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In recent years, it became apparent that cancers either associated with viral infections or
aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic,
exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic
apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-
state conditions and cell homeostasis. In line with this, epigenetic disruptions within
steady-state cells can lead to cancer development and trigger the release of EREs into the
cytoplasmic compartment. As such, detection of viral molecules by intracellular innate
immune sensors leads to the production of type I and type III interferons that act to induce
an antiviral state, thus restraining viral replication. This knowledge has recently gained
momentum due to the possibility of triggering intratumoral activation of interferon
responses, which could be used as an adjuvant to elicit strong anti-tumor immune
responses that ultimately lead to a cascade of cytokine production. Accordingly, several
therapeutic approaches are currently being tested using this rationale to improve
responses to cancer immunotherapies. In this review, we discuss the immune
mechanisms operating in viral infections, show evidence that exogenous viruses and
endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the
epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu
as a promising molecular predictive marker and immunotherapy target. Finally, we briefly
discuss current strategies to modulate these responses within tumor tissues, including the
clinical use of innate immune receptor agonists and DNA demethylating agents.
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INTRODUCTION

Better understanding of the immune mechanisms operating in
human cancers has led to breakthroughs in the way many
cancers are treated with the introduction of effective
immunotherapies, particularly those based on immune
checkpoint blockade (ICB) (1). However, the therapeutic value
of these approaches is still to be proven for many cancers, and
even in cancer types showing high response rates to ICB, a
significant proportion of patients may fail to respond to the
treatment, highlighting the need of further investigation in order
to enhance the treatment efficacy and broaden the application of
this promising therapeutic approach (2).

Predictive biomarkers of immunotherapy response currently
in use include the tumor expression of immune checkpoints,
tumor mutational burden (TMB) and, to some extent, the
density of tumor infiltrating lymphocytes (TILs) (3). While the
expression of immune checkpoints indicates that ICB targets are
active in the tumor milieu, TMB and TILs are correlates of tumor
immunogenicity, reflecting the abundance of neoepitopes
available for adaptive immunity recognition and the existence
of active immune responses (3). Tumors with higher TMB and/
or TILs, such as melanoma and lung cancers, the so-called “hot”
tumors, are more likely to respond to immunotherapy (4).
Conversely, current immunotherapies fail to elicit efficient
antitumor immune responses in patients harboring “cold”
tumors, including breast and prostate cancers (4, 5).

Despite this, these biomarkers do not reflect the tumor
complexity and their clinical utility varies largely among
different cancer types, making the search for global predictive
biomarkers for ICB an attractive field (2). Also, the existence of
cold tumors and the incapacity of ICB to elicit strong antitumor
responses in this context highlight the need to investigate
therapeutic strategies that may act as adjuvants to trigger or
strengthen anti-tumoral immune response against poorly
immunogenic cancers. Of note, the absence of strong innate
immunity stimulators and the preponderance of autoantigens in
tumor cells are factors associated with the inability to properly
activate anti-tumor immune responses in these cancers (6).

Viruses are the most abundant and perhaps the most ancient
biological entities in the world. These organisms need to infect
cells to replicate and have evolved several mechanisms to store
and propagate their genetic information. They are broadly
divided into DNA and RNA viruses, the latter being further
subdivided into retroviruses and single-stranded or double-
stranded RNA viruses (6). Several viruses have the ability to
infect human cells, and some of them can transform normal cells
in multiple ways, such as through the induction of cellular
proliferation and insertional mutagenesis, thus triggering
cancer development and progression (7).

Among the major cancer-associated viruses are Epstein-Barr
Virus (EBV), Human Papillomavirus (HPV), Hepatitis C virus
(HCV), Hepatitis B virus (HBV) and Merkel cell polyomavirus
(MCV) (7). Other viruses, such as Mouse Mammary Tumor
Virus (MMTV) (8) and human cytomegalovirus (HCMV) (9),
have debatable associations with human cancer development and
Frontiers in Immunology | www.frontiersin.org 2
could influence disease onset and progression, although no
strong causal relationship has been shown.

Notwithstanding, some viruses and viral elements have been
incorporated into the cellular genomes of different organisms
over the course of evolution, probably due to infection in
germinative cells. These reminiscent sequences, which make up
about 40% of the human genome, are called endogenous
retroviral elements (EREs), and their expression is tightly
regulated by epigenetic mechanisms, to avoid the genomic
instability they may cause through new insertional events (10,
11). Indeed, when this control is lost, EREs become aberrantly
expressed and new insertional events lead to cancer initiation
and progression by promoting genomic instability and driving
evolution of transformed cells in multiple ways (12).

Interestingly, recent evidence suggests that tumor cells
expressing viral elements or cancers aberrantly expressing EREs
are more immunogenic and show increased TILs and cytotoxicity
scores (13). Mechanistically, their replication intermediates are
recognized by innate immunity sensors, enhancing the
inflammatory response in the tumor microenvironment (TME),
mainly through the induction of interferon (IFN) responses (13).
Additionally, translated proteins from viruses and EREs might be
presented via class I MHC on tumor cells and activate adaptive
immune responses (14, 15).

Altogether, these data indicate that antiviral immune
responses might boost antitumor immunity and may assist the
discovery of biomarkers or therapeutic targets that can enhance
immunotherapy response. Indeed, several therapeutic strategies
aimed to induce a “viral mimicry” state in tumor cells are being
investigated and have shown promising results in preclinical
models and clinical trials, including DNA demethylating agents
and agonists of innate immunity sensors (16, 17).

Thus, in this review, we discuss how viral elements or analogs
can activate intra-tumoral immune responses mediated by IFNs
and might serve as biomarkers and/or adjuvants for
immunotherapies. We first summarize the immune response to
viruses, discussing the activation of innate immune receptors that
ultimately promotes IFN responses and activation of adaptive
immunity; we next discuss the clinical meaning of interferon
activation in tumors and the impact of cancer-associated viruses
and EREs in the tumor immune microenvironment; finally, we
present therapeutic approaches employing this knowledge to boost
antitumor immune responses that are currentlyunderdevelopment
and clinical testing.
ACTIVATION OF IFN SIGNALING
BY VIRUSES

Viruses elicit strong innate immune responses through
activation of different families of pathogen recognition
receptors (PRRs), including toll-like receptors (TLR), localized
in plasma or endosomal membranes, and several cytoplasmic
receptors that function as sensors for viral DNA (e.g. cGAS) and
RNA (e.g. RIG-I and MDA-5). These receptors act through
different, but convergent signaling cascades, culminating in the
December 2021 | Volume 12 | Article 782852
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activation of transcription factors (TFs) that coordinate
the expression of pro-inflammatory cytokines, including the
expression of IL-1a, IL-1b, IL-18, IL-6 and TNFa via NF-kB
activation and the expression of type I and type III IFNs, through
the activation of interferon response factors (IRFs), mainly IRF3
and IRF7 (Figure 1) (18–21).

Type I IFNs (IFN-I) include the IFNa subfamily (which
include 13 related proteins in humans), IFNb, IFNϵ, IFNk and
IFNw, of which IFNa and IFNb are the most prominent
cytokines (22). Type III IFNs (IFN-III) include three closely-
related IFN-l, namely IFN-l1, IFN-l2 and IFN-l3, previously
known as IL-29, IL-28A and IL-28B, respectively (22, 23). Type I
and type III interferons act through different pairs of class II
cytokine receptors, triggering similar intracellular pathways that
share the same final effector TFs to induce the so-called antiviral
state within infected or susceptible cells (24). This mechanism
prevents or restrains viral infection and replication through the
induction of cytostasis and apoptosis, upregulation of the
antigen-presenting machinery, expression of viral restriction
factors, and recruitment and activation of immune cells (25).

Plasma membrane TLRs, such as TLR2 and TLR4, may
respond to viral infections, since viral molecules, including
surface proteins or glycoproteins, were shown to activate these
Frontiers in Immunology | www.frontiersin.org 3
receptors during viral adsorption and budding (18). However,
antiviral innate immunity is commonly triggered when viral
nucleic acids are recognized by endosomal TLRs, such as double
stranded RNA (dsRNA) recognition by TLR3, single-stranded
RNA (ssRNA) recognition by TLR7 and TLR8, or unmethylated
CpG motifs by TLR9 (18, 19) (Figure 1).

Except for TLR3, all TLRs can recruit MyD88 when activated
(TLR2 and TLR4 recruit the TIRAP adaptor protein before
MyD88). MyD88 then interacts with IL-1R-associated kinase
(IRAK)-1, -2 and -4, and phosphorylated IRAK1 interacts with
and activates the ubiquitin ligase TNFR-associated factor 6
(TRAF6). TRAF6-mediated K63 polyubiquitination activates a
series of kinases, including TGF-b-activated kinase 1 (TAK1)
and IkB-kinase complex (IKK), which phosphorylate and mark
IkB for degradation, thus releasing NF-kB for nuclear
translocation. TAK1 and IKK also activate the Mitogen-
activated protein kinase (MAPK) pathway and other TFs, such
as Interferon Response Factor 5 (IRF5) and AP-1, which also
interact with NF-kB (26). Altogether, these TFs coordinate the
expression of pro-inflammatory cytokines such as IL-6, TNFa,
IL-1b and IL-18, but not of IFNs (20) (Figure 1).

TLR3, otherwise, recruits TIR-domain containing adapter-
inducing interferon-b (TRIF), which directly recruits and
FIGURE 1 | Activation of IFN-I/III response by viral sensing through PRRs. Sensing of viral molecules by plasma membrane (TRL4), endosomal (TLR3, 7, 8 and 9) or
cytosolic (RLRs and cGAS) PRRs activate signaling pathways culminating in the expression of pro-inflammatory cytokines (IL-1b, IL-6, IL-18 and TNFa) by NF-kB,
AP-1 and IRF5 transcription factors and of IFN-I and IFN-III by IRF3 and IRF7 (left). IFNs act though transmembrane receptors to activate STAT1, STAT2 and IRF9.
This complex then translocates to the nucleus to govern the expression of several interferon-stimulated genes (right), which mediate an antiviral state leading to cell
apoptosis, cytostasis, antigen presentation and expression of viral restricting factors. Created with BioRender.com.
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activates TRAF6 and the receptor-interacting protein 1 (RIP1),
resulting in more potent NF-kB activation and pro-
inflammatory cytokine production. TRIF also activates TRAF3,
and this ubiquitin ligase is capable of activating TBK1 and IKKi
kinases, which then activate IRF3 (20). Other TLRs, such as
TLR7 and TLR9, also activate TRAF3 in response to viral nucleic
acids in the endosome, but the main TF activated in this context
is IRF7. Both IRF3 and IRF7 coordinate the expression of type I
and type III interferons, being critical regulators of antiviral
immune responses (18, 20) (Figure 1).

More recently it became clear that besides transmembrane
TLRs, cytoplasmic proteins can act as virus sensors and elicit
type I interferon responses. These include DNA sensors, such as
cGAS, and RNA sensors, such as RIG-I, MDA-5 and LGP-2,
collectively called RIG-like receptors (RLRs) (21). Also, AIM-2
and NLRP3 cytoplasmic proteins were shown to recognize
intracellular DNA and dsRNA, respectively, being capable of
activating the inflammasome complex to produce bioactive IL-
1b and IL-18, further stimulating inflammation and the
activation of immune cells (18). Several other proteins may act
as sensors or accessory proteins in the recognition of viral nucleic
acids in different contexts, but their role in antiviral immune
responses is less clearly understood (18).

Different RNA sensors recognize RNA molecules differently
depending on the RNA nature, and this also reflects how they
recognize different viruses. RIG-I was shown to bind mainly 5’-
triphosphate ssRNAs and short (up to 1kb) dsRNA, while MDA-
5 recognizes long (>2 kb) dsRNAs preferentially (18). Both
proteins have a C-terminal RNA-interacting domain, an RNA
helicase domain, and two N-terminal caspase activation and
recruitment domains (CARD), required for signaling. LGP-2
lacks the CARD domain, and a regulatory role was proposed for
this protein; however, more recent evidence has shown that LGP-
2 might potentiate RIG-I and MDA-5 responses to viral
RNAs (27).

Upon RNA recognition, the CARD domains of RIG-I or
MDA-5 are exposed, favoring the oligomerization of these
proteins. Their CARD domain then interacts with the CARD
domain from MAVS (also called IPS-1), a mitochondria-
localized adaptor protein that forms aggregates and interacts
with both TRAF3 and TRADD, thus recruiting TRAF6. TRAF3
then activates TBK1 and IKKϵ to induce IRF3/7 activity, while
TRAF6 activates the IKK complex to promote NF-kB nuclear
translocation and activity (18) (Figure 1).

Regarding recognition of cytoplasmicDNA, cGAS (an acronym
for cyclic-di-GMP-AMP (cGAMP) synthase) is an enzyme that,
when bound to DNA, synthesizes the second messenger cGAMP
from GTP and ATP (28). This mediator then binds to STING,
located in the endoplasmic reticulum (ER) membrane, and
promotes its traffic to the Golgi complex where STING interacts
with and activates the IKKϵ/TBK1 complex, also inducing the
activation of IRF3/7 (Figure 1). Besides recognizing DNA from
viruses, cGAS signaling can also be activated by RNA:cDNA
hybrids generated during viral replication in the cytoplasm (29).

Collectively, IRF3 and IRF7 activation leads to the expression
of type I and type III IFNs, which are secreted by infected cells
Frontiers in Immunology | www.frontiersin.org 4
and exert autocrine and paracrine signaling through the
activation of transmembrane receptors: IFNAR1/IFNAR2
dimers for type I IFNs and IFNLR1/IL10RB dimers for type III
IFNs. Both receptor dimers act through the JAK-STAT pathway,
activating the receptor-associated kinases JAK1 and TYK2,
which in turn activate STAT1, STAT2 and IRF9 (30). These
TFs then translocate to the nucleus and regulate the expression of
a plethora of genes, collectively known as interferon stimulated
genes (ISGs), after binding to specific DNA sequences known as
interferon-sensitive response elements (ISRE) (22) (Figure 1).

There are currently hundreds of well-defined ISGs and
probably thousands of genes that are directly or indirectly
regulated by IFNs (25). These genes include several viral
restriction factors that act in different phases of viral
replication, including fusion to the cellular and endocytic
membrane, genome replication and protein translation, and
are responsible to induce an antiviral cellular state, which is
associated with enhanced proteasomal function, enhanced
autophagy, cytostasis, apoptosis and improved antigen
presentation through the upregulation of the antigen-
presenting machinery in target cells (25).

Despite acting through similar molecular pathways and
showing great overlap in the core genes they activate, IFN-I
and IFN-III may differ in their physiological roles and
spatiotemporal dynamics during antiviral responses. Overall,
IFN-III responses act mainly in anatomical barriers, such as
epithelial cells in mucosal surfaces that are in constant contact
with pathogens, exerting their roles in a paracrine manner. IFN-
III is deemed to evoke an initial, controlled, weaker and sustained
response, whereas IFN-I emerges later and shows an acute and
intense pattern of activation, stimulating more ISGs than IFN-III
(30, 31). Factors explaining these differences include the
restricted expression of IFNLR1 in epithelial cells, the ligand-
receptor binding kinetics (32) and the differential activation of
STAT-independent pathways in target cells (33), which are only
beginning to be appreciated (30).

In addition to its effects on target cells, IFN signaling affects
immune cells in multiple ways. IFN-I was shown to induce the
production of chemokines (e.g., CXCL9, CXCL10 and CCL2),
which enhance lymphocyte and macrophage recruitment, and
cytokines (e.g., IL-15), that promote the maintenance of memory
CD8+ T cells and natural killer (NK) cells (34). IFN-I also
supports the differentiation of monocytes into dendritic cells
(DC) and stimulates DCmaturation by upregulating MHC-I and
-II antigen-presenting machinery, costimulatory molecules, such
as CD80 and CD86, and CCR7, a chemokine receptor that
promotes DC migration to the T-cell zone of draining lymph
nodes, where they can activate and polarize naive T cells into
effector and/or memory T cells (34).

Upon antigen-driven activation, IFN-I has direct effects on T
cells by favoring the polarization of naive CD4+ T cells towards
the IFNg-secreting Th1 phenotype and facilitating the activation,
clonal expansion and IFNg secretion of cytotoxic CD8+ T cells.
NK cell activation and IFNg secretion are also enhanced by IFN-I
(34). In turn, IFNg has a major role in coordinating immune
responses by inducing the IgG production by B-lymphocyte-
December 2021 | Volume 12 | Article 782852
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derived plasma cells, boosting macrophage function and
enhancing DC antigen presentation (35).

On the other hand, IFN-I signaling in the absence of TCR
signaling may lead to T cell apoptosis (36, 37), while
chronification of IFN-I signaling triggers immunoregulatory
mechanisms aimed to avoid severe tissue injury (38). This is
achieved through the induction of immunosuppressive
cytokines, such as IL-10 (39, 40), and exhaustion receptors and
ligands on immune cells, such as PD-1 (41) and PD-L1 (42),
among other suppressive molecules (43, 44), leading to a
hyporesponsive state in activated T cells.

Similarly, IFN-III has direct effects on many immune cell
populations, although these are not fully understood due to the
non-ubiquitous expression of IFNLR1 on immune cells and the
controversial data found in different models of immune response
(30, 31). Notably, plasmacytoid and conventional DCs are able to
both produce and respond to IFN-III, whereas other immune
cells, such as neutrophils, macrophages and NK cells, are only
capable to directly respond to it, but cannot produce IFN-III
themselves (30, 31, 45).

An STAT-independent immunoregulatory role for IFN-III in
neutrophils has been demonstrated in various contexts,
including infectious and autoimmune diseases (30, 31, 45).
DCs were shown to produce high levels of IL-12 in response to
IFN-III (46). In NK cells, IFN-III was required for maximal IFN-
g production and antitumor activity (47), however it is not clear
whether IFN-III has direct action on these cells (45). IFN-III has
also shown to enhance IFN-g production and reduce Th2
cytokines in CD4+ T cells, favoring a Th1 pattern (48, 49). In
CD8+ T cells, IFN-III was shown to improve cell expansion and
cytolytic activity (50).

However, controversial effects of IFN-III on T cells are shown
depending on which inflammatory context has been evaluated:
IFNLR1-deficient mice showed improved CD4+ and CD8+ T cell
responses to transient acute LCMV infection, but showed
diminished T cell responses and worse disease control in a
chronic infectious scenario (51). Also, much of the IFN-III
effects on T cells are attributed to its roles in the activation of
the innate immunity compartment, especially DCs, and it
remains to be determined the specific effects of IFN-III on T
cells (45).
INTERFERONS IN TUMOR IMMUNITY
AND THERAPEUTIC RESPONSES

Based on what has been discussed, IFN responses may exert anti-
tumor effects through cell-intrinsic mechanisms, such as
promotion of apoptosis, as well as the activation of immune
mechanisms that optimally act against tumor cells, particularly
those mediated by cytotoxic NK and T cells. In chronic scenarios,
IFNs induce abundant expression of exhaustion markers on
immune cells that can be targeted by ICB. Of note, many
factors may activate IFN responses in the TME, including
genotoxic therapies and engagement of PRRs by their natural
ligands or agonists (Figure 2), which are currently being
Frontiers in Immunology | www.frontiersin.org 5
exploited as potential therapeutic agents, proving the crucial
anticancer roles exerted by IFNs (52).

Early studies demonstrated that IFN-I administration improves
the survival of tumor-harboring mice (53) and that endogenous
IFN-I was required for tumor rejection (54, 55). Following the
promising resultsobserved inpre-clinicalmodels, clinical trialswith
IFNa for human cancer treatment also showed efficacy in
promoting regression of many tumor types (56), leading to
IFNa2 approval as the first anticancer immunotherapy and its
clinical use for many years to treat different cancers, including
hematological malignancies (57, 58) and melanoma (59).

IFN-I activation of immune responses has shown to be an
essential trigger in mediating anti-tumor activities. IFN-I-induced
transcripts correlated with T cell infiltration in human melanoma
and mice models have shown that IFN-I can be produced by
intratumoral DCs upon tumor implantation, being indispensable
for the accumulation of intratumor cross-presenting dendritic cells
and priming of CD8+ T cells (60) (Figures 2, 3). Further data also
suggested that IFN-I signaling has anti-metastatic properties by
regulating epithelial-to-mesenchymal transition (EMT),
angiogenesis, and the expression of cytokines, chemokines and
their receptors in cancer (61).

The role of IFN-I in cancer immunoediting has also been
elegantly demonstrated (62). Using mouse models for tumor
transplantation and primary development, it was shown that
non-immune-edited (immunogenic) sarcomas grown in rag2-
deficient mice (which lack lymphocytes) were rejected by wild-
type syngeneic mice; however IFNAR1 blockade abrogated this
effect. Likewise, ifnar1 knockout mice were more susceptible to
carcinogen-induced tumor formation, and tumors grown in
these animals were controlled when transplanted into WT
animals, similarly to tumors generated in rag2-knockout mice.
Additional experiments have shown that IFN-I signaling in
immune cells, but not in tumor cells, is essential for tumor
elimination (62). In conclusion, these data prove that IFN-I
acting on immune cells is necessary for tumor immune
responses, and the absence of this stimulus creates a permissive
environment that promotes the growth and progression of non-
immune-edited tumors (62).

Although the use of IFN for cancer treatment has decreased
due to its related adverse effects and the advent of more effective
targeted therapies, IFN-I exerts an important role in regulating
cancer progression through the activation of antitumor immune
responses and may serve as prognostic or therapeutic predictor
biomarker in different cancers and therapeutic modalities (52).
Relatedly, the efficacy of genotoxic therapies, including
chemotherapy and radiotherapy, has been shown to largely
rely on activation of the IFN-I pathway (63–67), while
exogenous IFN-I stimulation could potentiate responses to
these treatments (65, 68) (Figures 2, 3). Of note, the
unresponsiveness of IFN-I-deficient animals was attributed to
their inability to activate dendritic and CD8+ T cells (52, 63, 66).

Accordingly, cGAS activation and IFN-I signaling in DCs are
required for anti-tumor immune responses after radiotherapy
(69) (Figure 3). Also, progression of tumor cells through cell
cycling after the genotoxic stimulus led to the accumulation of
December 2021 | Volume 12 | Article 782852
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cytoplasmic micronuclei that were recognized by cGAS, leading
to IFN production and T cell priming, indicating that beyond
DCs, tumor cell sensing of damaged DNA via STING pathway
also contributes to IFN-I production and cancer immune
responses (70) (Figure 3). Further, IFN-I activation was
necessary to the abscopal (systemic) effects of radiotherapy in
disseminated cancers, a phenomenon that is highly dependent
on intratumor CD8+ T cell priming (70, 71).

In contrast, IFN-I pathway activation in tumor cells was
associated with radiotherapy resistance, and ifnar1-deficient
tumor cells were more susceptible to T cell killing in mouse
models (72). Conversely, IFN-I signaling in tumor cells has been
shown to upregulate indoleamine-2,3-dioxygenase 1 (IDO1) after
radiation, which contributed to radiation resistance and inhibition
of immune responses in tumors (73). These results highlight that (i)
IFN-I activities and theirpotential impact on radiotherapy response
varies according to theTMEcompartment (tumor vs immune cells)
wherein this pathway is activated and (ii) IFN-I effects in boosting
the radiotherapy response are immune-mediated.

In genotoxic chemotherapy with anthracyclines, TLR3
activation in tumor cells has been shown to largely contribute
to IFN-I responses and tumor elimination after chemotherapy
(66). Doxorubicin treatment induced an antiviral-like expression
program, which was abrogated in Tlr3-knockout mice that did
not respond to chemotherapy unless supplied with recombinant
IFNa, IFNb or CXCL10. Furthermore, an IFN-I-related
Frontiers in Immunology | www.frontiersin.org 6
expression signature predicted response to anthracyclines in
multiple breast cancer cohorts (66). Importantly, DNA
damaging agents might generate dsRNA, which can be
recognized by TLR3 (74), and evidence has shown that ssRNA
might also stimulate TLR3 through the formation of incomplete
stem-loop structures (75), providing a rationale for TLR3
activation in this context (Figure 3). Additionally, IFN-I
signaling was protective against breast cancer metastization, as
it was required for NK and CD8+ anti-tumor functions in this
scenario (76, 77). Accordingly, pre-chemotherapy IRF9
expression was consistently associated with treatment response
and improved metastasis-free survival following chemotherapy
in triple-negative breast cancer (78).

Since immunotherapies also rely on the efficient priming of
intratumor immune responses, IFN-I signaling could also
potentiate the efficiency of ICB (79). Indeed, STING-deficient
mice were unable to respond to anti-PD-1 and anti-CTLA-4 in
B16F10 melanoma model, and cGAMP administration along
with ICB inhibited tumor and metastasis formation and delayed
tumor growth (80). This process depends on IFN-I, and
endothelial cells were shown as major contributors to this
phenomenon by highly producing IFNb1 in response to
cGAMP (80). In the same melanoma model, cGAS-STING
pathway and IFN-I production were necessary to potentiate
anti-PD-L1 response, while STING- or cGAS-deficient mice
were unable to respond to this therapy (81). Further, cGAMP
FIGURE 2 | Activation of IFN-I/III responses in TME lead to enhanced anti-tumor response and tumor control. Poorly immunogenic (“cold”) tumors might be
converted to highly infiltrated tumors (“hot”) through the activation of IFN-I/III responses. This might be accomplished through several strategies, such as genotoxic
therapies and triggering of innate immunity receptors involved in antiviral responses. IFN-I/III mediate this phenomenon by its actions on tumor cells, inducing
immunogenic cell death and enhanced antigen presentation as well as by its effects in activating anti-tumor immune cell populations, such as dendritic cells, T
lymphocytes and natural killer (NK) cells. Created with BioRender.com.
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administration increased DC and antigen-specific T-cell
activation in a dose-dependent manner in WT and cGAS-
deficient mice, but not in STING-deficient animals (81).
Otherwise, the increased susceptibility of ifnar1-deficient
tumor cells to T cell-mediated killing ultimately led to
improved response to anti-PD-L1 ICB, once again highlighting
the differing translational meaning of IFN-I activation in
different tumor compartments (72).

Enhancement of ICB responses may be achieved by the use of
genotoxic therapies before ICB, and several works have shown that
the cGAS-STING-IFN-I pathway significantly contributes to this
effect (70, 71, 82, 83). Cytoplasmic DNA accumulation following
radiotherapy is necessary to properly activate the cGAS-STING
pathway and potentiate ICB (70) (Figure 3). In line with this, it
was recently shown that high radiation doses induce the
exonuclease Trex1, which degrades cytoplasmic DNA and
downmodulates cGAS-STING pathway, thus attenuating cancer
immunogenicity; on the other hand, low dose radiotherapy
(LDRT) effectively induces cytoplasmic DNA accumulation
without Trex1 induction, and this efficiently stimulates IFNb
production and T-cell priming, enhancing the response to
immunotherapy (83). Also, LDRT promoted immunologic
infiltration in a murine lung cancer model characterized by the
absence of T cell infiltration and induced cytotoxic CD4+ and
CD8+ T cell populations (84). These findings were validated in
immunotherapy-resistant human tumors, which after radiation
were highly infiltrated by Th1 cell subpopulations (84).
Frontiers in Immunology | www.frontiersin.org 7
Otherwise, recent reports have shown that prolonged IFN-I
and II stimuli can upregulate and sustain the expression of
multiple genes involved in T-cell exhaustion, including but not
limited to PD-L1, thus mediating resistance to immunotherapies.
Sustained IFN-I signaling and IFNb expression were also
associated with resistance to anti-PD-1 blockade therapy
through the induction of NOS2 in immune and tumoral
compartments of melanoma, promoting an accumulation of
regulatory T cells and myeloid cells in tumor tissues (44).
Conversely, in animals that do not respond to combinatorial
treatment with anti-PD1 and anti-CTLA4, pharmacological
inhibition of the IFN pathway could render immunotherapy-
resistant tumors sensitive to either ICB monotherapy (43).

IFN-III functions in cancer are less clearly understood. The
more restricted expression of IFNLR1 and IL10RB as opposed to
IFNAR1 and IFNAR2 (which are ubiquitously expressed by
nucleated cells) and the known attenuated inflammatory potential
of IFN-III in comparison to IFN-I has led to the hypothesis that
IFN-III administration would exert anti-tumor activities with less
toxicity compared to IFN-I (30, 85). Indeed, IFN-III has shown in
vitro and in vivo anti-tumor effects through the induction of tumor
apoptosis and cell cycle arrest, inhibition of angiogenesis and
activation of the immune compartment (86–90).

In a recent report, it has been shown that conventional
dendritic cells 1 (cDC1) were responsible for type-III
interferon production and that both intratumor cDC1
abundance and IFN-III expression were associated with
FIGURE 3 | DNA-damaging agents trigger IFN-I/III responses through activation of cGAS/STING and TLR3 pathways. DNA-damaging agents cause DNA leakage
into cytoplasm as well as induce dsRNA formation, leading to the activation of cGAS and TLR3. Also, blebs from dying cell containing DNA and dsRNA are captured
by dendritic cells and also sensitizes cGAS and TLR3 in these cells. These pathways culminate in IFN-I/III production by both cells, leading to efficient dendritic cell
activation and T cell priming, thus enhancing anti-tumor responses. This process mediates the response to genotoxic therapies and found the base for their use as
adjuvants for ICB therapies. Created with BioRender.com.
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improved prognosis in breast cancer patients (91). Further, IFN-
III expression correlated with pro-inflammatory cytokines and
chemokines in the tumor milieu, favoring Th1 polarization of
intratumor immune responses (91). In agreement with this, in
vitro stimulation of patient-derived cDC1 by TLR3 agonists led
to the secretion of several inflammatory mediators, including
IFN-b, IFN-g, IL-12, CXCL10, CXCL11 and CX3CL1 (91). Also,
IFN-III was required for optimal IFNg production and antitumor
activity of NK cells (47). Therefore, IFN-III may also exert direct
and indirect anti-tumor activities and might hold potential as a
biomarker and/or therapeutic target in cancer. However, the
complex biology of IFN-III including its spatio-temporally
restricted expression and its multifaceted roles on the immune
system and human cancers, as well as its potential adverse effects
must be further understood before its clinical use.

Altogether, these results emphasize the promising roles of
IFN-I/III in cancer progression and control, as well as the
complex nature of the dynamic IFN responses in the TME.
Besides cytotoxic therapies, it became recently clear that other
stimuli can also activate interferon responses, including infection
by exogenous or oncogenic viruses and expression of EREs. In
addition to the activation of innate immunity programs, viral
sequences may generate proteins that can be recognized by the
adaptive immunity, as discussed in the next sections.
EXOGENOUS VIRUSES AS TRIGGERS OF
ANTI-TUMOR IMMUNE RESPONSES

Over 50 years ago, Epstein et al. published their electron
microscopy observations of EBV (Epstein-Barr virus) in
cultured tumor cells of Burkitt’s lymphomas, which led to the
discovery of the first human oncovirus (92, 93). Since then, much
focus has been placed on discovering novel human oncoviruses,
mainly using large-scale analyses of the complex genetic
architecture of tumors (94, 95).

According to the last survey, up to 20% of all human cancers
are related to oncogenic viruses, and some are recognized as
human carcinogens by the International Agency for Research on
Cancer (IARC) (96–98). Currently, at least eight well-
characterized human oncoviruses are known: (i) Epstein-Barr
Virus (EBV); (ii) human papillomavirus (HPV; types 16, 18, 31,
33, 35, 39, 45, 51, 52, 56, 58, and 59); (iii) Kaposi’s sarcoma-
associated herpesvirus (KSHV), also known as human
herpesvirus type 8 (HHV-8); (iv) human T-cell lymphotropic
virus type 1 (HTLV-1); (v) Merkel cell polyomavirus (MCPyV);
(vi) hepatitis B virus (HBV); (vii) hepatitis C virus (HCV); and
(viii) human cytomegalovirus (HCMV) (97, 99–102). Of note,
they exhibit a high genomic diversity, displaying either DNA
(EBV, KSHV, HPV, HBV, and MCPyV) or RNA (HCV and
HTLV-1) genomes. Interestingly, some viruses predominantly
affect a particular gender (e.g., 90% of HPV-induced cancers
occur in females) and have a broad tissue tropism.

Accumulating evidence indicates that the presence of
oncoviruses is not sufficient to induce cancer development, as
only a small proportion of infected individuals eventually
Frontiers in Immunology | www.frontiersin.org 8
develop cancer. Instead, it has been proposed they contribute
to a multistep tumorigenesis and are implicated in many cancer
hallmarks (95, 103–105), usually involving chronic inflammation
(by generating reactive oxygen (ROS) and nitrogen (RNS)
species), immunosuppression (e.g., co-opt cellular processes for
replication and undermine immune recognition to support their
propagation), sustained proliferative capacity through the
expression of viral-encoded oncogenes by the infected cells
(e.g., T antigen of MCPy; LMP1, LMP2A, LMP2B, EBNA1,
EBNA2 of EBV; Tax of HTLV-1; E5, E6 and E7 of HPVs),
genomic instability generated by insertional mutagenesis, control
of the host epigenetic machinery (106), regulation of the
mitochondrial function of infected cells (107) and alteration of
tumor suppressor (e.g., p53 and pRB pathways) and host
signaling (e.g., PI3K–AKT–mTOR; MAPK; Notch; WNT/b-
catenin; NF-kB) pathways (7, 108, 109).

Alternatively, the “Hit-and-Run” mechanism proposes that
oncoviruses may act as initial triggers for cancer development
(the “hit”), and the viral genome subsequently disappears (the
“run”) after accumulation of new mutations in the host cell
throughout carcinogenesis (110). However, clear experimental
evidence is still required to support this hypothesis, although this
phenomenon has been observed in an animal model (111).
Interestingly, the presence of a mutational pattern consistent
with off-target activity of the IFN-induced antiviral APOBEC3
cytidine deaminases in multiple human cancers (112) might
constitute a link among viral infections, antiviral immunity and
carcinogenesis that may operate through the hit-and-run
mechanisms (113, 114). Indeed, association amongst
APOBEC3 expression, mutational signature and viral infection
has been established for cancers associated with HPV (115–117),
polyomaviruses (118) and EBV (119). Additionally, recent work
has given support to the idea that the genomic integration of
some oncoviruses may be associated with increased somatic
copy-number alterations and mutations (such as TP53,
CDKN2A and TERT mutations in head and neck cancers)
nearby the integration sites, and higher abundance of T cell
and M1 macrophage populations in head and neck tumors (95),
providing new insights into the causality of oncoviruses.

The TME plays a crucial role in modulating immune
responses during cancer development, thereby influencing
therapeutic outcomes and patient prognosis. In this context,
several lines of evidence support that some oncoviruses that have
been integrated into the genome of tumor cells might also
directly or indirectly impact the intratumoral infiltration of
immune cells and antitumor immunity. Table 1 summarizes
the findings of studies investigating the influence of oncoviruses
on intratumor immune infiltrates. Overall, virus-associated
cancers had increased infiltration of immune cells, particularly
CD8+ T cells, and the presence of oncoviruses is commonly
associated with better prognosis. Also, in some cases, notably for
HCC and GC, viral infections were associated with high levels of
regulatory T cells (Table 1). Notwithstanding, some cancers
associated with viruses, such as HPV-associated HNSCC, have
increased lymphoid aggregates composed of B and T cells known
as tertiary lymphoid structures (127, 129), which may serve as
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TABLE 1 | Immune and clinical findings of virus positive versus virus negative tumors among different cancer types.

Virusa Cancerb Positive
samples

Materialc Methodd Immune cell infiltrate* Clinical outcome* Reference

MCPyV MCC 34/49
(69.38%)

FFPE IHC ↑ CD4+ and CD8+ T cells ↑ OS (120)
↑ PD-L1 expression

MCC 85/116
(73.3%)

FFPE IHC ↑ CD3+, CD8+, CD16+, FoxP3+, and CD68+ cells ↑ OS (121)

MCC 85/132
(64%)

FFPE IHC ↑ CD8+ cells ↑ OS and PFS (122)
↑ PD-L1 Expression

MCC 84/134
(62.68%)

FFPE IHC ↑ CD8+ and FOXP3+ cells – (123)

MCC 38/49
(79.2%)

FFPE IHC No association ↑ OS (high CD8+ T
cell infiltrate)

(124)

↓ OS (high viral load)
HPV HNSCC 13/27 (48%) FFPE IHC ↑ CD3+, CD4+, CD8+, CD20+, and PD-1+ cells – (125)

HNSCC 30/502
(5.97%)

RNA RNA-seq ↑ activated NK cells, Monocytes cells, Macrophages M0 cells,
resting Dendritic cells, Neutrophil cells

– (126)

↑ CXCL9 expression
HNSCC 9/63

(14.28%)
PBMC FACS

scRNA-seq
↑ CD4+ TFH, Germinal center (GC) B cells ↑ PFS (GC B cells) (127)

HNSCC 11/38
(28.9%)

PBMC FACS ↑ CD45+ lymphocytes and B cells (CD19+/CD20+) – (128)
IHC ↓ CD86+/CD21− antigen-presenting B cells

OPSCC 63/72
(87.5%)

FFPE FACS ↑ CD20+ B cells – (129)
Fresh
tissue

IHC ↑ CD8+ T cells

SCC 8/31 (26%) FFPE IHC ↑ CD8+ – (130)
HNSCC 8/34 (24%) PBMC FACS ↑ CD45+ lymphocytes – (131)

FFPE IHC ↑ PD-1+ T
EBV GC 32/571 (5%) FFPE IHC ↑ CD8+ and FOXP3+ T cells ↑ OS (132)

GC 12/71 (17%) Fresh
tissue

RNA-seq
(TCGA)

↑ CD8+ and NK cells – (133)

FFPE qRT-PCR ↑ ISGs
IHC

GC – FFPE IHC ↑ Proliferating (Ki67+) CD8+ T cells – (134)
GC 45/90 (50%) Fresh

tissue
IHC ↑ Tregs – (135)

FFPE FACS ↑ CCL22 expression
GC 6/43 (14%) FFPE IHC ↑ CD8+ and CD4+ cells and macrophages – (136)
GC 28/129

(22%)
FFPE IHC ↓ M2 macrophages (CD204+ cells) ↑ OS (137)

GC 20/48 (42%) FFPE IHC ↑ GzB7+CD8+ T cells ↓ LN metastasis (138)
↑ MHC-II

HBV HCC 24/46
(52.17%)

Fresh
tissue

scRNA-seq ↑ Trm (PD-1-low/TOX-low) ↑ RFS (139)

PBMC
HCC 361/411

(88%)
FFPE IHC ↑ CD8+ – (140)

↑ PD-L1 TIL
HCC 123/123

(100%)
PBMC FACS ↑ Treg (CD4+CD25+FoxP3+) TILs ↓ OS associated with

Tregs
(141)

IHC ↓ CD8+ TILs
↓ Perforin, granzyme A and B in CD8+ T cells

HCC 12/20 (60%) Fresh
tissue

IHC ↑ PD-L1 – (142)

HCMV GC 504/573
(88%)

FFPE IHC ↑ CD4+, CD8+, CD66b+, and CD163+ cells ↑ OS (143)
TMA ↑ RFS
RNA-seq

CRC 43/95
(45.3%)

Fresh
tissue

PCR array ↑ Th17 signature ↓ DFS (144)
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*Unless otherwise specified, comparisons refer to virus-positive versus virus-negative tumors.
aMCPyV, Merkel-cell polyomavirus; HPV, Human papillomavirus; EBV, Epstein-Barr virus; HBV, Hepatitis B virus; HCMV, Human cytomegalovirus.
bMCC, Merkel cell carcinoma; HNSCC, Head and neck squamous cell carcinoma; OPSCC, Oropharyngeal squamous cell carcinoma; SCC, Squamous cell carcinoma; GC, gastric cancer;
HCC, Hepatocellular carcinoma; CRC, Colorectal cancer.
cFFPE, Formalin-fixed paraffin-embedded tissue; RNA, Ribonucleic acid; PBMC, Peripheral blood mononuclear cells.
dIHC, Immunohistochemistry; RNA-seq, RNA sequencing; FACS, Fluorescent activated cell sorting (flow cytometry); qRT-PCR, quantitative reverse transcriptase polymerase chain
reaction; TMA, tissue microarray; PCR, Polymerase chain reaction.
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niches for antigen presentation in the TME and are associated
with improved prognosis and response to ICB in multiple
cancers (145).

Taking advantage of The Cancer Genome Atlas (TCGA) data
(146), Rooney et al. have shown that EBV infection in stomach
cancer and HPV infection in head and neck squamous cell
carcinoma (HNSCC) were associated with high cytolytic
scores, which were indicative of improved cytotoxic T cell
activity (13). Subsequent analysis also suggested that, apart
from HBV-infected liver hepatocellular carcinomas (LIHCs),
virus-infected tumors had higher cytolytic cell infiltration
when compared to non-infected tumors of the same type
(147). Also, decreased TCR clonality was observed in EBV-
infected stomach cancers, suggesting that antigen-driven clonal
expansion of T lymphocytes was taking place in these
tumors (147).

T cell co-stimulatory and inhibitory receptors and ligands, as
well as memory and resident T cell markers, were increased in
tumors positive for HPV, EBV and CMV, but not HBV+ LIHC
(148). Of note, gene expression signatures associated with viral
infection were predictive of better overall survival in HNSCC and
bladder cancer (147), and high T cell infiltration was predictive
of overall survival in HPV+ HNSCC but not in HPV- samples
(148). In gastric cancer, EBV+ tumors also had increased
expression of immune checkpoints (149) and IRF3 gene
signature (150). Using single-cell transcriptomics, it has
recently been shown that malignant cells from EBV+ gastric
cancers were distinguished by a gene expression signature
composed of IFN-I-activated and antigen-presenting
molecules (151).

Oncovirus-specific T cells and epitopes have also been
characterized in virus-associated tumors, such as MCPyV-
associated Merkel cell carcinoma (152); HPV-associated
cervical cancer (153, 154) and HNSCC (155–158); EBV-
associated nasopharyngeal carcinoma (159, 160) and gastric
cancer (161); and HBV-associated hepatocellular carcinomas
(139, 162). Surgical removal of HPV-positive tumors followed
by HPV vaccination has shown promising results to prevent
cervical cancer recurrence (163, 164) and the use of virus-specific
T cells or T cells engineered to recognize virus-derived antigens
have shown promising results in preclinical models, case reports
and clinical trials in multiple cancers (165–167), suggesting that
recognition of viral antigens by cells of the adaptive immune
system is a crucial feature controlling the growth and therapeutic
response of virus-associated cancers.

However, the boosting of anti-tumor immune responses by
viruses is not restricted to oncogenic viruses: recent reports
highlight that commensal viruses are protective against tumors.
In murine models of cutaneous squamous cell carcinoma
(cSCC), infection by mouse papillomavirus 1 (MmuVP1) prior
to carcinogen-induced skin cancer development delayed tumor
formation and progression and prolonged survival in a CD8+ T
cell-dependent fashion (168). Conversely, higher b-HPV RNA
and DNA were found in cSCC of immunosuppressed patients
relative to their immunocompetent counterparts, and CD8+ T
cells isolated from human tumor tissues responded to peptides
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from the E7 protein of commensal b-HPV, but not to the
oncogenic HPV-16, suggesting that immunocompetent patients
had active immune responses against b-HPV operating in the
TME (168).

Of note, virus-specific bystander T cells are abundantly found
in the tumor core of murine models of cancer (169) and human
tumors (170, 171). These cells constitute a tissue-resident
memory T cell population expanded by multiple viral
infections throughout host lifetime that may be recruited to
tumor tissues through CXCR3 interaction with intratumorally-
secreted CXCL9 and CXCL10 (172) and can be (re)activated by
IFN-I stimulation (173). Recent reports indicated that bystander
T cells are less prone to terminal exhaustion than tumor-antigen-
specific T cells (169), and their activation in the TME may boost
antitumor immunity not only through secretion of pro-
inflammatory factors, but also through antigen-independent
killing of tumor cells in a NKG2D-dependent manner (174, 175).

Notably, repeated exposure to cognate viral-antigen makes
CD8+ T cells more sensitive to antigen-independent bystander
activation in cancer, suggesting that CD8+ T cells responsive to
common human viruses, such as CMV, EBV and influenza, may
be the best targets to boost antitumor immunity (176).
Consistently, lung infection by influenza virus protected mice
against lung colonization of B16F10 melanoma cells injected
intravenously, and hospitalization for influenza infection during
cancer treatment was protective against death in lung cancer
patients (177). In this context, pre-clinical models have also
shown that intratumoral administration of non-adjuvanted
influenza vaccine delayed tumor growth and boosted the
response to anti-PD-1 immunotherapy, mainly by recruiting
and activating cross-presenting dendritic cells and CD8+ T
cells (177). In another murine model, non-adjuvanted
vaccination resulted in reactivation of bystander virus-specific
tissue-resident memory T cells as well as dendritic and NK cells,
which favored tumor growth arrest, synergizing with ICB (171).
Importantly, at distant anatomical sites from tumors, viruses can
promote tumor growth by shunting tumor-reactive immune cells
to the infected tissue (178).

Collectively, these data show that virus-infected tumors have
increased immunogenicity and that localized (but not distal)
activation of virus-specific T cells might restrain tumor growth
by directly killing tumor cells, as known for oncoviruses. In
addition, activation of intratumor immune responses by
bystander virus-specific tissue-resident T cells may boost anti-
tumor immunity.
ENDOGENOUS RETROVIRAL ELEMENTS
AND TUMOR IMMUNITY

Endogenous retroviral elements (EREs) are retrovirus-derived
DNA sequences incorporated into the genome of host species
through ancient infection of germinative cells. These elements
comprise approximately 45% of the entire human genome and
can be broadly classified into long terminal repeat (LTR) and
non-LTR EREs (10). LTR-EREs can be further classified into
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(i) endogenous retroviruses (ERVs, or HERVs, in the case of
human ERVs), in which LTRs flank complete or partial classical
proviral sequences; (ii) mammalian-apparent LTR transposons
(MaLRs); and (iii) solo LTRs. Non-LTR sequences otherwise
comprise long and short interspaced elements (LINEs and
SINEs, respectively) and Alu elements (10).

These elements are unable to generate provirus structures due to
mutations in their ORFs actively generated through cellular viral
restriction enzymes and therefore they cannot infect other cells.
However, their ORFs can be transcribed into RNA and translated
intoproteins, andmanyof themhold thecapacity togenerate copies
of themselves and reintegrate into the cellular genome, being called
transposable elements (TEs) or transposons. Type-I TEs replicate
into RNA sequences and use reverse transcriptase to copy
themselves into DNA prior to reintegration, while type-II TEs
simply encode enzymes called transposases to be excised and
reintegrated into the genome as DNA (12).

Given the random nature of insertion events, EREs can modify
the cellular genomic architecture and trigger many phenotypic
alterations: their insertion into coding regions can inactivate genes,
while intergenic re-insertions can modify the expression of
proximal genes, since EREs can act as cryptic promoters. Also,
the sequence similarity shared between EREs, especially between
ERVs, indifferent chromosomal loci can promotenon-homologous
recombination, resulting in chromosomal aberrations such as
translocations, deletions and inversions (179, 180).

In addition to the carcinogenic role on genomic instability,
EREs may trigger immune responses when aberrantly expressed
through the activation of innate immune receptors (179, 181),
and their expression is associated with increased immune
infiltrates and immune gene signatures in multiple cancers (13,
14, 182). Similarly, the enhanced immunogenicity of breast
cancer models after treatment with CDK4/6 inhibitors (183)
and the natural immunogenicity of rhabdoid tumors (184) were
attributed to the expression of EREs and activation of IFN-I and
III signaling pathways.

Due to the potential in generating genomic instability, EREs
are tightly controlled by epigenetic mechanisms (185–187).
Regarding ERVs, it has been shown that young sequences (i.e.,
those that have been incorporated into the genome more recently
in the evolutionary history and predominantly contain more
conserved ORFs) are repressed mainly by methylation of CpG
islands in their LTRs and could have their expression reactivated
by DNA hypomethylating agents (DHA) such as 5-aza-2′-
deoxycytidine, while older ERVs are less enriched in CpG
islands and are mainly controlled by histone modifications,
particularly histone H3 lysine 9 trimethylation (H3K9me3)
(188). Interestingly, the natural resistance to carcinogenesis
observed in blind mole rats has been recently attributed to
their loose epigenetic control of EREs: since their tissues
express low levels of DNA methyltransferase 1 (DNMT1),
uncontrolled proliferation leads to loss in control of EREs
expression leading to cGAS-STING triggering, IFN-I response
activation and cell death (189).

Strikingly, treatment of tumor cells with DHA and histone
deacetylase inhibitors (HDACi) led to the expression of EREs
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that could be detected through MDA-5 in the form of
cytoplasmic dsRNA, formed by hybridization between
complementary RNA strands expressed from bidirectional
transcription of EREs (190), homologous EREs transcribed
from different loci and from loop structures formed by
transcription of DNA stretches containing homologous
antisense-oriented EREs sequences (187). This ERE detection
by cytoplasmic sensors induces an IFN-mediated antiviral state
marked by enhanced cancer cell apoptosis and activation of
innate and adaptive immunity that could favor responses to ICB
with anti-CTLA-4 (191–193). Further research identified Alu
elements as major source of dsRNA activating MDA-5, whereas
ADAR1, an interferon-induced adenosine deaminase that takes
part in innate immunity to viruses, has been thought to be a
negative regulator of these elements, thus downmodulating
MDA-5 and IFN responses (194). Notably, ADAR1 depletion
in patient-derived colorectal cancer cells increased their in vitro
and in vivo sensitivity to DNA hypomethylating agents (194).

ERVs have also been shown to significantly contribute to the
pool of tumor antigens recognized by CD8+ T cells, therefore also
contributing to the activation of adaptive anti-tumor immune
responses. In renal cell carcinoma (RCC), HERV-E is selectively
expressed in cancer cells lacking the VHL tumor suppressor
(195), and peptides derived from its envelope protein have been
shown to bind HLA-A*0201 and stimulate patient-derived CD8+

T cells (196). Interestingly, following hematopoietic stem cell
transplantation, tumor-directed immune responses consistent
with graft versus tumor reactions targeted HERV-E epitopes
and promoted regression of metastatic cancer in RCC patients
(197). In clear cell RCC (ccRCC), immunogenic HERVs were
associated with increased expression of immune signatures and
response to anti-PD-1 and anti-PD-L1 (198). Notably, a recent
report identified and validated 30 epitopes derived from HERV
4700 that could be recognized by CD8+ T cells from ccRCC
patients and whose expression was also associated with improved
response to anti-PD-1 therapy (182).

Indeed, using murine cell lines and tumor models, it has been
shown that intergenic regions mapping transposable elements
were the main source of epitopes targeted in anti-tumor
immune responses boosted by immunotherapy, which could
also be efficiently used in vaccination protocols, improving
survival (199). Accordingly, transcripts overlapping LTR
sequences in human cancers were thoroughly characterized in
the TCGA database, wherein LTR-overlapping transcripts with
prognostic implications have been identified, particularly in
melanoma. Immunopeptidome of melanoma biopsies revealed
some LTR-overlapping products capable of binding to MHC-I
alleles (200). Of note, recognition of a HERV-derived epitope by
CD8+ T cells in a melanoma patient had also been previously
demonstrated (201).

In another report, EREs transcript expression in TCGA pan-
cancer datasets was also associated with increased expression of
immune-related genes, and treatment of glioblastoma cells with
DHA promoted increased presentation of ERE-derived peptides
via MHC-I (14). HERV-derived epitopes have also been
characterized in both ovarian cancer (202) and hematological
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malignancies from the myeloid lineage (203). Multi-dimensional
proteogenomic studies integrating data from exome sequencing,
whole bulk and single-cell transcriptomics, sequencing of
ribosome-bound RNA (Ribo-seq) and mass spectrometry-
based immunopeptidome confirmed EREs as important
epitope sources in cancers (204).

In summary, these data indicate that modulation of EREs
expression in tumor cells by epigenetic modulators, such as DHA
and HDACi, holds promising effects in anti-cancer therapies,
especially ICB, since it can enhance tumor-cell death and
immunogenicity by the activation of IFN-I and -III responses in
the TME or unleashing tumor-associated antigens that could be
targeted by cytotoxic T cells activated in this therapeutic modality
(204–207).
ANTIVIRAL IMMUNE RESPONSES
AND CANCER: THERAPEUTIC
OPPORTUNITIES

Knowledge regarding the anti-tumor roles of antiviral immunity
through the activation of IFN-I and IFN-III has opened new
opportunities for cancer therapeutics. Currently, there exists an
abundance of anti-cancer agents aimed at modulating these
responses in TME under investigation in preclinical models
and clinical trials, either as single agents or adjuvants for other
immunotherapy (Table 2).

Also, the capacity of some viruses to directly induce cancer
cell death and tumor regression, the so-called oncolytic viruses,
has been largely reported and various families of viruses,
including adenovirus, reovirus, Seneca Valley virus and
herpesvirus, have been largely exploited therapeutically (208–
211). Currently, Zika virus (ZIKV), a neurotropic flavivirus that
promotes death of embryonal neural cells and recently caused a
microcephaly epidemic in South America (212), is being
investigated for the treatment of embryonal central nervous
system tumors, showing great oncolytic activity in preclinical
models (213–215). Of note, at least part of this effect is mediated
by activation of CD8+ T cells and this treatment may synergize
with ICB (216). Nevertheless, no single unmodified virus has
shown consistent clinical activity to merit approval.

The only oncolytic virus that has received approval from some
regulatory agencies is talimogene laherparepvec (T-VEC) for the
treatment of unresectable advanced cutaneousmelanoma (217). T-
VEC is an engineeredherpes simplex virus (HSV) type I designed to
selectively replicate within and lyse tumor cells and concomitantly
induce regional and systemic antitumor immunity. Two viral genes
are deleted to attenuate neurovirulence, enhance tumor replication
selectivity and improve antigen presentation of viral proteins in
infected cells. T-VEC also carries the GM-CSF gene to improve the
recruitment and activation of antigen-presenting cells and facilitate
the adaptive T cell response. The intralesional administration of T-
VECwas comparedwithGM-CSF administered subcutaneously in
a randomized phase III trial that recruited stage IIB and IV
melanoma patients. T-VEC was associated with better durable
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response rates (16.3% x 2.1%, p<0.001) and longer median OS
(23.3 x 18.9 months, p=0.051) (217). Other modified viruses are
under investigation for many different indications, as shown
in Table 2.

As highlighted, interferon is produced by cells in response to
viral infections and induces many modifications that restrain
virus proliferation and contribute to their elimination. Similarly,
interferon-dependent modifications are associated with tumor
growth control and induction of effective antitumor immune
response. Following this rationale, interferon has been used in
the past to treat many different cancers, including renal cell
carcinoma (218–220), melanoma (221–224), lymphoma (225),
chronic myelogenous leukemia (226) and multiple myeloma
(227), and although antitumor activity has been demonstrated,
only a few patients benefit from such treatment. Indeed, some
patients derived long-term disease control, albeit at the expense
of significant systemic toxic effects, resulting in symptoms such
as fever, chills, fatigue, depression and anorexia (52), therefore
limiting its widespread use in clinical practice, mainly after the
clinical implementation of ICB-based therapies.

Since most tumors present high genomic instability and
defects in DNA repair genes, they usually exhibit a great
amount of cytoplasmic DNA capable of triggering cGAS-
STING pathway activation and interferon production. STING
agonists have been tested to treat cancer. DMXAA (ASA-404) or
valdimesan was the first STING agonist tested. At that time,
DMXAA was used at high doses as a vascular disrupting agent in
mouse models, and regardless of promoting vascular necrosis
and tumor regression, the TME remained poorly immunogenic,
since high doses of DMXAA induced T cell apoptosis, a
phenotype that favors rapid tumor regrowth (16). Despite this,
a phase III trial compared carboplatin and paclitaxel with or
without ASA-404 in metastatic NSCLC. The addition of ASA-
404 did not improve overall survival, progression-free survival,
or overall response rate (228). It was subsequently shown that
DMXAA does not bind properly to human STING (229).
Although this class of drugs has shown great potential, there are
no STING agonists approved yet. A great limitation of the STING
agonists currently available is that they must be administered
intratumorally; nevertheless, new drugs that can be given
systemically are under investigation (Table 2) (16). Similarly,
agonists of other innate immune sensors (TLR9 and TLR3
agonists) are also being tested in clinical trials (230) (Table 2).

HDACis and DHAs, such as DNA methyl-transferase
inhibitors, are epigenetic modifiers that can promote
alterations in both tumor cells and their microenvironment
and ultimately enhance ICB efficacy. The synergistic effect of
these drugs and ICB can be partly explained by the re-expression
of EREs (“viral mimicry”) in tumor cells and the induction of
interferon responses (191, 206, 231) (Figure 4). Furthermore,
these epigenetic modulators can exert direct effects on immune
cells: HDACi and DHA treatment were shown to selectively
deplete myeloid derived suppressor cells (MDSCs), leading to
improved response to ICB in preclinical models (232); also, DHA
treatment directly enhanced CD8+ T cell effector function and
promoted better tumor control by modulating differential
December 2021 | Volume 12 | Article 782852
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expression of NFAT isoforms, which favored the T cell
differentiation into effector cells and inhibited their terminal
differentiation into exhausted cells (233).

Despite these promising results in preclinical models, little is
known about the long-term effects of these treatments in human
cancers. There are several ongoing clinical trials investigating
epigenetic modifier drugs such as EZH2 (enhancer of zeste
homologue 2), LSD1 (lysine-specific histone demethylase 1A),
C9a (histone-lysine N-methyltransferase EHMT2) and BET
(bromodomain and extra-terminal) inhibitors in combination
with ICB or other immunotherapies (207, 234) (Table 2). Results
from these trials are eagerly awaited to clarify the effects of these
drugs beyond preclinical models and might establish them as a
new class of anticancer drugs to be used in clinics.
Frontiers in Immunology | www.frontiersin.org 13
CONCLUDING REMARKS
AND FUTURE PERSPECTIVES

IFN-I and IFN-III signaling exert potent antitumor effects
through the induction of an antiviral state within tumor cells,
characterized by tumor cytostasis and apoptosis. These responses
are crucial in mediating benefits to well-established therapeutic
approaches, such as radiotherapy, chemotherapy and ICB-based
immunotherapies. As such, the activation of these pathways in
the TME may be used as a biomarker of therapeutic response
and prognosis.

Also, strategies aiming to enhance antiviral responses in the
TME have been exploited in preclinical models and clinical trials
either as adjuvants or single agents to potentiate anti-tumor
TABLE 2 | Recruiting studies testing immunotherapy in combination with drugs that induce antiviral-like responses.

Drug/Product Trial Phase Indicationa Combination Identifier

Oncolytic viruses
ADV/HSV-tk STOMP II TNBC Pembrolizumab (anti-

PD1)
NCT03004183

NSCLC SBRT
Pelareorep IRENE II TNBC Retifanlimab (anti-PD1) NCT04445844
Pexastimogene Devacirepvec
(Pexa-Vec)

ISI-JX I Solid tumors Ipilimumab (anti-CTLA4) NCT02977156

Ad/MG1-E6E7 Kingfisher I HPV related tumors Atezolizumab (anti-PD-L1) NCT03618953
TBio-6517 RAPTOR II Solid tumors TNBC MS-colorectal cancer Pembrolizumab NCT04301011
Pelareorep BRACELET-1 II Metastatic HR+/HER2- breast cancer Avelumab (anti-PD-L1) NCT04215146

Paclitaxel
RP-1 CERPASS II Squamous skin cancer Cemiplimab (anti-PD1) NCT04050436
OBP-301 (Telomelysin) II HNSCC Pembrolizumab NCT04685499
Pexastimogene Devacirepvec
(Pexa-Vec)

II Renal cell carcinoma Cemiplimab NCT03294083

Interferon
Recombinant interferon alpha
2b-like protein

II Fibrolamellar hepatocelularcarcinoma Nivolumab (anti-PD1) 5-
fluorouracyl

NCT04380545

STING agonists
TAK-676 I Solid tumors Pembrolizumab NCT04420884
E7766 INSTAL-101 I Lymphoma NCT04144140

Solid tumors
SNX281 I Lymphoma Pembrolizumab NCT04609579

Solid tumors
Epigenetic modifiers
Vorinostat PEVOsq II Squamous cell carcinoma (lung, HN, vulva,

penis, anus, cervix)
Pembrolizumab NCT04357873

Entinostat MORPHEUS
HR+BC

II randomized
(multiple arms)*

Breast cancer HR+/HER2- Atezolizumab NCT03280563

Epacadostat POD1UM-204 I/II Endometrial cancer Retifanlimab NCT04463771
Epacadostat II HNSCC Pembrolizumab NCT03823131

Electroporation
Tinostamustine ENIgMA I Pancreatic cancer Nivolumab NCT03903458
Decitabine II Breast cancer HER2- Pembrolizumab NCT02957968
Tazemetostat I/II Urothelial carcinoma Pembrolizumab NCT03854474
TLR9 agonists
SD-101 I Non-Hodgkin’s lymphoma BMS986178 (anti-OX40) NCT03410901
CMP-001 II (randomized) Melanoma Nivolumab NCT04401995
TLR3 agonist
Poly-ICLC I/II Colorectal cancer Pembrolizumab NCT02834052
Poly-ICLC I Prostate cancer (neoadjuvant) NCT03262103
Dec
ember 2021 | Volume 12 |
*The combination of entinostat and pembrolizumab is one of the arms in this trial.
aTNBC, triple-negative breast cancer; NSCLC, non-small cell lung cancer; HPV, human papillomavirus; MS, microsatellite-stable; HNSCC, head and neck squamous cell carcinoma; HR,
hormone receptor; HER2, human epidermal growth receptor 2; HN, head and neck.
This is not intended to be an exhaustive list of all ongoing clinical trials that explore antiviral response to modulate or elicit anti-tumoral immune response. For a more comprehensive list of
trials, please access https://clinicaltrials.gov.
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immune responses, with the aim of converting poorly
immunogenic and refractory tumors into highly immune
infiltrated tumors and boosting multiple therapeutic approaches.
These strategies include (i) promotion of immunogenic cell death
(e.g.: through oncolytic viruses and cytotoxic therapies, such as low
dose radiotherapy and chemotherapy); (ii) direct activation of
innate immunity sensors (e.g.: STING agonists) and (iii) re-
expression of EREs through epigenetic modulation (e.g.: HDACi
and DHA).

Therefore, IFN-I and III responses hold promising
translational potential either as biomarkers or therapeutic
targets in oncology, and this field might be revolutionized in
the next few years by the approval of therapies capable of
modulating antiviral responses that can cross-react with tumor
cells, pointing out to their great potential to enhancing antitumor
immune responses and overcome resistance to different
therapeutic approaches.
Frontiers in Immunology | www.frontiersin.org 14
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