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An explanation of the Dunning–Kruger effect is provided which does not require any

psychological explanation, because it is derived as a statistical artifact. This is achieved

by specifying a simple statistical model which explicitly takes the (random) boundary

constraints into account. The model fits the data almost perfectly.
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INTRODUCTION

The Dunning–Kruger (DK) effect states that people with low ability tend to overestimate their
ability. This hypothetical cognitive bias was first described in Kruger and Dunning (1999) and, if
true, it is potentially important and dangerous, because it means that people of low ability not only
perform tasks poorly but (even worse) that they think that they perform these tasks well. Dunning
and Kruger claim that the reason for this bias is that people of low ability are not good in seeing
and judging themselves (a deficit in metacognitive skills). A closely related effect, also important
but arguably less dangerous, is that people of high ability tend to underestimate their ability. This
second effect, although not discussed in Kruger and Dunning (1999), is often also associated with
their names. The DK effect and Dunning and Kruger’s explanation of it has been discussed and
challenged extensively.

In their original article, Kruger and Dunning (1999) tested undergraduate students enrolled in
various psychology courses at Cornell University for their ability in humor, logical reasoning, and
English grammar. After the test they asked the students to assess their performance in the test.
The students were then split in four groups according to their actual test scores. Calculating the
average perceived ability in each group, Dunning and Kruger obtained Figure 1. The accuracy of
the prediction was high in the top group and low in the bottom group, and the prediction in the
bottom group was highly overestimated.

The Kruger–Dunning article raises two questions. First, is there a DK effect? And second, is the
explanation provided by Dunning and Kruger correct?

There has been both criticism and support. Most studies recognize that there is a DK effect and
provide a psychological explanation, sometimes agreeing, sometimes disagreeing with Kruger and
Dunning’s metacognitive explanations; see Ehrlinger et al. (2008), Schlosser et al. (2013), Williams
et al. (2013), Sullivan et al. (2018), West and Eaton (2019), Gabbard and Romanelli (2021), and
Mariana et al. (2021); and partial responses in Kruger and Dunning (2002), Dunning et al. (2003,
2004), and Dunning (2011).

Meeran et al. (2016) explained the DK effect based on the anchoring and adjustment
heuristic, while Jansen et al. (2021) replicated two of Dunning and Kruger’s studies using
a sample of 4,000 participants. Their model for the probability of a correct answer is an
extension of the one-parameter item response theory (IRT) model, known as the Rasch model
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Magnus and Peresetsky Dunning–Kruger Effect

FIGURE 1 | Perceived ability to recognize humor as a function of actual test performance (from Kruger and Dunning, 1999).

(Embretson and Reise, 2013). By developing a rational model of
self-assessment, they showed that the DK effect can be produced
by two psychological mechanisms.

But there has also been much criticism and this criticism
typically relies on a statistical rather than a psychological
explanation of the DK effect. The attack on Dunning and Kruger
was initiated by Krueger and Mueller (2002), who suggested a
regression better-than-average approach which is parsimonious
and “does not require mediation by third variables, such as
metacognitive insights into one’s own problem-solving abilities1.”
Their approach is based on two empirical facts. First, it is well-
known that people tend to overestimate their performance. Most
people think they drive better than average (Svenson, 1981). In
a survey of engineers, 42% thought their work ranked in the top
5% among their peers (Zenger, 1992); and in a survey of college
professors, 94% thought they performed “above average” (Cross,
1977). Second, the slope in the linear regression of estimated
performance on actual performance is not equal but less than
one. This phenomenon is called “regression to the mean” and
has been known since Galton (1886) studied the relationship
between the height of sons and fathers. Combining these two

1To avoid confusion: Joachim Krueger of Brown University and Justin Kruger of

Cornell University are two different people.

facts leads to the regression better-than-average approach, and
it explains the asymmetry of the DK effect: overestimation in
the bottom quartile and underestimation in the upper quartile.
A more precise formulation of the regression better-than-
average approach was provided in the noise-plus-bias model
(Burson et al., 2006).

The DK effect also occurs in different environments, for
example the problem of face recognition. This situation was
recently investigated by Kramer et al. (2022), who found
imperfect correlation between self-insight and competence.

Several studies attempted to provide statistical explanations.
Ackerman et al. (2002) demonstrated that pictures like Figure 1
can be obtained with simulated data using two random
variables with small correlation r = 0.19 (one representing
objective knowledge and the other self-reported knowledge).
Ackerman and Wolman (2007) studied post-test self-estimates
of “Raven” performance, using a scatter plot with a regression
line representing the effect of self-estimated Raven performance
on Raven’s actual performance. They found a correlation less
than 1 and also the slope of the regression line was less
than 1, demonstrating the DK effect. Nuhfer et al. (2016) used
simulated random variables with correlation less then 1 and
various graphical representations of the data to illustrate the
DK effect. Krajc and Ortmann (2008) assumed a nonsymmetric
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J-distribution for the talent of the undergraduates studied by
Kruger and Dunning (1999), which leads to more students in
the left tail of the students’ ability distribution, resulting in the
DK effect. McIntosh et al. (2019) experimented with movement
and memory tasks, and concluded that the DK effect exists as an
empirical phenomenon. But they disagreed with the explanation
that poor insight is the reason for overestimation among the
unskilled. Gignac and Zajenkowski (2020), using a sample of
general community participants, tested the validity of the DK
effect with the Glejser test of heteroskedasticity and by nonlinear
(quadratic) regression, and found much less evidence in favor of
the DK effect than Kruger and Dunning (1999).

Our explanation of the DK effect is based on the fact that
the data are bounded. This feature of the data has not received
much attention, with the exception of Burson et al. (2006),
who concluded that the boundary restriction “is an important
concern that should be addressed in future research;” and Krajc
and Ortmann (2008), who noted that students in the bottom
quartile can only make optimistic errors placing themselves into
a higher quartile, while students in the top quartile can only make
pessimistic errors placing themselves in a lower quartile.

The remark by Krajc and Ortmann provides the essence of
our story. Consider a brilliant student who typically scores 95
or 99 points out of 100. Because of the bound at 100, there is
not much room to predict higher than her ability but there is
plenty of room to predict lower, so she would typically predict
85 or 90, thus underestimating her score. The same happens at
the bottom end of the scale, where there is a bound of 0 and a
student would typically overestimate. This simple observation is
the basis of our model.

We shall employ data on 665 undergraduates at the
International College of Economics and Finance of the Higher
School of Economics in Moscow, who predict their grade on a 0–
100 scale for a statistics exam. We use a simple statistical model
which explicitly specifies the (random) boundary constraints.
This model fits the data almost perfectly. There is thus no
need for a psychological explanation of the DK effect: it is a
statistical artifact.

The remainder of this article is organized as follows. First,
we present and discuss the data. Next, we present a simple one-
parameter model that accounts for censuring, and show that
this model explains the DK effect, although not yet perfectly.
Then, we extend this simple model to a more realistic three-
parameter model where the bounds are random rather than fixed,
and present the results based on this extended model. The fit
is now near-perfect. The final section concludes and provides
a tentative explanation of why it is that people still believe the
psychological underpinnings of the DK effect. A mathematical
Appendix contains the statistical theory underlying the required
conditional expectation functions.

THE DATA

We shall study the DK effect by comparing exam results with
predictions of these results, and, in this section, we describe the
data in some detail.

The International College of Economics and Finance (ICEF)
in Moscow was established in 1997 jointly by the London School
of Economics and Political Science (LSE) in London and the
Higher School of Economics (HSE) in Moscow. The college
offers a four-year bachelor’s program, which is considered to
be one the top programs in economics in Russia. Each year
about 200 students enter the program, typically immediately after
high school. In their first year the students follow, among other
subjects, a course called Statistics-1, and in their second year they
follow Statistics-2. Both courses are compulsory. Our data are
obtained from four cohorts of students following Statistics-2 in
the period 2016–2019. In total, after removing students who took
the course for a second time, 665 students remained who took
this course and provided a prediction.

In Statistics-2 students take three exams every year, at the end
of October (exam 1), the end of December (exam 2), and the end
of March (exam 3). The exams are written exams, not multiple
choice, and each exam consists of two parts (80 min each) with
a ten min break between the two parts. The level of the exam
questions is the same in the two parts. To avoid cheating, students
are not allowed to leave and come back during each part of the
exam. At the end of part 1 and at the end of part 2 the examiner
collects each student’s work. Each part is graded out of 50 points.

At the end of the first part of each of the three exams each
student is invited to predict (out of 100) their grade for this exam
(the two parts together). When writing down the prediction,
students know the questions and their answers in part 1, but not
yet the questions of part 2. To encourage students to provide a
prediction and try their best, a bonus is promised as follows. If
the difference between the prediction and the grade is less than
or equal to 3 in absolute value, then one bonus point is added to
the grade. For example, if the prediction is 49 and the grade is 52,
then the grade for this exam is marked up to 53. This procedure
had to be and has been approved by the ICEF administration.
As a result of the procedure and the possibility of a bonus, the
response rate was extremely high (97%). The idea of giving each
student an incentive to express their opinion was successfully
used earlier in experiments by Blackwell (2010) and Magnus and
Peresetsky (2018). Each of the two parts typically consists of four
problems (not multiple choice). Each problem was graded by the
same class teacher, thus improving the objectivity of the grades
(see Meeran et al., 2016).

In the current study, we take data only from the second exam
in each year. This is the most representative of the three exams,
because in the first exam students may not yet be familiar with
the benefits of a careful prediction, and in the third exam there
is the problem that smart (or risk averse) students utilize the
bonus to maximize the probability that their grade is ≥ 25,
which is a requirement for passing the course. The student’s
optimal strategy is then to choose their prediction between 21
and 27 in which case a grade of 24 would be marked up to
25. Many students actually use this strategy which leads to an
overrepresentation of 24 and 25 in the sample of the third exam.

In each year t we thus have one grade and one prediction per
student. Let us define

xit : actual grade of student i in year t,
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TABLE 1 | Descriptive statistics (means) of the data.

Year # Students Exam grade Raw prediction Difference St. dev.

t nt x̄t ȳrawt d̄t τt

2016 144 41.8 39.0 −2.76 12.1

2017 168 33.3 38.5 5.24 12.7

2018 185 41.2 37.5 −3.71 13.1

2019 168 43.0 39.3 −3.65 12.0

Total 665 39.8 38.6 −1.23 13.0

yrawit : raw (unadjusted) prediction of student

i in year t,

dit = yrawit − xit : difference between raw prediction and

actual grade.

In each year we can average over students and this gives

x̄t =
1

nt

nt
∑

i=1

xit , ȳrawt =
1

nt

nt
∑

i=1

yrawit , d̄t =
1

nt

nt
∑

i=1

dit ,

where nt denotes the number of students in year t.
We don’t want to use the raw predictions directly, because of

the variation in the student cohort’s strengths and in the difficulty
of the exam over the years. To filter out these variations we define
an adjusted prediction

yit = yrawit − d̄t (1)

with the property that ȳt = x̄t , so that in each year the average
prediction equals the average grade.

In Table 1, we present a summary of the data. Per year we
provide the number of students nt , the average exam grade x̄t ,
the average raw prediction ȳrawt , and the difference d̄t between
these two averages. The difference dit varies a lot within each
year, as shown by the standard deviation τt in the last column.
The second exam in 2017 turned out particularly difficult (or the
cohort was less motivated) leading to relatively low grades.

FIXED BOUNDS

As a first attempt to model the predictions we propose the
following equation:

yrawit = αt + xit + ζit , (2)

where the constant αt may vary per year to adjust for
(over)confidence and the difficulty of the exam, and the errors
ζit are assumed to be independent and identically distributed as
N(0, σ 2

ζ ). Writing Equation (2) in deviation form gives

yrawit − ȳrawt = (xit − x̄t)+ (ζit − ζ̄t).

The adjusted prediction is given by

yit = yrawit − d̄t = yrawit − ȳrawt + x̄t ,

which leads to the simple equation

yit = xit + ǫit , ǫit = ζit − ζ̄t .

After adjustment, the year plays no longer any role, so we may
simplify the notation and write

yi = xi + ǫi. (3)

The difference between the (adjusted) prediction yi and the grade
xi is thus random noise, and the only thing to estimate is the
variance of that noise.

This first attempt does not, however, take into account that
the left-hand side of Equation (3) is bounded by 0 ≤ yi ≤ 100,
so that the right-hand side is similarly bounded. The right-hand
side xi + ǫi does not automatically fulfill this constraint; it has
to be censored to do so. The basic censuring model in statistics
and econometrics is the tobit model introduced by Tobin (1958).
In the tobit model, we introduce a latent (unobserved) random
variable y∗i defined as

y∗i = xi + ǫi, (4)

where the ǫi are independent and identically distributed as
N(0, σ 2

ǫ ). Then, we model yi as

yi =











0, if y∗i ≤ 0,

y∗i , if 0 < y∗i ≤ 100,

100, if y∗i > 100.

(5)

This is the standard tobit model, double-censured due to the fact
that we have both a lower and an upper bound.

Model Equation (5) is more realistic than model Equation (3),
and once we have estimated σ 2

ǫ we can compute the expectation
h(xi) = E(yi) as given in Equation (9) in the Appendix.

Estimating σǫ by maximum likelihood (ML) gives σ̂ǫ = 12.5
with standard error 0.35. In Figure 2, we plot the expectation
h(xi) = E(yi) for four values of σǫ : 10, 20, 30, and 40 (and 0,
which is the 45◦ line). Figure 2 already demonstrates how the two
bounds force the expectation function in the direction of the DK
effect in Figure 1.

But the fixed-bound model is not yet completely satisfactory
due to the fact that it is not realistic to assume that yi = 0 if
y∗i ≤ 0 or that yi = 100 if y∗i > 100: no student predicts 0
(however, poor) or 100 (however, brilliant). This leads to the
random-bounds model presented in the next section.

RANDOM BOUNDS

A more realistic model is given by

yi =











|ui|, if y∗ ≤ 0,

y∗i , if 0 < y∗ ≤ 100,

100− |vi|, if y∗ > 100,

(6)

where we assume that ǫi, ui, and vi are independent and
identically distributed, that they are independent of each other,
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FIGURE 2 | Expectation functions for the one-parameter censored tobit model for σǫ = 0, 10, 20, 30, 40.

and that all three are normally distributed as N(0, σ 2
ǫ ), N(0, σ

2
u ),

and N(0, σ 2
v ), respectively.

When applying Equation (6) there is one further
complication, namely that the lower bound must not only
satisfy |ui| > 0, but also |ui| < 100, while the upper bound
must not only satisfy 100 − |vi| < 100, but also 100 − |vi| > 0.
Hence, we must require that |ui| < 100 and |vi| < 100. This
will be “almost” true in most applications. For example, we
have Pr(|ui| < 100) = 99.9 and 95.5 for σu = 30 and 50,
respectively. We deal formally with this situation by considering
the conditional expectation function

h(xi) = E(yi|0 < yi < 100). (7)

We derive the mathematical expression for this conditional
expectation function in the Appendix, resulting in Equation (8).

The ML estimates are presented in Table 2, first without
restriction and then under the restriction that σu = σv. The
estimates take on reasonable values and they are estimated rather
precisely. The restriction σu = σv is not rejected by a Wald
(p-value 0.061) or likelihood ratio (p-value 0.412) test.

In Figure 3, we present the conditional expectation functions
based on the ML estimates in Table 2. As expected, there is
not much difference between the restricted (σu = σv) and
the unrestricted plot, and both plots clearly show the DK effect
based purely on the fact that the observations are bounded. The

TABLE 2 | Maximum likelihood estimates for the three-parameter model (standard

errors in parentheses).

Restriction σǫ σu σv Log L

None 12.69 22.81 31.29 −2582.39

(0.40) (2.81) (3.38)

σu = σv 12.67 24.79 24.79 −2582.73

(0.39) (2.30) (2.30)

observed S-shape is very similar to the empirical plots reported
in the literature: overestimation for the weak students (“unskilled
and unaware of it” in the words of Dunning and Kruger) and
underestimation for the strong students.

As a benchmark comparison we also provide a nonparametric
plot based on locally-weighted scatter plot smoothing (lowess)
with bandwidth 0.2. The ML plots are close to the nonparametric
plot when x is small but not so close when x is large. This is caused
by the fact that only 14% of the observations fall in the interval
x > 60.

We can try and fit our three parameters such that the
conditional expectation function is “as close as possible” to the
nonparametric plot. If we employ nonlinear least squares (NLS),
then we find σ̂ǫ = 29.6 (0.70), σ̂u = 0, and σ̂v = 33.1 (2.13).
The NLS plot in Figure 4 is now very close to the nonparametric
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FIGURE 3 | Conditional expectation functions for the three-parameter censored tobit model based on ML and nonparametric estimates.

plot. In fact, the shape of the conditional expectation function is
quite robust against changes in the three parameters. If we fix the
parameters at σǫ = 30, σu = 10, and σv = 35; or at σǫ = 25,
σu = 15, and σv = 40, then we obtain conditional expectations
that are almost indistinguishable from Figure 4.

DISCUSSION AND CONCLUSIONS

In this article, we have attempted to provide an explanation of the
DK effect which does not require any psychological explanation.
By specifying a simple statistical model which explicitly takes the
(random) boundary constraints into account, we achieve a near-
perfect fit, thus demonstrating that the DK effect is a statistical
artifact. In other words: there is an effect, but it does not reflect
human nature.

Many authors writing on the DK effect refer to regression
to the mean (RM) as if this were a well-known statistical fact,
not requiring further justification, while in fact the mechanism
underlying the RM effect needs to be explained in each
application. A “psychological” explanation of the RM effect was
suggested by Wellman (1940), though instantly criticized by
Goodenough and Maurer (1940).

Before we discuss the RM effect further, let’s point out a
common confusion in its interpretation. Suppose we have data
on two variables x and y, say (x1, y1), . . . , (xn, yn). Then we can
compute the sample correlation rxy. We can also regress y on x,

estimating α and β from the regression yi = α + βxi + ǫi. The
least-squares estimator of β can be written as β̂ = rxysy/sx, where
s2x and s2y are the sample variances of x and y, respectively. The
term “imperfect correlation” is used to indicate that 0 < rxy < 1.
Regression to the mean on the other hand is equivalent to 0 <

β̂ < 1. Confusion arises because the two conditions are not the
same. When rxy = 1 and sy < sx, then β̂ < 1 so that there is
regression to the mean in spite of the fact that rxy = 1. Vice versa,

when β̂ = 1 and sy > sx, then r < 1 so that there is no regression
to the mean in spite of the fact that rxy < 1.

The RM effect was first described by sir Francis Galton in
1886. Galton compared the heights of parents and children and
found that if the parents are tall, then the children are, on average,
shorter than their parents, and that if the parents are short, the
children are, on average, taller. He explained the RM effect by
assuming that there are two genes responsible for height: one
is inherited from the parents, and the other reflects the average
height in the population. The height of the children can then be
represented as a weighted average of the two.

Galton’s explanation was appealing and brilliant, given the
knowledge on genetics at that time. Today we know that height
is determined by about 700 genes in approximately 180 locations
in the chromosomes (Allen et al., 2010), and the RM effect can be
explained in a probabilistic framework from the fact that of each
pair of chromosomes one is inherited from the mother and one
from the father.
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FIGURE 4 | Conditional expectation functions for the three-parameter censored tobit model based on NLS and nonparametric estimates.

But there could be bounds here too, not “hard” bounds (like
0 and 100 in exams) but “soft” bounds (say, 130 and 230 cm).
Suppose the inherited height equals the average height of the
parents with some random shock. If the inherited height is too
high or too low then the probability of prenatal death is high,
which explains (at least in part) the RM effect as a statistical
artifact caused by these bounds. In fact, our presented theory
based on boundaries can explain the RM effect in many areas,
not just students’ grades or children’s heights.

Finally, why do people still believe in psychological
explanations of the DK effect? The literature abounds with
characters who overestimate themselves and with wisdoms about
how stupid it is to think you are clever. Shakespeare writes: “The
fool doth think he is wise, but the wise man knows himself to
be a fool” (As You Like It), and Alexander Pope warns: “A little
learning is a dangerous thing” (An Essay on Criticism), in the
same spirit as Confucius’ maxim: “Real knowledge is to know the
extent of one’s ignorance.”

Perhaps the explanation for the persistence of this belief is:
We have two facts, both true. First, we actually observe the DK
effect. Second, if we compare people’s ideas about their own
ability with objective measurements of this ability, we find that
people tend to overestimate themselves. Then, what is more
natural than to think that these two statements are related to
each other, in fact, that one causes the other? The problem is,
they aren’t.
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MATHEMATICAL APPENDIX

Consider the censored model Equation (6), where we write y∗, y,
and x instead of y∗i , yi, and xi for simplicity. We have

p1 = Pr(y∗ ≤ 0) = 8

(

−x

σǫ

)

,

p2 = Pr(0 < y∗ ≤ 100) = 1− p1 − p3,

p3 = Pr(y∗ > 100) = 1− 8

(

100− x

σǫ

)

,

where 8 denotes the cumulative distribution function of the
standard-normal distribution, and

q1 = Pr(y ≤ 0) = Pr(y ≤ 0|y∗ > 100) · Pr(y∗ > 100)

= Pr(100− σv|v| ≤ 0) · p3 = 2p38

(

−100

σv

)

,

q2 = Pr(0 < y ≤ 100) = 1− q1 − q3,

q3 = Pr(y > 100) = Pr(y > 100|y∗ ≤ 0) · Pr(y∗ ≤ 0)

= Pr(σu|u| > 100) · p1 = 2p18

(

−100

σu

)

.

Let 0 < t < 100. Then,

G1(t) = Pr(0 < y < t|y∗ ≤ 0) = Pr(0 < σu|u| < t)

= 1− 28

(

−t

σu

)

,

G2(t) = Pr(0 < y < t|0 < y∗ ≤ 100)

= Pr(0 < y∗ < t|0 < y∗ ≤ 100)

=
Pr(0 < y∗ < t)

Pr(0 < y∗ < 100)
=

Pr(0 < x+ σǫǫ < t)

p2

=
1

p2

[

8

(

t − x

σǫ

)

− 8

(

−x

σǫ

)]

,

G3(t) = Pr(0 < y < t|y∗ > 100) = Pr(0 < 100− σv|v| < t)

= 2

[

8

(

100

σv

)

− 8

(

100− t

σv

)]

with derivatives

g1(t) =
2

σu
φ

(

−t

σu

)

,

g2(t) =
1

p2σǫ

φ

(

t − x

σǫ

)

,

g3(t) =
2

σv
φ

(

100− t

σv

)

,

where φ = 8′ denotes the density of the standard-normal
distribution. This gives

m1 =

∫ 100

0
tg1(t) dt = 2σu

∫ 100/σu

0
sφ(s) ds

= −2σu

∫ 100/σu

0
φ′(s) ds = 2σu

(

φ(0)− φ

(

100

σu

))

,

m2 =

∫ 100

0
tg2(t) dt =

x

p2

∫ (100−x)/σǫ

−x/σǫ

φ(s) ds

+
σǫ

p2

∫ (100−x)/σǫ

−x/σǫ

sφ(s) ds

=
x

p2

(

8

(

100− x

σǫ

)

− 8

(

−x

σǫ

))

−
σǫ

p2

(

φ

(

100− x

σǫ

)

− φ

(

−x

σǫ

))

,

m3 =

∫ 100

0
tg3(t) dt = 200

∫ 0

−100/σv

φ(s) ds

+ 2σv

∫ 0

−100/σv

sφ(s) ds

= 200

(

8(0)− 8

(

−100

σv

))

− 2σv

(

φ(0)− φ

(

−100

σv

))

.

Letting

F(t) = Pr(0 < y < t|0 < y < 100)

=
p1G1(t)+ p2G2(t)+ p3G3(t)

q2

with derivative

f (t) =
p1g1(t)+ p2g2(t)+ p3g3(t)

q2
,

we thus obtain

∫ 100

0
tf (t) dt =

p1m1 + p2m2 + p3m3

q2
, (8)

which provides the expectation in the general case.
In the special case ofmodel Equation (5) we have σu = σv = 0,

and hence m1 = 0, m3 = 100, and q2 = 1. This gives the
expectation

∫ 100

0
tf (t) dt = p2m2 + 100p3. (9)
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