–95]. Few researchers have taken advantage
of DEP technology to assist them in the isolation and separation of stem cells. Table 4 summarizes
recent DEP studies on stem cells.
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Table 4. DEP studies on stem cells.

Applications Details References

Stem cells differentiation

Neural stem and progenitor cells with more neurogenic
progenitors (NPs) can be distinguished from those
with more astrogenic progenitors.

[96]

Human mesenchymal stem cells (hMSCs) and their differentiation
progenies (osteoblasts) by multiple DEP force. [97]

Mouse embryonic stem cells (mESCs) and C2C12 skeletal muscle
myoblasts. DEP spatially organize the cells and their spheroids. [98]

Cell fractionation Adipose tissue stem cells fractionated in a
suspension using DEP field flow. [99]

Cells isolation and sorting Isolation of mouse neural stem/precursor cells (NSPCs) to the
progenitor cells with different dielectric properties by DEP. [100]

In stem cell research, the differentiation, fractionation, isolation and sorting of cells is very crucial.
Stem cells need to be differentiated from the progenitors, the lineages and from other progenies cells.
Commercialized cell sorter systems such as Fluorescent Activated Cell Sorting (FACS) [101] and cell
labeling [102] require considerable tedious cell preparation, whereas DEP is a simple and cost-effective
technique that can be implemented in this area. Recently, the scientists have demonstrated a consistent
link between membrane capacitance and the cells’ electrophysiological properties by using DEP. DEP
have been able to distinguish the progenitors and the lineage cell that defines progenitors during the
cell differentiations [96,97]. In [96] the castellated electrode arrays based on a microfluidic DEP-assisted
cell sorting (DACS) have differentiated and enriched the stem cells by applying different frequencies.
While the design in [97] is based on oblique interdigitated electrodes and used to sort and differentiate
stem cells and enhanced the efficiency of cell recovery and collection. The stem cells differentiation
is not merely limited to the progenitor and lineage differentiation; however when DEP is integrated
with stereolithography (SL) technique, the three dimensional cell control encapsulated in hydrogel
was able to organize the cell patterning; resembling the actual in vivo cell environment compared to
conventional two dimensional tissue culture method [98]. Furthermore, hybrid DEP-FFF platforms
have been used for stem cells fractionation utilizing interdigitated electrodes. It provides rapid,
label-free progenitor cell enriched tissue fractions for on-demand tissue preparation in the clinical
practices [99].

DEP is a powerful technique to monitor, interrogating, characterizing, trapping and sorting
the stem cells even in mixed cultures. The DEP technique offer advantageous identification and
differentiation of the stems cells compared to the conventional FFF and FACS approaches [100].

3.4. Drug Delivery

Drug absorption by cells is determined by the drug’s physicochemical properties and formulation.
The smaller the particles size is, the easier the drugs are absorbed in the system. Other factors that
influence the absorption rate include the molecule’s lipid solubility, size, degree of ionization, and area
of the absorptive surface [103–105]. Drugs can be absorbed into the cells by passive diffusion, facilitated
diffusion, active transport or pinocytosis. Passive diffusion occurs when the drugs diffuse across a cell
membrane from a high concentration to a low concentration—for example, the diffusion of drugs from
gastrointestinal fluids to blood. The diffusion rate depends on the concentration gradient [106,107].

Most drugs are weak organic acids or bases, while certain drugs are lipid soluble.
The physiochemical properties of the drugs will determine the delivery rate [108]. Facilitated diffusion
occurs when the drug molecules with low lipid solubility penetrate the cell membrane by forming a
carrier-substrate complex and diffusing into the cells. On the other hand, active transport requires
energy to transport the drugs into the cell. Active transport is selective and may involve the transport
of drugs against the concentration gradient—for example, from a low concentration side to a high
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concentration side [109]. Active transport usually occurs with endogenous substances such as vitamins,
sugars and amino acids. Pinocytosis occurs rarely except for protein-based drugs. During pinocytosis,
the cell membrane invaginates and encloses the fluid or particles and then fuses again, forming a
vesicle that later detaches and moves to the cell interior [110].

The DEP technique has proven to be beneficial in drug delivery assessment and analysis. Table 5
summarizes the recent drug delivery investigations that were conducted utilizing DEP. Although DEP
has brought various advantages to the drug delivery research, DEP has yet to gain recognition by drug
delivery researchers.

Table 5. DEP investigations in drug delivery research.

Drug name Applications Details References

Gefitinib (ZD1839) Cancer treatment Drug treatment assessments [111]

Cycloheximide (CHX) Protein biosynthesis inhibitor Cells immobilization [112]

Cisplatin and docetaxel Chemotherapy drug Drug screening [113]

Terbinafine and insulin Anti-fungal and
diabetic treatment

Drug delivery
enhancements [114]

Lipospheres Particle for coating drugs
for oral administrations Concentrating the drugs [115]

DEP has been used as a non-invasive diagnostic technique to assess the treatment of the drug
delivery. With DEP, the conductivity and permittivity of the membrane and cytoplasm can be
determined by the electrophysiological activity of the cells. As previously discussed in the cell
membrane subtopic, the ionic imbalance creates a gradient potential, causing the cell membrane
capacitance change and affecting the efficacy of the drug delivery into the cells. In drug delivery
research, the DEP technique has been used to assess the drug efficacy, cell viability and drug perfusion
into the cells. DEP can be applied as a new in vivo technique to monitor drug toxicity, delivery,
development, and screening at the single–cell level [74,113,116].

DEP technique has been utilized to observe the drug treatment interaction in the cell by changing
the cell membrane capacitance [111]. Furthermore, the microelectrode arrays in [112] have generated
weak electro-thermal vortices that support efficient drug mixing and rapid cell immobilization. With
this, drug treatment responses can be directly visualize and quantify to provide useful real-time
analysis and quantification of the programmed and accidental cell death. As for drug screening, planar
interdigitated ring electrode (PIRE) DEP electrode arrays have been used to customize uniform cell
patterning and stable drug perfusion. The screening results were equivalent to conventional method;
however, with the DEP technique only small amount of cells are required to perform the test; giving
DEP a lead for clinical practices especially when there is limited supply of cells [113].

The macromolecular, non-polar and high molecular weight structure of drugs have been found
challenging in drug delivery system studies. Despite that, with the iontophoretic DEP electrode, the
macromolecule drugs, such as insulin and terbinafine, have changed the membrane conductivity and
enhance the drug transdermal delivery [114]. The DEP technique has been also use in concentrating
the drug element by entrapping the microparticles and cells within parallel electrode DEP cages.

3.5. Viruses

Viruses are very small organisms at the nanometer size. It is the simplest form of organisms
because its structure only carries its genetic material. Most viruses or virions (virus particles) have
three main parts—nucleic acid, capsid and envelope. Depending on the type of virus, viruses carry
their genetic materials as RNA or DNA because the function of the capsid or protein is to cover
and protect the nucleic acid. The envelope structure is only present on certain viruses to protect the
capsid [117–119].
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Viruses reproduce inside the host cells. Typically, viruses insert their genetic material into host
cells and start replicating [120]. When the host cells lyse, the virus infects other cells and eventually
invade the host organ or system. Some viruses may remain inactive inside host cells for long periods
with no obvious change in their host cells; however, when the condition becomes favourable, the
recurrence infection may occur again [121]. Table 6 lists the DEP investigations on viruses.

Table 6. DEP investigations on viruses.

Virus Type Virus Size Diseases Applications References

Adenovirus 90–100 nm Respiratory disease Virus detection
and trapping [122]

Rotavirus 80 nm Gastrointestinal disease
and inflammation

Virus detection
and trapping [122]

Sindbis virus 60 nm Sindbis fever (Similar
to chikungunya fever)

Isolation, detection and
concentrating the viruses [123]

H1N1 80–120 nm Viral influenza Virus detection [124]

The influenza viruses
(A PR/8) 80–120 nm Viral influenza Virus enrichment [125]

T7 bacteriophage virus 60–61 nm Invade the bacteria Virus isolation [126]

Norovirus 26–35 nm Gastrointestinal disease
and inflammation Virus trapping [127]

Dengue 40–60 nm Dengue fever Virus discrimination [18]

HIV 120 nm AIDS Virus detection [128]

Because viruses are small in size, some acute viral infections may cause asymptomatic
conditions [129,130]. Furthermore, samples with low virus concentration may lead to false-negative
results. This situation has been a large concern to scientists and researchers. There are many
immunological techniques and assays with sensitive detectors for virus detection such as
the radioimmunoassay (RIA), flow injection analysis (FIA), enzyme immunoassay (EIA) and
enzyme-linked fluorescence assay (ELFA) [131–134]. Despite all of these conventional expensive,
high-skills handler diagnostic methods, DEP has shown promising results in detecting, concentrating
and discriminating between virally-infected and healthy cells by measuring the electrical properties
of the cells.

Recently, researchers have started trapping and detecting viruses using dielectrophoretic
impedance measurement (DEPIM) method [122,127]. By varying the electrical conductivity of the
suspension liquid and the electric field frequency the number of the trapped viruses is changing.
The alteration in the DEP impedance reflected the number of the trapped viruses. Moreover,
an optimized gradient insulator-based DEP (g-iDEP) device was utilized for the concentration of
particles [123]. The sawtooth design of the g-iDEP device is aimed to selectively capture a variety of
bioparticles at different locations in the channel. Additionally, the method described in [124] applied
DEP and electrostatic forces on deposited single-walled carbon nanotubes (SWCNTs) to be used
as immunosensors. The measurements were taken as the normalized increase in resistance of the
immunosensor upon exposure to the viruses. In [125] the researcher have used three dimensional
iDEP to increase the viral sequences in order to enhance the probability of detection (virus enrichment).
The iDEP force, generated by adjusting the conductivity of the solution and the frequency of the
voltage, facilitated the effective transport of the virus without crossing an electrode. In [126], the
hydrogel coated microelectrode was utilized to isolate nanoscale particles to high and low electric field
gradient regions.

Recently, researchers have used microarray dot electrodes to discriminate dengue-infected
cells [18]. The cells’ dielectric properties were quantified by analyzing the light intensity shift within
the electrode’s dot region based on the Cumulative Modal Intensity Shift image analysis technique.
A unique DEP spectrum was plotted for each normal and virally-infected cells over a wide range of
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frequencies. The main advantage of this technique is that detecting the viruses occurs indirectly by
exploiting the differences in DEP responses occurred to the infected cells rather than detected the small
viruses directly. This technique avoids using complex labeling and imaging techniques.

3.6. Bacteria

Bacteria are considered eukaryotic cells. The bacterial structure can be spherical, helical, cocci- or
rod-like shape, while the arrangement can be in a cluster, chain like, diplococci or mono cocci. Bacteria
usually do not cause infection unless the condition favours the optimistic overgrowth of bacteria.

Bacterial infection can be differentiated from viral infection with the white blood cells differential
counts [135]. Usually when a patient is having a bacterial infection, the neutrophils counts are higher
than the lymphocytes count and vice versa [136]. Regarding the identification process using bacteria,
conventionally, it takes a longer time because bacteria need to be cultured first before the identification
process can be conducted. For some bacteria such as Mycobacterium tuberculosis, it takes a minimum of
approximately two weeks to culture the bacteria [137]. There are few studies that have employed the
DEP technique for bacterial identification, separation and purification. Table 7 shows the summary of
previous DEP applications on bacteria.

Table 7. DEP investigations of bacteria.

Bacteria Applications References

E. coli Identification and separation of bacteria [138]
E. coli and Enterococcus faecalis Pathogen specification and separation [139]
Mycobacterium smegmatis Separation of cells [140]
B. atrophaeus Separation of soil particle and bacteria [141]
E. coli and Klebsiella pneumonia Reduction of the bacterial growth time and drug sensitivity assay [142]
E. coli Measurements of bacterial concentrations in a medium [143]

Conventionally, there a several methods available for bacterial identification such as staining,
chromogenic agar, differential media, enzyme-based reaction or biochemical reaction methods
for example indole, motility, Voges Proskauer (VP), methyl red, and citrate, matrix-assisted laser
desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry, enzyme linked immunoassay
(ELISA) and polymerase chain reaction (PCR) methods [144–151]. These methods have been practiced
in many pathology laboratories from local to central and specialized laboratories. Unfortunately, there
are many drawbacks of these methods; for the traditional methods such as staining, chromogenic
agar and differential media techniques, all of these techniques need proper bacterial culture, a process
that is time-consuming and laborious. This will delay the process for the medication prescription and
increases the patient’s life risk. On the other hand, techniques such as PCR, MALDI-TOF and ELISA
are time effective, accurate and sensitive; nonetheless these techniques are expensive, and only certain
laboratories can operate it. These impediments of bacterial identification and research can be overcome
by DEP diagnosing techniques, which are cost effective, accurate and time saving.

The method conducted in [138] is based on g-iDEP microchannel which separates similar bacteria
strains of a single species. The separations were based on the characteristic of electrokinetic properties
based on local electric field strength measurements. While in [142], the researchers have combined
the DEP technique with Raman spectroscopy due to low bacteria concentration in the sample.
A quadrupole electrode design was used to create the dielectric force. In [140], three dimensional
carbon-based electrode have been used to separate intact cells from damaged cells. The total intensity
of trapped cells around the electrodes was used in the quantification measurements. Moreover, a
flow-cell device was constructed to evaluate DEP separation of bacteria and clay in a continuous flow
through mode [141]. In [142], a rapid antibiotic susceptibility test (AST) was done based on the changes
in DEP behavior related to the bacteria. The inhibition of the antibiotic was measured by the positive
DEP frequency response and the length of the bacteria. In addition, the interdigitated DEP electrodes
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combine with the impedance analyzer were used to measure the bacteria concentration [143]. As the
trapped bacteria concentration increases, the impedance decreases.

3.7. Mycoses

Mycoses are fungal infections that can infect humans or animals. Fungi can be eukaryotic
cells or prokaryotic cells, while the structure can be filamentous or budding. Certain multicellular
complex fungi can have a mushroom shape. Fungi favour humid and dark conditions to grow.
Fungal infections can cause severe illnesses, especially when they enter the human internal system.
For example, fungi such as Aspergillus can grow in the human lung and causes severe toxicity and
allergy, while Cryptococcus can cause meningitis and brain damage in autoimmune patients [152,153].

Fungal detection is almost the same as that of bacteria—they require their own special
staining, media and biochemical reactions [154–158]. Fungal cultures are also time consuming and
laborious [159]. Tang et al. [160] used S. cerevisiae, a type of yeast, to investigate the DEP response
of lyticase (cell lysis agent). The research was used as a modular platform of the cellular response
subjected to apoptosis chemical stimulation as well as physical stimulations down to the single-cell
level. However, Patel et al. [161] has also used yeast as a platform to check the cell viability using
reservoir-based DEP. Although the fungal infection may cause severe infection in humans, there has
been only limited research to exploit the advantages of the DEP technique to diagnose mycoses.

3.8. DNA

Deoxyribonucleic acid (DNA) is built on the simpler units of the nucleotides cytosine, guanine,
thymine, and adenine with a deoxyribose sugar and a phosphate group. DNA stores biological
information and carries the genetic materials for growth, development, body function and reproduction
of all known living organisms and some viruses. DNA can be found in the nucleus and in the
mitochondria. DNA research is vital because it can be implemented in gene therapies for inherited
disease research, genetic enhancement and even in legal aspects such as forensic and paternity
claims [162–164]. There are several DNA studies conducted using the DEP technique mainly due to its
advantages in the separation and isolation of small particles (see Table 8).

Table 8. DEP investigations of DNA.

Applications References

DNA transfection [165]
Rapid discovery of circulating cell free DNA from plasma [166]
Direct detection of DNA from whole blood [167]
Manipulation and characterization to immobilized λ DNA [168]
Rapid, simple, and label free cancer cell-free DNA isolation [169]
Stretching and trapping DNA single-DNA molecule [170]
Sensitive, rapid and simple DNA trapping for particle manipulation [171]

DNA sample preparation is laborious, tedious and requires meticulous attention during the
process. The steps during the preparations, such as pipetting, centrifuging and filtrating, would
sometimes degrade the DNA quality and quantity [166,169,172]. The purification, recovery and
isolation from whole-blood samples would also be a major challenge in DNA research [166,167,169].
Furthermore, a common electroporation instrument such as an optical tweezer will damage the cell
membrane during the transfection [165]. DEP techniques have circumvented the research impediment
by providing a high resolution of isolation and separation of target bio-particles directly from the
whole blood and other biological fluid samples [126,173–175]. Furthermore, unlike optical tweezers,
DEP provides a low applied voltage and an alternating current for gene transfection from DNA that
can prevent cell membrane damage [165]. DEP techniques use a smaller sample volume and can
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isolate to the extent of a nanoscale-sized bio-particle, making it an excellent candidate for further
development as a point-of-care (POC) diagnostic tool, especially in molecular research [176–178].

DEP-assisted electroporation was developed by using light-activated virtual microelectrodes
in a microfluidic platform [165]. The electrotransfection have used a low applied AC voltage to
enable electroporation and transfection. Moreover, researchers have implemented a DEP-based
microarray chip for extracting circulating DNA [166,167,169]. On the other hand, DEP force, generated
by two combine electrodes stretching system, was used to immobilized λ DNA molecules [168].
In addition, the DEP technique was successfully used to trap a single DNA molecule with a silicon
nanotweezers [170]. In [171], an immunodevice was developed for capturing DNAs by combining
microparticle-based immunoreactions with n-DEP accumulation and trapping.

3.9. Proteins

Amino acids are the building blocks of proteins. Other than being important for building
muscle and bone, proteins are used as hormones (e.g., dopamine), oxygen transport (transferrin)
and enzymes (all enzymes are proteins) [179,180]. Although the genetic materials are stored as DNA,
all of the processes of DNA replication and cell replication such as mitosis and meiosis are based on
proteins [181]. On the other hand, our immune system is also based on proteins. It works in our body
to differentiate between self and non-self-organisms based on the major histocompatibility protein on
the cell surface [182]. These are only a few examples of the uses of protein in the human body.

There are many diseases due to protein deficiencies in the body. For example, deficiencies in
protein C and protein S may cause abnormal blood clotting [183]. A protein deficiency disease called
cachexia cannot be reversed nutritionally. Patients who have cachexia face muscle atrophy, weakness
and extreme fatigue [184].

Despite the important functions of proteins in the body, there are only limited studies on the DEP
technique that focuses on proteins compared with other fields. Nakano and Ros have extensively
reviewed DEP applications in proteins [185]. They have emphasized that the DEP technique plays
an important role as a manipulation, fractionation, concentration, and separation method in protein
research. On the other hand, they indicated that protein immobilization is an obstacle in DEP due to
Brownian diffusion, whereas other bulk fluid flows such as electroosmosis overpower DEP. However,
in 2015 this problem has been resolved by Laux et al. by using higher spatial atomic force that enables
the visualization of the protein distribution on single nanoelectrodes [42].

Enzymes are proteins that act as catalysts to accelerate biological reactions. They are temperature
sensitive and very specific. Similar to proteins, there is also limited research on enzymes.
In 2009, Baret et al. have proven that the DEP technique is efficient in cell sorting based on
β-galactosidase enzyme activity using a fluorescence-activated droplet sorter (FADS) and traditional
fluorescence-activated cell sorting (FACS) [186]. Furthermore, Laux et al. immobilized horseradish
peroxidase enzyme molecules while retaining their activity and rendering any chemical modifications
unnecessary by the DEP technique [187].

4. Sensitivity and Specificity

Powerful clinical diagnosing tools must comprise of a combination of a high levels of sensitivity
and stringent specificity to secure a true positive results in disease identifications. Signatures
identifications and isolations of bio-particles have become major impediments in diagnosing the
ambiguous diseases symptoms. Diagnostic results accuracy along with the speed identifications of
bio particles is critical in timely infection and fast communicable diseases. The stat test and long
turnaround time especially in using cultures in conventional methods of identification takes ages and
the patient’s life is endangered. Moreover, some diseases for an example cancer can only be identified
in the advance stage, making it difficult for the treatment [188].

In addition to all the advantages of DEP techniques discussed earlier in each application,
DEP techniques assist and improve the clinical sample sensitivity in detection and separation of
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target bio- particles [189,190]. Currently, the normal standard of dengue infection detection is by using
protein expression of antibody and antigen such as ELISA, Haemaaggluitination Inhibition (HAI) and
reverse transcriptase- polymerase chain reaction (RT-PCR) techniques [191–195]. However, recently the
DEP techniques have shown to be promising diagnostic tools by manipulating the dielectric properties
of the cell cytopathic effect in infection [18,196]. Conversely, the DEP techniques also provide a great
advantages by preserving the correlation of specificity and sensitivity forcing the compromise of
high-throughput and highly specific isolation of bio particles label free applications with minimal
sample preparations [197]. The high specific and specificity identification of target bio- particles from
complex biological fluid such as blood [198] and urine [199] can be used as a solid proof that DEP
methods have broad potential as powerful diagnostic tools.

5. Current Challenges and Limitations

DEP has been demonstrated to have the potential to be the most convenient assistive POC
diagnostic technique that can aid in the screening and identification of diseases. In biomedical
sciences research, it helps to isolate, trap, separate, fractionate, and concentrate target bioparticles
for many research uses. In addition to the DEP techniques being label-free, they are cost- and
time-effective techniques.

However, when proposing a new technology, there is a long and winding road before it enjoys
worldwide recognition. There are many obstacles faced by scientists to develop the best DEP electrode
to meet the research need. Some researchers face problems such as bubble formation in liquid, which
affects electrical insulation, darkening of the electrode under high conductance conditions in DC,
and some face problems with microchannels due to high gradients acting only in the vicinity of the
electrodes [165,185,200]. Joule heating also becomes a challenge to researchers. Kale, reported that Joule
heating reduces the reservoir DEP (rDEP) focusing and trapping performance due to the rise of fluid
temperature and reduces the electric field at the reservoir-microchannel junction [201]. Furthermore, it
was reported that the cell viability can be significantly decreased after iDEP manipulation mainly due
to direct damage to the cell membrane caused by the electric field combined with joule heating [202].

Beside all of the limitations above, there are also many things that need to be considered in
DEP techniques such as the evaporation of water or liquid during DEP experiments, which may
cause variations in concentrations and osmolarity [112]. The suspending media used also need to
be considered in DEP experiments. The CM factor K(ω) can be positive or negative depending on
the relative polarizability between the cell and suspending medium, creating the pDEP and nDEP
effect. This can be controlled by selecting the appropriate frequency of the applied electric field [18].
In most DEP experiments, the typical media used in cell culture techniques (i.e., phosphate-buffered
saline (PBS); Dulbecco’s Modified Eagle Medium (DMEM)) cannot be used in DEP experiments due to
their high conductivity, and a low-conductivity medium or buffer is usually used as the suspending
medium; however, the medium was reported to have a notable influence in decreasing cell viability
after 6 h of incubation [112].

Although the DEP analytical techniques are economically wise, the first thing that needs to
be considered is the user—for instance, the doctors, the clinical laboratory scientists, the medical
researchers and the laboratory technicians. It is hard to change the people personnel’s paradigm
that has been well niched with the conventional diagnostic methods. The DEP technique needs to be
educated, promoted and demonstrated—training and a seminar should be provided to these users so
they will gain confidence in using it.

6. Recommendations and Potential Applications

DEP is an accurate, label-free and rapid technique for cell sorting, differentiation, trapping and
purification. Furthermore, the DEP technique has the potential to unbound the research laboratories
from the bulky and complex machines; meanwhile, it does not require highly trained personnel
for operation.
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Although many research experiments have been conducted for various types of biological samples
using the DEP techniques, reported investigations are still at the teething phase. These studies
were mainly focused on understanding the fundamental response of biological particles to DEP
forces. Few studies have attempted to link the DEP behaviours of the biological particles to their
electrophysiological properties. However, there is still a high demand to integrate the DEP techniques
with miniaturized lab-on-a-chip platforms to perform various bio-research applications.

A complete DEP system should consist of several essential components, including a
microelectrode device, a signal generator, an image-capturing device, autograph analysis and computer
software. Such a system would be able to conduct sample preparation, detection and robust signal
quantification automatically, leading to a complete convenient functional system. The engineers should
have developed a complete system with universal cell suspending solutions, image and graph analysis
with a standard reference database to make DEP techniques user friendly by the biomedical researchers.

DEP technique can be a potential assistive tool to distinguish between normal and damaged
cells of fibroblasts in antiaging projects. The delivery and effectiveness of anti-aging plant extract or
compound in the cells can be assessed by the unique DEP responses of respected cells. The cells that
are damaged by UVA and UVB can be characterized by DEP since each type of UV will have a different
effect on the cells’ electrophysical properties. Moreover, DEP can also be implemented as a treatment
assessor in the dermatology industry. With the use of DEP, the cost of dermatology product testing
would be reduced, and the use of animal testing in dermatology product development can be stopped.

Since the beginning the DEP field, metal-based electrodes (i.e., nickel, gold, platinum, silver, etc.)
have been used to generate the non-uniform electric field needed for DEP. Planar electrodes have been
widely used to induce DEP effects. In order to have stronger electric fields, and thus stronger DEP
responses, a few 3D microelectrodes were proposed in the literature. However, these microelectrodes
were fabricated via complex processes using expensive machineries. Alternatively, 3D DEP electrodes
may be fabricated using polymer precursors before pyrolyzing them in an inert atmosphere to become
carbon [203]. Carbon has a number of advantages including a wider electrochemical stability window
compared to noble metals. This will reduces the possibility of sample electrolysis for a given applied
voltage. Furthermore, carbon enjoys excellent chemical inertness and biocompatibility.

7. Summary

Medical sciences are an integrated multidisciplinary field that involves the study of the
mechanisms of life and underlying causes of disease, and they seek to develop, improve and search
for the unmet treatments and diagnosis for patient populations. DEP is one of the promising
techniques that can meet biomedical research needs. Researchers need to direct their efforts toward
the development of POC devices to be used where central laboratories are inaccessible—for example,
in villages and developing countries. These POC devices would allow the diagnosis to be made as
early as possible to save a patient’s life and deliver the right treatment. The DEP technique would be a
big helping hand to untie the tangled issues of the increasing global cost of clinical laboratory tests.

This paper has reviewed research activities conducted in the biomedical sciences utilizing DEP,
including studies on eukaryotes, prokaryotes, cell membranes, oncology research, stem cells, drug
delivery, viruses, bacteria, mycoses, DNA, proteins and enzymes. Then, a brief outline of the current
challenges that DEP research faces was presented. Finally, future potential directions of DEP in the
biomedical sciences research arena were proposed.

In this review, we conclude that DEP is a powerful, cost-effective, fast, accurate and label-free
analytical diagnostic and screening technique. It has been demonstrated that DEP techniques offer
many advantages in isolating, trapping, separating, concentrating, and fractionating bioparticles down
to the nanoscale dimension. With this paper, it is hoped that the frontier gap between biomedical
sciences and engineering can be closed and progress to create better technology and improve human
health. It is expected that the DEP technique can help to change medical and public-health scenarios,
especially in developing countries, using new dynamic analytical screening and diagnostic tools.
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