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A B S T R A C T   

Purpose: Explore the longitudinal CT-based radiomics to demonstrate the changing trend of radiotherapy 
response and to determine at which point after the onset of treatment radiomics exhibit the greatest change for 
stage III NSCLC patients. 
Methods and materials: Ten stage III NSCLC patients in line with inclusion criteria were enrolled retrospectively, 
each of whom received radiotherapy or concurrent chemo-radiotherapy and performed eight series of follow-up 
CT imaging. Longitudinal radiomics were extracted on region of interest from the eight registered images, then 
two steps were conducted to select significant features as indicators of tumor change: 1) stable features were 
selected by Kendall rank correlation; 2) texture feature types with a steadily changing trend were retained and 
intensity features with stable change trends were selected to represent the large number of them. Next, the trend 
and rate of tumor change were analyzed using the Delta method and Curve-fitting method. Finally, the statistics 
in the distribution of stable features in patients were calculated. 
Results: 675 stable features were selected from a total number of 1371 radiomics features, then 12 texture fea-
tures types were retained and three intensity features were chosen to represent their own category. Among the 
final selected feature types, it was found that the two time points were weeks 1 and 3 with the higher rate of 
change. One patient had very few stable tumor features out of a total of 101 features, and the rate of change of 
features of another patient was conspicuously higher than the average level with number of 301 features. 
Conclusion: The longitudinal CT radiomics could demonstrate the change trend of tumor and at which point 
exhibit the greatest change during radiotherapy, and potentially be used for treatment decisions concerning 
adaptive radiotherapy.   

1. Introduction 

Despite advances in prevention, detection, and treatment, lung 

cancer remains a prevalent disease, and is associated with high mortality 
in both men and women worldwide [1]. Non-small cell lung carcinoma 
(NSCLC) is the most common subtype, counting for over 85% of lung 
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Matrix25/Gray Level Co-occurrence Matrix3; GLRLM25, Gray Level Run Length Matrix25; NID25/NID3, Neighborhood Intensity Difference25/Neighborhood In-
tensity Difference3; LASSO, Least Absolute Shrinkage and Selection Operator; PCA, Principle Component Analysis. 
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cancers [1]. While patients with overall stage III NSCLC who are unable 
to undergo surgical resection may receive adjuvant chemotherapy and 
radiation therapy, assessment of early response during the course of 
treatment could potentially advise the application of response-adapted 
therapy in a timely manner. Such therapies may include an adaptive 
radiation therapy boost or individualized adjuvant chemotherapy ac-
cording to their specific biological effects [2]. 

Quantitative characteristics of lung tumors based on medical imag-
ing, namely radiomics features, have been widely explored and studied 
[3] and correlated with tumor histology, tumor stage and patient overall 
survival [4,5]. In order to better reflect the role of radiomics in assessing 
therapeutic effects, many researchers use the change in radiomics fea-
tures at the time of treatment to predict prognoses for different types of 
tumor. Determination and assessment of feature change has been suc-
cessful in predicting the prognosis of liver metastasis in colorectal cancer 
to chemotherapies [6], predicting the occurrence of radiation pneu-
monitis of patients with esophageal cancer [7] and predicting the overall 
survival of NSCLC patients [8]. However, the changes in radiomics 
features were used to predict the prognosis of tumor at few time points in 
such studies, even after at the end of therapy, whereas it is likely to miss 
the early modifications in the metabolic activity of tissue during the 
course of treatment. Unfortunately, patients often have varied tumor 
responses to radiation therapy due to differences in tumor type and 
other genetic and epigenetic factors [9]. The ability of using radiomics 
features to predict response may enable early termination of treatment 
in non-responding patients, thus preventing additional toxicity, allow 
for early changes in treatment [8,10] and further guide the clinical 
decision-making resulting in better outcomes [11], since a timely switch 
to an alternative treatment approach may lead to a better prognosis 
where radiotherapy is not effective. 

Therefore, some researchers explored the utility of cone-beam 
computed tomography (CBCT), which is routinely used to verify the 
position of the patient before radiation delivery, to capture the changes 
in the tumor as early as possible. Carsten et al. analyzed the assessment 
of tumor regression on CBCT for NSCLC patients [12]. Furthermore, Van 
Timmeren et al., investigated that using radiomics features extracted 
from CBCT images acquired during radiation treatment was capable of 
reflecting the early treatment response [13]. Although CBCT images are 
normally used in the radiation therapy regimen, they have the drawback 
of inferior quality compared with conventional computed tomography 
(CT) images, making it more difficult to extract radiomics features more 
precisely. 

To the best of our knowledge, no study has investigated the use of CT 
images to assess longitudinal changes in the tumor during the entire 
course of radiation therapy. To better identify tumor changes in a timely 
manner and not miss the hidden changes, the first aim of this work was 
to find at which point in time during treatment shows the maximum 
change of internal environment of tumor with the eventual goal of 
exploring the possibility of using longitudinal radiomics for early 
treatment adaptation. The second aim was to explore which radiomics 
features were the best predictive signatures of response to radiotherapy. 

2. Materials and methods 

2.1. Patients 

We retrospectively reviewed the CT images and medical records for 
patients with stage III NSCLC who received radiation therapy and con-
current chemotherapy between May 2017 and October 2019. Review of 
data was done with the approval of the Tianjin Cancer Hospital Medical 
Ethics Committee, which allowed waiver of informed consent. Criteria 
for inclusion and exclusion were as follows: 

Inclusion criteria: (a) existence of CT images from prior to treat-
ment as well as during the course of radiotherapy, (b) definitive pa-
thology of the stage III NSCLC, (c) receiving of radiotherapy with a 
prescribed dose of 66–74 Gy, delivered via volumetric modulated arc 

therapy (VMAT) (Varian VitalBeam, 6 MV X-ray), (d) ages > 18 years, 
(e) Karnofsky performance status (KPS) ≥ 70;. 

Exclusion criteria: (a) history of other lung comorbidities, (b) lung 
surgery before radiotherapy, (c) prior radiation therapy to the planned 
radiation therapy fields. 

After screening, ten patients were included in the final data analysis. 
Clinical characteristics of these patients are shown in Table 1. 

2.2. Image acquisition, parameter setting and sampling 

The CT scanning parameters were set up as follows: peak tube 
voltage of 120KVp, tube current of 100 or 200 mA, and an exposure time 
of 500–800 ms on a large-bore CT scanner (Brilliant Philips Healthcare, 
Best, the Netherlands) system. Axial images were reconstructed in a 512 
× 512 matrix at an in-plane resolution of 0.98 mm and image thickness 
of 2.5 mm. Retrospective analysis of pre-therapy images (baseline, Week 
0) and weekly CT images (Week 1, Week 2, Week 3, Week 4, Week 5, 
Week 6 and Week 7) was acquired at eight sampling time points. In total, 
each patient had eight sets of CT images for the study. All images were 
automatically resampled with cubic voxels of 3 × 3 × 3 mm3 with linear 
interpolation using an automatic method in a dedicated commercial 
software (MIM Software Inc, version 6.9.6). 

2.3. Tumor segmentation 

The gross tumor volume (GTV) was identified as the region of in-
terest (ROI) in our study. The GTV was semi-automatically contoured on 
the clinical treatment planning system (Eclipse Varian Medical System, 
Palo Alto, CA) to avoid the inclusion of peripheral consolidation and air 
bubbles in the lesion. This approach has been validated as a robust way 
of delineation in our clinical practice. The GTV was also registered to 
each subsequent weekly CT scan using a deformable image registration 
procedure in the Eclipse system [14]. All contours were investigated to 
ensure consistency and modified to avoid the normal lung and bone 
structure as well as air bubbles using a lower threshold of − 100 
Hounsfield Units (HU) and an upper threshold of 200 HU. Those patients 
whose ROI volume with less than 5 cm3 was excluded. 

2.4. Feature extraction 

Imaging Biomarker Explorer (IBEX) v1.0β, an open infrastructure 
software platform developed by Zhang et al. [15] was used to extract 
radiomics features. Seven categories of features were identified: In-
tensity Direct (n = 55), Intensity Histogram (n = 49), Gray Level 
Co-occurrence Matrix25 (GLCM25, n = 330), Gray Level Co-occurrence 
Matrix3 (GLCM3, n = 924), Gray Level Run Length Matrix25 
(GLRLM25, n = 33), Neighbor Intensity Difference25 (NID25, n = 5), 
and Neighborhood Intensity Difference3 (NID3, n = 5). Features 
GLCM25/3, GLRLM25 and NID25/3 are texture features with quanti-
fying regional heterogeneity difference. Intensity Direct and Intensity 
Histogram are intensity features describing different intensities between 
voxels. The relevant parameters are defaulted in IBEX when extracting 
features of each category. 

All of the following information is from the work of Zhang et al. [15]: 

(1) “25′′ means two and half dimensions, for which the specific in-
dividual intensity pairs are counted slice by slice in two directions 
and the final feature matrix is the summation of the intensity 
pairs, while “3” means three dimensions so those intensity pairs 
are counted in three directions.  

(2) Thirty features are repeated in the two categories of Intensity 
Direct and Intensity Histogram due to the identical calculation 
formula [16,17]; we only kept one of the two and meanwhile 
combined the two categories as a new one named Intensity (n =
74). 
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(3) Twenty-two feature types can be calculated from one matrix of 
GLCM25 or GLCM3, and the distance and orientation are the key 
parameters to determine the feature metrics. For GLCM25, there 
are 3 distances (1, 4 and 7 units), and 4 orientations (0◦, 45◦, 90◦, 
135◦) plus the average of all orientations for each distance 
(named as − 333, same as below), so the number of GLCM25 
features is 330 = 22 × 3 × (4 +1); for GLCM3, there are also 3 
distances (1, 4 and 7 units), but 12 orientations ( φ/θ = 0◦/90◦, 
90◦/90◦, 0◦/0◦, 45◦/90◦, 135◦/90◦, 90◦/45◦, 90◦/135◦, 0◦/45◦, 
0◦/135◦, 45◦/54.7◦, 135◦/54.7◦, 45◦/125.3◦, 135◦/125.3◦) plus 
the average of all orientations for each distance, so the number of 
GLCM3 features is: 924 = 22 × 3 × (13 +1).  

(4) Eleven feature types are extracted from one matrix of GLRLM25, 
and the orientation is the vital parameter to determine the feature 
metrics. There are 0◦, 90◦ and the average of two orientations, so 
the number of GLRLM25 features is: 33 = 11 × 3. 

In short, a total of 1371 unique features [ 74 (Intensity) + 330 
(GLCM25) + 924 (GLCM3) + 33 (GLRLM25) + 5 (NID25) + 5 (NID3)] 
were identified. 

2.5. Feature selection 

In this section, two main steps were conducted to select significant 
radiomics features as the useful indicators of longitudinal tumor change. 
The workflow of feature selection is shown in Fig. 1. 

2.5.1. Select stable features 
During the entire treatment, some features may demonstrate insta-

bility in a change trend. For example, the certain eigenvalue increasing 
during one interval and decreasing in another interval, unrepeatable 
among patients. Because this type of feature likely to be an impractical 
metric for evaluation of effect of radiotherapy, these features need to be 
removed from the feature cohort. 

Therefore, the first step in our study was to use the Kendall rank 
correlation coefficient among patients to select the stable features, and 
retain features for which the number of patients with significant positive 
correlation is no less than 7; otherwise, the feature is deleted. 

2.5.2. Further selection 
We removed the patient data for which there was no statistical cor-

relation with the selected stable features, and took the mean value at 
each point in time to represent the feature at that point in time. We then 
normalized the feature values to the feature values at week 0 as the 
baseline. Finally, the slope of the feature value as a function of time, as 
obtained via linear regression, was considered to be the changing trend 
of the feature value. 

After completing the preprocessing work, the selected features were 
re-grouped based on the feature categories, recognizing that different 
feature categories had different selection criteria:  

(1) GLCM25/GLCM3: One co-occurrence matrix could have 22 
feature types according to its calculation formulas. Due to 
different dimensions, distances and orientations (GLCM25: three 
distances, and five orientations; GLCM3: three distances, and 
fourteen orientations), each feature type had up to 57 features 
selected. The feature types with more than 50 selected features 
were retained.  

(2) GLRLM25: One run length matrix could have 11 feature types 
according to its calculation formulas. Because there were three 
orientations, and each feature type had up to 3 selected features, 
only those with 3 selected features were retained.  

(3) NID25/NID3: Intensity differences in neighbor values in one 
dimension could have 5 feature types according to its calculation 
formulas. Because there were two dimensions, each feature type 
had up to 2 selected features, and only those with 2 selected 
features were retained. 

Table 1 
Clinical characteristics of the ten patients in our study.  

Patient ID Gender Age (yrs) T stage N stage Smoking Status Tumor Histology KPS Total Radiation Dose (Gy) 

D1 M ≥ 65 T2b N3 Yes Squamous cell carcinoma 70–80 < 70 
D2 M ≥ 65 T2b N3 No Squamous cell carcinoma 70–80 < 70 
D3 F < 65 T2a N2 No Adenocarcinoma or other 80–90 > 70 
D4 F ≥ 65 T2b N3 No Adenocarcinoma or other 70–80 < 70 
D5 F ≥ 65 T2B N3 No Adenocarcinoma or other 90–100 < 70 
D6 M < 65 T1b N3 No Squamous cell carcinoma 90–100 > 70 
D7 M < 65 T1b N2 Yes Squamous cell carcinoma 70–80 > 70 
D8 M < 65 T2b N3 No Squamous cell carcinoma 70–80 < 70 
D9 M < 65 T2b N3 No Adenocarcinoma or other 90–100 < 70 
D10 F ≥ 65 T1b N2 Yes Adenocarcinoma or other 90–100 > 70 

Note ID: identity number; F: female, M: male; yrs, years; KPS, Karnofsky performance status. 

Fig. 1. The workflow of feature selection. 
Feature selection consisted of two steps, the 
first of which was to select the stable features 
with positive Kendall correlation in no fewer 
than 7 patients. Then the different feature cat-
egories were selected by different criteria and 
methods. Note: GLCM, GLRLM, and NID are 
texture features. GLCM (Gray Level Co- 
occurrence Matrix) includes the GLCM25 and 
GLCM3 with 22 feature types, in which each 
feature type has up to 57 features; GLRLM 
(Gray Level Run Length Matrix) is the 
GLRLM25 with 11 feature types, in which each 
feature type has up to 3 features; NID (Neighbor 
Intensity Difference) includes the NID25 and 
NID3 with 5 feature types, in which each 
feature type has up to 2 features.   
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(4) Intensity: Each intensity feature type only had one feature, so the 
above further selection method for texture features could no 
longer be utilized, so we clustered the features by Kendall rank 
correlation coefficients and selected the representative feature 
type in combination with the definition of features (Fig. 2). 

2.6. Analysis 

2.6.1. Analysis of changing trend and rate 
In our study, the slope of the line obtained by linear regression was 

considered as the metric for the magnitude of feature change. We 
observed that the magnitudes of texture feature change for the same 
feature type were consistent and close even with different parameters of 
dimensions, distances and orientations (Fig. 3 and Table 2). 

In order to acquire the changing rate over time and determine the 
time at which the changing rate reached a maximum, the following two 
methods were implemented:  

(1) Delta method 
For each selected feature type, the mean value of the feature 

value at each time point was calculated using its subordinate 
retained features, and differences between the mean values at 
time point t (from week 0 to week 6) and t+1 were obtained. The 

largest absolute difference corresponded to the time period when 
the feature change was most significant. The equation was: 
⃒
⃒Δi

t t+1

⃒
⃒ =

⃒
⃒xi

t − xi
t+1

⃒
⃒

where i is one selected feature type, x is the mean feature value of 
its subordinate retained features, t is the time point (from week 
0 to week 6), Δ is the difference between the mean of two adja-
cent time points.  

(2) Curve-fitting method 

The change in each selected feature type was fitted by a cubic 
polynomial curve based on all of its retained features. Then, the deriv-
ative of the fitting curve was calculated, with the maximum absolute 
value corresponding to the time point with the fastest change. 

2.6.2. Analysis of distribution of stable features in patients 
Next, statistical properties in the distribution of stable features in 

patients were determined, including (1) the quantity of stable features in 
each patient, (2) the changing trends of stable features among patients, 
and (3) the detection of stable feature outliers. Analysis of the changing 
trends in stable features was accomplished by calculating the slopes of 
all stable features in ten patients regardless of whether a significant 
positive correlation was displayed or not, then comparing the trends 
(slope negative or positive) with each other and the mean level. The 

Fig. 2. The plot of correlation matrix of 23 stable intensity features. Circles with different colors and sizes represent the correlation coefficient between two features 
that are calculated based on the Kendall rank correlation. Then, the features are divided into three clusters according to the coefficients and a representative feature 
was selected in each cluster, which is ’Energy’, ’GlobalEntropy’, and ’LocalStdMin’, respectively. 
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detection of stable features outliers was accomplished via a boxplot, 
counting those values that fell outside 0.5 times to 1.5 times of the mean. 

All of the work was performed in the R language (version 3.6.1, 
https://www.r-project.org/) in RStudio (version 1.3, http://www. 

rstudio.com/). 

Fig. 3. The slopes of features in selected texture feature types. The slope of each feature was acquired by linear regression over time, considered as the changing 
trend of the feature. As we can see, in the same category and same feature type, the slopes of features are close (coefficient of variation for each type seen in Table 2), 
which means the changing trends of identical feature types are consistent and can be combined into a representation no matter what the parameters are. Note: GLCM 
(Gray Level Co-occurrence Matrix) and GLRLM (Gray Level Run Length Matrix) are the texture feature categories. 

Table 2 
The selected radiomics features (feature types) with their respective changing trend and rate.  

Category Feature/Feature type Selection 
Ratio 

Range of Slope CV of 
Slope 

Maximum changing period (Delta 
method) 

Fastest change time point (Curve-fitting 
method) 

GLCM AutoCorrelation 57/57 -0.053 ~ 
− 0.063 

4.62% Week 2 - Week 3 3.317 ∈ [ Week 3 - Week 4] 

Entropy 57/57 0.052 ~ 0.073 4.30% Week 2 - Week 3 0 ∈ [ Week 0 – Week 1] 
Energy 57/57 -0.094 ~ 

− 0.11 
4.95% Week 0 - Week 1 0 ∈ [ Week 0 - Week 1] 

MaxProbability 57/57 -0.083 ~ 
− 0.10 

1.89% Week 0 - Week 1 3.357 ∈ [ Week 3 - Week 4] 

SumAverage 57/57 -0.036 ~ 
− 0.040 

2.60% Week 2 - Week 3 3.256 ∈ [ Week 3 - Week 4] 

SumEntropy 56/57 0.050 ~ 0.062 6.09% Week 2 - Week 3 1.774 ∈ [ Week 1 - Week 2] 
SumVariance 53/57 -0.057 ~ 

− 0.064 
2.60% Week 2 - Week 3 0.429 ∈ [ Week 0 - Week 1] 

GLRLM LongRunEmphasis 3/3 -0.061 ~ 
− 0.064 

2.47% Week 0 - Week 1 0 ∈ [ Week 0 - Week 1] 

LongRunHighGrayLevelEmpha 3/3 -0.077 ~ 
− 0.078 

0.80% Week 0 - Week 1 0 ∈ [ Week 0 - Week 1] 

LowGrayLevelRunEmpha 3/3 0.35 ~ 0.37 1.71% Week 4 - Week 5 3.251 ∈ [ Week 3 - Week 4] 
RunPercentage 3/3 0.029 ~ 0.038 16.20% Week 0 - Week 1 0 ∈ [ Week 0 - Week 1] 
ShortRunLowGrayLevelEmpha 3/3 0.48 ~ 0.50 1.58% Week 4 - Week 5 3.321 ∈ [ Week 3 - Week 4] 

Intensity Energy 1/1 -0.071 / Week 2 - Week 3 3.152 ∈ [ Week 3 - Week 4] 
GlobalEntropy 1/1 0.053 / Week 2 - Week 3 1.604 ∈ [ Week 1 - Week 2] 
LocalStdMin 1/1 0.13 / Week 0 - Week 1 0 ∈ [ Week 0 - Week 1] 

Note: GLCM (Gray Level Co-occurrence Matrix) and GLRLM (Gray Level Run Length Matrix) are the texture feature categories, for which the names in the second 
column are the feature types, and the selection ratio of their subordinate features is represented by the form of ‘the number of features selected/the maximum number’. 
The slope of each feature in respective types was obtained by linear regression over time and considered as the changing trend of the feature, and CV is the coefficient of 
variation. Most of the fastest change points in time determined by the Curve-fitting method are not sampling time points, so the periods they belong to are also marked. 
For Intensity features, each type only has one feature, and the slash indicates none. 
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3. Results 

3.1. Feature selection 

From a total of 1371 radiomics features, 675 (49.2%) stable features 
were retained based on the Kendall rank correlation criteria. Among 
these, 652 were texture features and 23 were intensity features (Fig. 1). 
Then, further features selection for different feature categories based on 
different criteria were determined. For texture features, seven feature 
types of GCLM, five feature types of GLRLM and none of NID were 
selected. For intensity features, three features including ‘Energy’, 
‘GlobalEntropy’ and ‘LocalStdMin’ were chosen to represent this cate-
gory. The details of selected features are summarized in Table 2 and the 
correlation matrix of 23 intensity features are shown in Fig. 2. 

3.2. Analysis of changing trend and rate 

Among fifteen final selected feature types, eight feature types show 
the upward trends over time while the other seven show decline. Spe-
cifically, ‘GLRLM-LowGrayLevelRunEmpha’ and ‘GLRLM-Short-
RunLowGrayLevelEmpha’ are the two feature types with the most 
significant upward trends, with a range of slopes of 0.35–0.37, and 
0.48–0.50, respectively. Also the features related to entropy (i.e., 
‘GLCM-Entropy’, ‘GLCM-SumEntropy’ and ‘Intensity-GlobalEntropy’) 
all display a distinct rising trend. On the other hand, the feature types 
related to energy including ‘GLCM-Energy’ and ’Intensity-Energy’ 
display downward trends (Table 2 and Supplement 1: Fig. S1). 

The Curve-fitting method (Fig. 4A and Figs. S1–2 of Supplement 1) 
and the Delta method (Fig. 4B and Tables S1–1 of Supplement 1) were 
used to analyze the changing rates of selected radiomics features as a 
function of time and determine the time point or periods of maximum 
rate (Table 2). More details are shown in Fig. S2 of Supplement 1. Ac-
cording to Table 2, the maximum changing periods obtained by two 
methods intersect for eleven feature types, among which five are the 
same. Week 1 (8 times by the Curve-fitting method and 6 times by the 
Delta method) and Week 3 (6 times by the Curve-fitting method and 7 

times by the Delta method) are the two time points with the highest 
frequency of occurrence. Differences and preconditions of the two 
methods, and the significant time points mentioned above will be 
expanded in the Discussion section. 

3.3. Analysis of distribution of stable features in patients 

In the table of numbers of stable features in each patient’s radiomics 
feature set (Supplement 2: Tables S2–1), each radiomics set from 
different patients (D7, D8, D9 and D10) has more than 600 stable fea-
tures (675 in total), while the number of stable features for patients D2, 
D4 and D5 are far below the average, which are 95, 183 and 148, 
respectively. 

According to Supplement 2: Tables S2–2, the number of features with 
consistent trends in all patients is 549, while the other 126 features have 
inconsistent trends in some patients. The features from four patients 
(D1, D3, D6, D7) all display consistent trends with the mean values, 
whereas the other six patients display features with more or less 
inconsistent trends, especially D5, with 101 such features. Notably, the 
features in certain patients always show inconsistency with the mean 
value as well as those of the majority of patients. 

Statistics for outlier detection of changing trends (Supplement 2: 
Table S2–3) illustrate that the magnitude of the change in the patient D9 
is significantly higher than that of the others (the number of outliers is 
301) and far exceeds the mean level (585 over 1.5 times of the mean). 
Few outliers were detected in other patients, but five patients (D2, D3, 
D4, D5, D7) have many features that were less than 0.5 times of the 
mean, with the number of 645, 586, 641, 598 and 336, respectively. 

4. Discussion 

Overall, our study achieved the established objectives, which were 
(1) to select robust longitudinal radiomics features to monitor the 
change of tumor characteristics during treatment, and (2) to investigate 
the trend and rate of changes to further determine the period of greatest 
change of tumor. 

Fig. 4. The changes of selected radiomics features (feature types) as a function of time. In the subplot of A (Curve-fitting method), each point corresponds to the 
normalized feature value belonging to a certain feature type. The curves of feature types (solid lines) were fitted by the cubic polynomial with the standard error 
interval (gray shadow). In each curve, the largest absolute derivative is considered as the maximum changing rate. In the subplot of B (Delta method), each point 
corresponds to the mean of the normalized values of the features subordinate to a certain feature type. Every two adjacent points were connected by the dashed line, 
and the vertical difference is calculated. Among these differences, the largest absolute value corresponds to the most changing time period. Furthermore, each feature 
type is represented by a unique shape and color. 
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It should be noted that conventional feature selection methodolo-
gies, such as Least Absolute Shrinkage and Selection Operator (LASSO) 
and Principal Component Analysis (PCA) are somewhat inappropriate 
because of the very limited (ten patients), but valuable, data in our 
study. The method we describe in this paper presents features, not only 
based on single-point values, but also in the form of global values. 
Moreover, the method was easy to implement and effective for this 
study. First, considering the variability of some radiomics features 
owing to their intrinsic properties [3,18,19], the elimination of the 
unstable and unrepeatable features at the start has been part of the 
research paradigm in radiomics. In our study, the consistency of 
changing trends in the same cohort was utilized to discriminate whether 
the feature is stable or not. Then, we noticed that the texture features 
calculated by different parameters (such as dimension, angle, and 
displacement) from the same feature type displayed the approximate 
changing trends over time (seen in the coefficient of variation of slopes 
in Table 2 and scatter plot in Fig. 3), despite the different values at 
certain points in time. It just so happens that the significance of changing 
trend is far greater than the real feature value in the longitudinal anal-
ysis. Therefore, this phenomenon led us to view the data in terms of 
feature type rather than individual feature, thus simplifying and clari-
fying further feature selection and analysis. 

The methods for calculating the changing rate and the maximum 
changing period include the Delta method and the Curve-fitting method. 
The former has been widely applied to the research on delta- or longi-
tudinal radiomics [8,13,20], whereas the latter appears to have been 
rarely used and only by us up to date according to the published articles. 
From the results, the most significant change in features over time are 
mainly concentrated in two periods: one is at the very beginning of 
treatment, namely, from week 0 to week 1. This is in line with our 
previous expectation, because the tumor response to treatment between 
days 3–15 is indicated by decreased tumor growth accompanied with 
decreased vascular density [21]. The other is around the third week 
(Week 3), which is the highest frequency of occurrence for the maximum 
changing periods. By contrast, the change from Week 5 to Week 7 flat-
tens out. The above findings draw forth an optimization direction of a 
radiotherapy or concurrent chemo-radiotherapy regimen for patients 
with stage III NSCLC towards precision and personalization. In addition 
to raising more concern over patients at treatment onset, it is also rec-
ommended that a systematic imaging examination be performed in the 
third week of treatment, so that the combination of multiple biomarkers 
including imaging-based radiomics can help accurately assess thera-
peutic response from patients and adjust the radiotherapy and treatment 
plan in time. 

As a matter of fact, there are differences between the two methods by 
comparison. According to our practical experience, the conditions of use 
of the two methods are summarized as follows: The Delta method is 
more suitable for those feature types with a large amount of data. The 
strategies of fitting and averaging used in both the Curve-fitting and the 
Delta methods can effectively reduce the errors. However, the Curve- 
fitting method needs to combine the values at all time points for 
regression, whereas the Delta method considers the difference between 
each two adjacent sampling time points. Consequently, according to our 
analysis, the Delta method has the greater capability to reflect sharp 
variation of features in the entire data. 

Taking the features of ‘GLCM-AutoCorrelation’ and ‘GLCM-Entropy’ 
as examples, these features change most significantly between Week 2 
and Week 3, but after fitting, the maximum change time shifts forward 
or backward to some extent. On the other hand, the Curve-fitting 
method is more appropriate to those features with small numbers of 
data. In this case, the fitting method still retains the ability to reduce the 
effects of error, but averaging seems to help less. Besides, it is difficult to 
distinguish the internal variation in the data from errors in the data it-
self. ‘GLRLM-LowGrayLevelRunEmpha’ and ‘GLRLM- Short-
RunLowGrayLevelEmpha’ are such examples, in which the data in Week 
4 and 5 show apparent abnormalities and can be corrected by fitting. Of 

course, under ideal conditions (with a sufficiently reliable patient 
database and a stable decision-making system), two or more different 
methods can be combined based on the idea of ensemble learning to 
make a comprehensive evaluation. 

Furthermore, based on the distribution of stable features in patients, 
in three patients, D2, D4 and D5, only a few out of the 675 stable features 
were selected. This was especially true for patient D5, for whom the 
changing trend of 101 features showed inconsistency with the majority 
and the mean. Thus, we speculate that the original treatment might not 
have had a positive impact on the patients, being ineffective or even 
worse. Whereas the change trend for patient D9 was conspicuously 
greater than the average level, with 301 features detected as outliers by 
the boxplot method, we believe the effect of radiotherapy on this patient 
exceeded the normal expected effect. The relevant clinical reports 
roughly confirmed our speculations, but we cannot draw solid conclu-
sions when lacking sufficient evidence and prior judgment in the 
retrospective study. We are hopeful that by responding to the above-
mentioned appeal for adding imaging in the third week, the effect of 
treatment can be easily evaluated in the early and medium stage. 

As far as we known, there are very few longitudinal studies in the 
field of radiomics, presumably due to the great difficulty of data 
acquisition; collecting the ten cases required a great deal of effect, and 
the only previous studies [8,13,20] mainly focused on the survival 
analysis based on CBCT imaging. More interestingly, the conclusions 
[20] about the performance of delta-radiomics to predict survival 
remain contradictory for the different processing methods. Even both 
pre- and post-reconstruction methods have been proposed to alleviate 
the effects of various artifacts on CBCT image quality [22–24], for 
example, scatter results in the occurrence of cup and streak artifacts 
[25]. Image artifacts may have other causes as well, such as a bad pixel 
in the KV imaging panel that may results in ring artifacts [26]. In 
addition, residual signals from previous acquisitions when visible on 
newly acquired images may result in ghost artifacts [27]. We admit that 
limitations of the present study lie in the quite small data size and the 
inability to standardize and obtain valid clinical information by retro-
spective analysis. Therefore, if possible, a prospective study should be 
carried out to acquire a larger imaging set and complete treatment 
records. 

5. Conclusion 

In this study, we have presented a preliminary attempt to evaluate 
tumor change trend during the course of radiotherapy based on longi-
tudinal CT radiomics, and try to demonstrate at which point tumor 
exhibit the greatest change for stage III NSCLC. The method of analysis is 
efficient to explore the period of tumor maximum change and to select 
significant radiomics features for describing tumor reaction to 
treatment. 
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