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Variation in intraspecific demography 
drives localised concordance but species‑wide 
discordance in response to past climatic change
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Abstract 

Background:  Understanding how species biology may facilitate resilience to climate change remains a critical factor 
in detecting and protecting species at risk of extinction. Many studies have focused on the role of particular ecologi-
cal traits in driving species responses, but less so on demographic history and levels of standing genetic variation. 
Additionally, spatial variation in the interaction of demographic and adaptive factors may further complicate predic-
tion of species responses to environmental change. We used environmental and genomic datasets to reconstruct 
the phylogeographic histories of two ecologically similar and largely co-distributed freshwater fishes, the southern 
(Nannoperca australis) and Yarra (N. obscura) pygmy perches, to assess the degree of concordance in their responses to 
Plio-Pleistocene climatic changes. We described contemporary genetic diversity, phylogenetic histories, demographic 
histories, and historical species distributions across both species, and statistically evaluated the degree of concord-
ance in co-occurring populations.

Results:  Marked differences in contemporary genetic diversity, historical distribution changes and historical migra-
tion were observed across the species, with a distinct lack of genetic diversity and historical range expansion sug-
gested for N. obscura. Although several co-occurring populations within a shared climatic refugium demonstrated 
concordant demographic histories, idiosyncratic population size changes were found at the range edges of the more 
spatially restricted species. Discordant responses between species were associated with low standing genetic varia-
tion in peripheral populations. This might have hindered adaptive potential, as documented in recent demographic 
declines and population extinctions for the two species.

Conclusion:  Our results highlight both the role of spatial scale in the degree of concordance in species responses 
to climate change, and the importance of standing genetic variation in facilitating range shifts. Even when ecologi-
cal traits are similar between species, long-term genetic diversity and historical population demography may lead to 
discordant responses to ongoing and future climate change.
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Background
Understanding how or whether species may be able to 
adapt to current and future climatic changes is critical for 
conservation management of threatened taxa [1]. How-
ever, predicting the susceptibility and extent of species 
loss due to climate change remains a challenge. To this 
end, many studies have instead sought to determine eco-
logical traits that may confer resilience or susceptibility 
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to climate change across various taxa [2]. Ecological and 
physiological traits such as thermal tolerance and dis-
persal capacity have been shown to be critical in driving 
adaptation to climatic changes [3, 4]. Demographic and 
genetic traits such as population size, stability and stand-
ing genetic variation (SGV) are however also important 
in facilitating adaptation to new environmental stressors 
[5], and likely play a major role in species responses to 
climate change [6–8].

From a genetic perspective, adaptation to novel cli-
matic conditions more often relies upon SGV than de 
novo mutations [9–11]. The degree to which SGV is 
maintained within species or populations varies substan-
tially across taxa and is influenced by a combination of 
demographic, ecological and environmental factors. For 
example, populations occurring at the edge of a species 
range often have lower connectivity and genetic diver-
sity than their more central counterparts [12], including 
reduced diversity in climate-associated genes [13]. In 
marginal populations, persistence is driven by the bal-
ance of the steepness of the selective environment and 
the effectiveness of selection relative to genetic drift [14]. 
These components may contrast with the core of the dis-
tribution, where larger carrying capacities and SGV allow 
populations to persist closer to their selective optimum 
[15]. Thus, the interaction and spatial variability of neu-
tral (demographic) and adaptive (ecological) traits are 
critically important in understanding how species ranges 
may shift under climate change [16].

Understanding factors underlying species responses 
to historical climatic fluctuations provides an empirical 
framework for determining how species may respond to 
current and future environmental changes [17]. Extend-
ing phylogeographic analyses from taxon-specific stud-
ies to assessments of how species assemblages have 
responded to past climatic changes provides an approach 
to estimating the ubiquity of species responses [18]. 
Similar species responses (concordance) across disparate 
taxa often indicate that shared ecological traits underlie 
the response [19] or demonstrate the ubiquity in impact 
of the environmental change in question [20]. Contrast-
ingly, idiosyncratic responses (discordance) are often 
attributed to variation in species-specific ecological traits 
[21]. However, intraspecific variation in demography may 
lead to spatial variation in the degree of concordance, 
even across ecologically similar species. For example, the 
interactive role of demography and adaptive potential 
may lead to intraspecific variation at local scales, even if 
species-wide patterns are concordant across taxa or vice 
versa [22, 23]. These patterns may be reflected within 
species range shifts over time, where intraspecific varia-
tion in demographic or ecological traits at range margins 

may drive interspecific discordance in species responses 
to environmental change.

Biogeographic regions that experienced major envi-
ronmental change in the past are particularly useful for 
studying species responses to climate change. In this 
regard, the southeast Australian temperate zone provides 
a model region to test how species have responded to 
major environmental changes such as aridification and 
eustatic changes. Mainland Australia has experienced 
significant environmental changes since the late Mio-
cene, which heralded the onset of major aridification [24]. 
Other than a brief humid period during the Pliocene [25], 
this aridification intensified into the Pleistocene. While 
glacial periods in this region were not directly associated 
with the formation of glaciers, major changes in precipi-
tation and temperature shifted ecosystems towards more 
arid conditions [26]. Concordantly, glacial maxima also 
drove eustatic changes, expanding much of the continen-
tal shelf as sea levels dropped [27]. The complex environ-
mental history in southeast Australia, and its role on the 
evolution of temperate species, has been demonstrated 
by a number of phylogeographic studies (e.g. [28, 29]). 
For example, intense inland aridification during the Mio-
cene and Pliocene has been associated with major coast-
ward contractions in mesic species [30, 31], and rising 
post-glacial sea levels have driven the isolation of coastal 
and island populations of several terrestrial species (e.g., 
[27, 32, 33]).

Freshwater-dependent species are important indicators 
of historical environmental changes given their reliance 
on suitable habitat and often limited capacity for disper-
sal [34]. Within temperate southeast Australia, the often 
co-distributed southern (Nannoperca australis) and Yarra 
(N. obscura) pygmy perches provide an ideal comparative 
study system. Both species possess highly similar morphol-
ogy, reproductive biology, salinity tolerance and habitat 
preferences, and also display similar patterns of metapopu-
lation structure [35–39]. Both species have low dispersal 
capacity with little to nil contemporary connectivity among 
catchments [37, 39]. Both species are relatively old (e.g., 
their lineages diverged around 13 million years ago [40]) 
and show strong population structure, with two evolution-
arily significant units (ESUs) separating coastal and inland 
(Murray-Darling Basin) populations in N. australis [28], 
and two clades each containing two ESUs in N. obscura 
[41]. Given their isolated populations, it is expected that 
their long-term persistence along landscapes depends on 
spatial variation of locally adaptive traits. This hypothesis 
is consistent with studies of N. australis that show that pat-
terns of adaptation in traits related to reproductive fitness 
[42, 43], in levels of adaptive genetic diversity [38] and in 
variance of gene expression [44] are strongly associated 
with hydroclimatic gradients.
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Despite their ecological similarities, the two species 
demonstrate marked differences in conservation sta-
tus, genetic diversity and total distribution range. While 
both species are of conservation concern (N. australis as 
Near Threatened and N. obscura as Endangered) within 
the IUCN Red List [45] and in state conservation legisla-
tion, N. obscura is considered at higher risk due to their 
narrow range and extremely low genetic diversity [39, 46]. 
Substantial anthropogenic modification of riverine habi-
tats throughout the Murray-Darling Basin since European 
colonisation ~ 200 years ago has likely exacerbated threats 
to the survival of both species [45, 47]. These factors are 
implicated in the local extirpation of N. obscura within the 
Murray-Darling Basin in the last 5  years [48], following 
failed reintroductions after a large-scale drought impacted 
the region [45]. The relatively low genetic diversity of N. 
obscura is not thought to be due to any particularly severe 
past bottleneck [46], complicating determining factors 
underlying this disparity. Additionally, it remains unclear 
whether the historical absence of N. obscura in some 
regions where N. australis is found is the result of historical 
local extinctions or a failure to initially colonise the habitat.

Here, we applied a comparative phylogeographic 
framework to explore the relative roles of ecological and 
demographic traits on evolutionary history. We used 
genomic datasets to estimate genetic diversity, phyloge-
netic relationships and demographic history of these two 
freshwater fishes, in conjunction with species distribu-
tion modelling. Then, we statistically evaluated regional 
concordance across co-occurring populations to assess 
whether the species shared demographic responses to 
Pleistocene glacial cycles. We predicted that evolutionary 
patterns, demographic histories and distribution changes 
would be concordant across the two species if ecological 
factors played a relatively strong role in determining species 
responses to past climatic changes, with current differences 
owing to different species responses to recent environ-
mental changes. Contrastingly, discordant histories would 
indicate that genetic diversity and demography played a 
relatively larger role and underpinned their contemporary 
differences in conservation status. Our framework also 
includes differentiation of local-scale (population-level) 
and broad-scale (species-level) responses to assess the role 
of intraspecific patterns in driving lineage responses.

Methods
Sampling, genomic library preparation and ddRAD 
filtering
While both species are distributed across southwest Vic-
toria and the lower Murray-Darling Basin [35], N. aus-
tralis is also found across eastern Victorian drainages, 
northern Tasmania and the highlands of the southern 
Murray-Darling Basin [49]. The final sample contains 

all known genetically distinct populations (including 
recently extirpated populations) across the species’ co-
distributed range (Additional file 1: Table S1). This equals 
to seven populations of N. obscura and nine populations 
of N. australis occurring across all major drainages of the 
region (Fig.  1). An additional 10 and 15 N. obscura and 
N. australis (respectively) from Lake Alexandrina were 
also included for demographic analyses. For phylogenetic 
analyses, five samples of a sister species (Nannoperca 
vittata) were included as outgroup [40]. Specimens 
were collected using electrofishing, dip-, fyke- or seine-
netting. Either the caudal fin or the entire specimen was 
stored at − 80 °C at the South Australian Museum, or in 
99% ethanol at Flinders University.

DNA was extracted from muscle tissue or fin clips 
using a modified salting-out method [50] or a Qiagen 
DNeasy kit (Qiagen Inc., Valencia, CA, USA). Genomic 
DNA quality was checked using a spectrophotometer 
(NanoDrop, Thermo Scientific), 2% agarose gels, and 
a fluorometer (Qubit, Life Technologies). The ddRAD 
(double digest restriction-site associated DNA) genomic 
libraries were prepared in-house at the Molecular Ecol-
ogy Lab of Flinders University following [38, 51], using 
the restriction enzymes Sbf1 and Mse1 and selecting 
fragments 300–800 base pairs in length. Our samples 
contain a combination of previously obtained sequences, 
from prior population genomic work on N. australis [38], 
phylogenomic work on all pygmy perches [40], and pre-
viously sequenced but unpublished samples. We sup-
plemented these samples with additional sequences as 
part of a broader phylogeographic project (e.g., [49]; 
Additional file 1: Table S2). A total of 54 samples across 
seven N. australis (n = 33 samples) and four N. obscura 
(n = 21 samples) populations were previously paired-end 
sequenced on an Illumina HiSeq 2000 at Genome Que-
bec (Montreal, Canada). The remaining 44 samples were 
single-end sequenced on an Illumina HiSeq 2500 at the 
South Australia Health and Medical Research Institute 
(SAHMRI).

Sequences were demultiplexed using the ‘process_
radtags’ module of Stacks 1.29 [52]. For paired-end 
sequences, only the forward read was retained, with all 
trimmed reads filtered and aligned using PyRAD 3.0.6 
[53]. We used two separate alignment approaches: a spe-
cies-wide alignment per species, with loci aligned across 
all populations per species (used for phylogenetic and his-
torical migration analyses), as well as separate alignments 
for each population (used for demographic analyses). For 
species-wide alignments, only five representative samples 
per Lake Alexandrina population (NauALE and NobCHI) 
were used to prevent biasing loci towards these over-rep-
resented populations. Loci were retained if they occurred 
in at least ~ 80% of ingroup samples (22 in N. obscura; 31 
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in N. australis; Additional file 1: Methods). For individual 
population alignments, loci were re-aligned and SNPs 
called separately for each population (excluding those 
with n < 3) using PyRAD (Additional file  1: Methods). 
Only loci present in all individuals were kept to prevent 
missing data from biasing the site-frequency spectrum 
(SFS) in these individual population alignments.

Contemporary genetic diversity
Population-level genetic diversity summaries (allelic rich-
ness and gene diversity) were estimated using the R pack-
age hierfstat [54]. Given uneven sample sizes, rarefaction 
was used (n = 4) to estimate mean values per locus per 
population. Due to the larger sample sizes available for 
Lake Alexandrina populations, genetic diversity param-
eters were also calculated using n = 15 rarefaction and 
loci aligned separately within each population. For these 
populations, we also calculated effective population size 
(Ne) using NeEstimator [55] and a minor allele frequency 
threshold of 0.02. Additionally, nucleotide diversity (π) 
within each population was estimated using dnaSP 6.1 
[56]. Differences in population means of genetic diversity 

between the species were statistically evaluated using 
t-tests (two-tailed t-test or Wilcox test).

Phylogenetic and historical migration analyses
Maximum likelihood (ML) phylogenies of each species 
were estimated using RAxML 8.2.11 [57] with the con-
catenated ddRAD alignments to estimate evolution-
ary relationships. Phylogenies were estimated under 
the GTR-GAMMA model of evolution and 1,000 RELL 
bootstraps for each species. Additionally, we estimated 
gene trees for each RAD locus using IQ-TREE2 [58] to 
account for genome-wide heterogeneity. Gene site con-
cordance factors were estimated by comparing individual 
gene trees to the concatenated tree, and site concordance 
factors were calculated using 100 random quartets and 
the full species-wide concatenated alignments [59].

To better account for incomplete lineage sorting, we 
also estimated phylogenetic trees using the SNP-based 
multispecies coalescent approach SVDQuartets [60]. All 
unlinked SNPs from the species-wide alignments were 
used, with the most suitable substitution model first esti-
mated using the automodel function of PAUP* 4 [61]. 

Fig. 1  Contemporary distribution and sampling map for N. australis and N. obscura. Nannoperca australis sampling sites are indicated in red, and 
N. obscura sites in blue. The distribution of N. australis is indicated with light green shading and dashed borders, with the distribution of N. obscura 
(also the region of co-occurrence) in darker green. The solid black line indicates the boundary of major drainage basins, and the dotted line 
demonstrates the approximate shoreline during glacial maxima. Bottom left inset depicts study region and major drainage basins in Australia. Top 
right inset depicts the full extent of species distributions
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Trees were evaluated based on all possible quartets and 
100 bootstrap replicates.

As historical migration may impact the topology of a 
phylogenetic tree, we also used TreeMix [62] to infer his-
torical population connectivity. We iteratively increased 
the number of migrations from 0 to n for each species 
(nine in N. australis; seven in N. obscura) and evalu-
ated the fit of each tree based on the standard error of 
the covariance matrix. We further assessed model fit by 
calculating the percentage of variance explained (https://​
github.​com/​wlz07​26/​Popul​ation_​Genom​ics_​Scrip​ts/​
tree/​master/​03.​treem​ix). The best supported number of 
migrations was determined by the asymptote of the like-
lihood, where additional migrations did not substantially 
increase model likelihood.

Comparative demographic inference
Demographic histories for all populations were estimated 
using stairway plots and one-dimensional SFS calculated 
for each independent population alignment. Stairway 
plots were estimated assuming a mutation rate of 10–8 
mutations per site per generation, and a generation time 
of one year for both species [46, 63]. Although both spe-
cies reproduce annually, most individuals do not live 
beyond one to two years in the wild [63]. We then evalu-
ated concordance of co-distributed populations under 
two coalescent frameworks; the populations of Gnarkeet 
Creek (NauGCH and NobGCL), Merri River (NauMRG 
and NobMRG) and Lake Alexandrina (NauALE and Nob-
CHI) were selected based on their co-occurrence and to 
represent the geographic range of overlap in species dis-
tributions (Fig. 1).

We used FastSimCoal2 [64] to simulate model-based 
demographic histories over the last 30 Kyr. Simulations 
were conducted for each population under five different 
demographic scenarios (Additional file 1: Fig. S1). Param-
eters were estimated using 40 optimisation cycles with 
500,000 simulations per scenario, with model fit esti-
mated using Akaike Information Criterion and Akaike 
weights (Additional file 1: Methods and Table S3). Confi-
dence intervals for the parameters of the best supported 
model per population were estimated by simulating 100 
SFS and re-estimating parameters using 500,000 itera-
tions per SFS.

Additionally, we ran co-demographic hierarchical 
approximate Bayesian computation simulations using 
the aggregate site frequency spectrum (aSFS) and Multi-
DICE [65] to assess congruence. Since the aSFS requires 
equal sample sizes across the combined taxa, individual 
SFS for all populations were down-projected to the small-
est population sample size (n = 8 haploid samples) using 
easySFS (github: isaacovercast/easySFS.git). A model of 
exponential growth followed by exponential decline was 

applied to all populations using broad uniform priors 
(Additional file 1: Methods and Fig. S2), based on results 
from FastSimCoal2. We first tested the proportion of co-
contracting taxa (ξ), and then fixed this hyperparameter 
to better explore the remaining parameters. A “leave-
one-out” approach using 50 pseudo-observed datasets 
was used to generate a confusion matrix, with the most 
likely ξ determined using the top 1,500 simulations and 
Bayes Factors. Parameters were estimated using 1.5 mil-
lion simulations with posterior distributions estimated 
using the top 100 simulations and the abc R package [66]. 
We further tested for concordance across populations by 
comparing the posterior distributions for Ne and bottle-
neck strength (ε).

Contemporary and paleoclimatic environmental modelling
Species distribution models (SDMs) were estimated 
using an ensemble modelling approach within biomod2 
[67]. We estimated SDMs for both species across eleven 
time slices ranging from contemporary conditions to the 
Pliocene using the PaleoClim database [68]. Occurrence 
records for both species were obtained from a combina-
tion of sampled sites within this and past studies [28, 39, 
40], and from the Atlas of Living Australia (http://​www.​
ala.​org.​au/). We filtered the occurrence data to reduce 
the impact of spatial autocorrelation, resulting in final 
datasets of 1,021 and 163 observations for N. australis 
and N. obscura, respectively (Additional file  1: Methods 
and Fig. S3).

We selected eight non-correlated environmental var-
iables for estimating species distributions (Additional 
file 1: Table S4). These were annual mean temperature 
(Bio1), mean diurnal range (Bio2), isothermality (Bio3), 
temperature seasonality (Bio6), mean temperature of 
the wettest quarter (Bio8), mean temperature of the 
driest quarter (Bio9), annual precipitation (Bio12) and 
precipitation seasonality (Bio15). For the three oldest 
time periods, Bio2, Bio3 and Bio6 were unavailable and 
thus not included within the projections. We gener-
ated three separate sets of pseudoabsences (n = 500) 
per species randomly from background cells > 50  km 
away from occurrences to reduce the likelihood of 
generating false absences within habitable areas [69]. 
Each dataset was replicated three times, with 80% of 
sites independently and randomly subset to train the 
model with presences and psuedoabsences equally 
weighted (prevalence = 0.5). SDMs were estimated for 
each dataset using the MaxEnt model, Random For-
est (RF) and a generalised linear model (GLM; n = 27 
models total), and an ensemble model generated per 
time period using the weighted mean of all models. 
These algorithms are among the most widely used for 
presence-only SDM analyses and encapsulate diverse 

https://github.com/wlz0726/Population_Genomics_Scripts/tree/master/03.treemix
https://github.com/wlz0726/Population_Genomics_Scripts/tree/master/03.treemix
https://github.com/wlz0726/Population_Genomics_Scripts/tree/master/03.treemix
http://www.ala.org.au/
http://www.ala.org.au/
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statistical approaches, with the weighted mean the 
most commonly used ensemble generation approach 
[70]. All models were evaluated using both the rela-
tive operating characteristic and the true skill statis-
tic. We quantitatively assessed the relative stability of 
species distributions over time by estimating the mean 
and standard deviation of suitability over time for each 
species. Differences in distributional ranges between 
species across time were estimated by converting 
SDMs to binary presence-absence maps (Additional 
file 1: Methods).

Results
Bioinformatics
We obtained 21,051 ddRAD loci containing 53,334 
filtered SNPs for N. obscura and 19,428 ddRAD loci 
containing 69,264 filtered SNPs for N. australis, with 
low missing data in both alignments (Additional file 1: 
Fig. S4). Genetic diversity differed remarkably between 
the two species, with allelic richness, gene diversity, 
nucleotide diversity and number of SNPs per popula-
tion alignment being significantly higher (p ≤ 0.01) in 
N. australis (Table 1).

Phylogenetic analysis
Phylogenetic analysis of both datasets returned a highly 
supported phylogenetic tree for each species. Species 
trees estimated using SVDQuartets were concordant 
with the maximum likelihood trees, with strong support 
all for major nodes (> 70%; Additional file 1: Fig. S5). Site 
concordance factors broadly supported these patterns, 
although gene concordance factors were low across both 
trees (Additional file  1: Figs. S6–S8)—this is not unex-
pected when gene trees are estimated from short and 
relatively uninformative individual loci [59]. For southern 
pygmy perch, the topology of this phylogenetic tree mir-
rored the geographic range of the samples, with a clear 
division between the Murray-Darling Basin ESU and the 
coastal ESU within the tree (Fig. 2A). Within the coastal 
clade, populations diverged in a longitudinal manner, 
with eastern populations as the most recently diverged. 
In contrast, the phylogenetic tree for N. obscura did not 
demonstrate the same precise patterns, with popula-
tions not diverging in an exactly longitudinal manner. 
However, this was driven by a single outlier population 
(NobMEC).

TreeMix inferred a greater number of migration 
events within N. australis (four) than N. obscura (one 
event) (Fig.  2B; Additional file  1: Fig. S9). Within 
N. australis, migrations were inferred both across 

Table 1  Population genetic summaries of N. australis and N. obscura 

N = total number of samples per population. AR = rarefied allelic richness. Hs = rarefied gene diversity. Ne = effective population size, with 95% confidence intervals 
estimated by jack-knifing in square brackets. π = nucleotide diversity. Species-wide alignment values are reported as means of means across all loci ± standard 
deviation under rarefaction (n = 4). For Lake Alexandrina populations, gene diversities were also calculated for individual population alignments and rarefaction of 
n = 15 samples (reported second). Populations means across species were compared using either an unpaired two-samples t-test (T) or Wilcoxon rank test (W)

Alignment Species-wide Individual populations

Species Pop N AR Hs Ne Π SNPs

N. australis NauANG 5 1.138 (± 0.339) 0.029 (± 0.106) 1.59 × 10–4 2,446

NauALE 5
20

1.354 (± 0.480) 0.062 (± 0.165)
0.179 (± 0.142)

71.3 [35.9–520.9] 1.23 × 10–3 1198

NauGRG​ 5 1.123 (± 0.313) 0.035 (± 0.108) 8.84 × 10–5 5282

NauMRG 5 1.116 (± 0.312) 0.037 (± 0.119) 1.62 × 10–4 3835

NauGRF 5 1.092 (± 0.285) 0.027 (± 0.106) 7.84 × 10–5 2969

NauBAR 4 1.240 (± 0.428) 0.061 (± 0.145) 2.02 × 10–4 5084

NauMG 4 1.216 (± 0.413) 0.056 (± 0.138) 1.57 × 10–4 5357

NauGCH 4 1.181 (± 0.387) 0.047 (± 0.136) 1.88 × 10–4 4272

Total 56 1.241 0.0439 2.83 × 10–4 17,389

N. obscura NobCHI 5
15

1.151 (± 0.347) 0.038 (± 0.117)
0.136 (± 0.108)

14.9 [4.6–652.2] 1.69 × 10–4 721

NobMEC 5 1.030 (± 0.166 0.011 (± 0.069) 2.11 × 10–5 1002

NobMCL 4 1.100 (± 0.290) 0.026 (± 0.094) 4.18 × 10–5 1633

NobMRG 4 1.058 (± 0.234) 0.020 (± 0.093) 3.23 × 10–5 1454

NobGCL 5 1.070 (± 0.250) 0.019 (± 0.088) 2.49 × 10–5 1350

Total 33 1.168 0.0237 5.78 × 10–5 15,715

T-test T = 2.38 (p < 0.04) T = 2.93 (p = 0.01) W = 56 (p = 0.01) T = 4.63 (p < 0.01)
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populations of the coastal lineage as well as into the 
Murray-Darling Basin. The strongest migrations were 
between eastern coastal populations, and from the 
ancestor of the westernmost coastal population into the 
ancestor of the Murray-Darling Basin lineages. For N. 
obscura, the single migration inferred suggested his-
torical gene flow from the easternmost population to a 
more central population. Trees and migration edges for 
both species were well supported by covariance matri-
ces, with low pairwise residuals (Additional file 1: Fig. 
S10) and standard errors of < 1 for any given population 
for both species (Additional file 1: Fig. S11).

Comparative demography
Stairway plots demonstrated broadly similar demo-
graphic histories across the two species, with most 
populations relatively stable or declining slightly over 
the last 1 Mya (Fig.  3A). Populations within both spe-
cies demonstrated variable demographic histories, 
although populations of N. australis appeared generally 
more stable over time. Both Lake Alexandrina popula-
tions (NobCHI and NauALE) showed significant his-
torical increases in Ne > 200 Kya, and long-term stable 
population sizes following this expansion.

Fig. 2  Phylogenetic histories and migration patterns in N. australis and N. obscura. A Maximum likelihood phylogenetic trees based on ddRAD loci. 
Populations were reciprocally monophyletic and so were collapsed to the population level for simplicity. Both trees were rooted using N. vittata as 
the outgroup, which was dropped for visualisation. Node values show bootstrap support. Branch colours indicate the drainage basin of origin for 
each population or clade. B Best supported ancestral migration patterns inferred using TreeMix based on SNP datasets. All displayed migrations 
were statistically significant (p < 0.05). Arrows denote the direction of inferred migrations, with the colour indicating their relative weights
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Fig. 3  Demographic histories of N. australis and N. obscura populations. A Stairway plot reconstructions of demographic history. Inset stars 
indicate co-occurring populations which were further explored within a codemographic framework. Populations are arranged from westernmost 
to easternmost within each species. B Most likely individual demographic histories for co-occurring N. australis and N. obscura populations over 
the Pleistocene, simulated using FastSimCoal2. Thick dark lines indicate mean Ne over time, calculated based on the means of current Ne, rates 
of change and timing of switching rates (see Supplementary Material). Shaded areas indicate 95% confidence intervals based on the 97.5% and 
2.5% probability estimates for the same parameters. C Bayes Factor matrix of the proportion of populations showing synchronised bottlenecks (ξ) 
within a co-demographic model using Multi-DICE. Each cell compares the model in the column with the model in the row, with brighter colours 
indicating greater support for the column. D Posterior distribution of mean bottleneck strength (ε) across all six populations. E Posterior distribution 
of dispersion index of bottleneck strength [Var(ε)/Mean(ε)] across all six populations. F Posterior distribution of the timing of the bottleneck event, 
in generations/years
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Most populations chosen for comparative analy-
sis demonstrated fluctuating demographic histories 
(Fig. 3B), with a period of pre-LGM (Last Glacial Maxi-
mum) growth followed by a post-LGM decline (Addi-
tional file  1: Table  S5). Only the eastern N. obscura 
population (NobGCL) contrasted this pattern, with a 
model of low but constant population size more sup-
ported than other demographic histories (Model 3). 
Strong post-glacial declines were present in Lake Alexan-
drina populations of both species, with weaker declines 
in the more eastern population pairs.

A confusion matrix suggested that the co-demographic 
model was more likely to infer fully synchronous (ξ = 1) 
or fully asynchronous (ξ = 0.167) co-contractions over 
intermediate proportions of taxa (Additional file  1: Fig. 
S12). Despite this, Bayes Factors supported a fully syn-
chronous model over more asynchronous models, and 
so ξ was fixed to 1 to better explore other parameters 
(Fig.  3C). Contemporary population sizes were inferred 
to be relatively small across all populations with relatively 
weak post-glacial bottleneck strength (Fig. 3D; Additional 
file 1: Table S6). These bottlenecks were similar in mag-
nitude across populations, as indicated by low values of 
the dispersion index (Fig. 3E). However, Multi-DICE did 
not recover the same timing of the bottleneck, possibly 
due to relatively low resolution within the aSFS (Fig. 3F). 
Overall, these results support a widespread and concord-
ant bottleneck across the six co-distributed populations.

Species distribution modelling
Comparing the SDMs of the two species indicated much 
greater maximum distribution and variation in distri-
butional range in N. australis than in N. obscura. Nann-
operca obscura demonstrated likely long-term isolation 
to a relatively small region of southwest Victoria, whilst 
N. australis demonstrated a potentially significant range 
expansion event throughout the early Pleistocene with 
a more recent contraction in the Holocene (Additional 
file  1: Fig. S13). Despite these differences, both species 
were suggested to have maintained a putative shared cli-
matic refugium in southwest Victoria, highlighted by a 
region of high mean suitability in both species (Fig. 4B).

Comparisons across the different methods indicated 
that RandomForest was more conservative in estimat-
ing area (Fig.  4A). While there was significant variation 
in estimated area across the different methods, ensemble 
models approximately captured the mean of all mod-
els. Historical projections suggested that N. australis 
had a significantly larger distribution throughout the 
Pleistocene compared to the relatively stable range of N. 
obscura, with the former projected to have spanned a 
range approximately twice as large as the latter during the 
mid-Pleistocene (Fig. 4A). These patterns were similarly 

reflected within the standard deviations across timeslices 
per species, with N. australis showing much higher varia-
tion over a larger area (Fig. 4C).

Discussion
Our results demonstrate how spatial variation in demo-
graphic history between species may drive discordant 
responses to past climatic changes in parts of their range, 
even when local-scale impacts are concordant and spe-
cies’ ecological traits are similar. Specifically, we show 
that within a projected shared climatic refugium for two 
co-distributed and ecologically similar freshwater fishes, 
demographic histories were largely concordant. How-
ever, towards the edges of this refugium demographic 
histories decreased in concordance, suggesting that range 
edge populations of N. obscura were more limited than 
N. australis in their capacity for expansion during more 
favourable climatic conditions. Together, our findings 
determine the importance of intraspecific, population-
level dynamics in driving species-wide adaptation and 
resilience to climate change.

The temperate zone of southeast Australia has under-
gone significant environmental change since the Pli-
ocene, owing to a combination of continent-wide 
aridification [24], eustatic changes [28] and major hydro-
logical rearrangements [71]. These various aspects likely 
had significant impacts on the persistence and connec-
tivity of freshwater lineages across the region [49]. This 
was supported by the high level of phylogenetic struc-
ture within N. australis, and the inferred migration path-
ways that correspond well to those previously suggested 
through ancient hydrological conduits [71]. Although 
phylogenetic patterns in N. obscura did not directly 
match the longitudinal gradient of populations, earlier 
phylogenetic analyses using allozymes and mitochon-
drial DNA showed a similar pattern [41]. This disjunction 
was attributed to potential historical connections from 
Mount Emu Creek into more western populations [39], 
although short branch lengths and low genetic diversity 
may also indicate incomplete lineage sorting as a factor 
[72]. For both species, we denote two major clades: one of 
Murray-Darling Basin populations and another of coastal 
populations in N. australis, as suggested elsewhere [49], 
and two clades each containing two previously identified 
ESUs in N. obscura [41].

Within the species distribution models, a region of 
southwest Victoria was suggested as a potential climatic 
refugium for both species throughout the Plio-Pleisto-
cene. This region was consistently suggested as suitable 
habitat for both species across all time slices. Although 
glacial maxima were associated with cold and arid con-
ditions across Australia, coastal woodland habitats were 
likely buffered against intense aridification by oceanic 
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circulation and relatively higher humidity and rainfall 
[73]. Other phylogeographical studies demonstrating 
limited impact of glacial maxima on connectivity sup-
ports the identity of this climatic refugium [27, 73]. 
Co-occurring populations within this shared refugium 
demonstrated highly congruent demographic histories 
at both more ancient (> 1 Myr) and more recent (since 
the LGM) temporal scales. This concordance is expected 
when ecological traits, habitat preferences and environ-
mental stability are shared across the species in question 
[21]. Although individual populations within each spe-
cies demonstrated spatially variable demographic histo-
ries, comparisons across the two species showed similar 
patterns of Ne over time for most directly co-occurring 
populations.

Both pygmy perch species demonstrated synchronous 
expansions during the LGM with post-glacial contrac-
tions across central populations. Despite intense inland 
aridification during glacial maxima, run-off in many 
southeast Australian rivers were likely much greater 

during the LGM [74]. These increased river flows have 
been attributed to seasonal snow melt of periglacial 
regions in the highlands and reduced vegetation cover, 
creating large rivers with enhanced run-off [31, 74]. 
Colder conditions and strong flows may have facilitated 
the observed concordant expansion in populations at 
this time, with the steep decline in flows during the early 
Holocene (14–7 Kya) potentially contributing to their 
more recent contraction [75]. However, concordance was 
reduced for pairwise populations that occurred closer 
to the edge of this shared refugium, suggesting the spe-
cies had discordant responses at the fringe of the range. 
Similarly, phylogenetic patterns at the species-wide level 
varied between the two species, with clearer geographic 
sorting and historical migration across N. australis line-
ages compared to N. obscura.

Spatial variation in demographic history, and by exten-
sion concordance across taxa, may result from several 
different mechanisms [22, 76]. Particularly for narrowly 
distributed species, edge-of-range effects on populations 

Fig. 4  Comparisons of summaries of distributional changes over eleven time periods spanning the Plio-Pleistocene. A Distribution extent per 
species. Individual models are indicated by points, with SDM method indicated by colour. The 95% confidence interval across all individual models 
is shown by the pale blue ribbon. The ensemble model is represented by a solid black line. B Mean cell suitability across all time periods. C Variation 
(standard deviation) in cell suitability across all time periods
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close to the ecological tolerance threshold of the spe-
cies may result in highly divergent patterns of demo-
graphic history and genetic diversity compared to more 
central populations [12, 76]. By extension, the ecological 
range of species may be a strong factor driving discord-
ance when particular locations are at the periphery of the 
distribution of one species, but not another. Given the 
broad similarity in ecological traits between the two spe-
cies and their co-occurring nature [77], it is unlikely that 
this discordance in species-wide responses to past cli-
matic changes is a result of different ecologies. However, 
some variation in microhabitat preference seems to exist 
between species, with N. obscura limited to larger, low-
land channels and floodplains whereas N. australis is also 
found in streams and dense swamps [77]. This suggests 
greater habitat specialisation in N. obscura, which might 
drive lower SGV (or result from it) and impede range 
expansions. Thus, we cannot completely rule out some 
role of ecology and its interactions with genetic diver-
sity in driving discordant responses. The lower genetic 
diversity in N. obscura could not be directly attributed to 
notable and widespread genetic bottlenecks, suggesting 
instead that the species suffered from a consistent pat-
tern of being genetically depauperate. Combined, these 
factors suggest that long-term SGV may be a key factor 
driving the temporally and spatially widespread discord-
ance in response to Pleistocene climate changes.

Adaptive responses, particularly in scenarios of range 
expansion, are often driven by soft sweeps of SGV [8]. 
While many studies focus on rapid adaptation from 
SGV in terms of invasive species colonising new habi-
tats [78], similar dynamics can be expected to play a role 
in range expansions of native taxa [79, 80]. In regard to 
range shifts across the Pleistocene, higher SGV may have 
predisposed N. australis to capitalise on the colder tem-
peratures and stronger rivers of glacial periods and sub-
sequently expand. Similarly, historical connectivity across 
now-isolated river drainages [28] likely facilitated inter-
population gene flow, which may have further bolstered 
SGV and adaptive potential [76, 80]. This gene flow in 
N. australis may have also facilitated range expansion if 
locally adaptive alleles were transferred into edge popula-
tions [78]. Contrastingly, a lack of long-term SGV within 
N. obscura may have prevented them from expanding 
under these conditions, leading to the species-wide dis-
cordance. The spatial variation in the degree of concord-
ance, with discordance occurring at the edge of the N. 
obscura pre-glacial refugium, supports this conclusion.

Discordant species-wide responses to past climatic 
change may play an important role in contemporary 
genetic diversity and, by extension, current conservation 
efforts. For example, low genetic diversity resulting from 

historical bottlenecks can drive contemporary inbreed-
ing depression [81]. Additionally, the parallels between 
historical range expansion scenarios and current reintro-
ductions to conserve species demonstrates how historical 
processes may inform current practices [82]. For exam-
ple, reduced adaptive capacity in N. obscura may have 
contributed to their local extirpation and to the failure of 
reintroductions of captive-born offspring at range mar-
gins, as documented for the lower Murray-Darling Basin 
[45]. This contrasts to the successful reintroduction of N. 
australis that simultaneously took place in that site using 
the same captive-breeding design [45, 46].

Understanding how, and which, species may be able 
to adapt under contemporary climate change remains a 
critical aspect of evolutionary biology [2]. Typically, this 
framework has focused on understanding how ecologi-
cal traits may underpin individual species responses to 
climatic change [6]. However, demographic parameters 
are also critical components for species susceptibility to 
contemporary climate change [5]. Here, we demonstrate 
that intraspecific SGV may also be a critical component 
of species responses to climatic changes, particularly in 
range-edge populations. This corroborates studies indi-
cating that adaptive potential is largely driven by SGV 
prior to the origination of major selective pressure [9] 
and suggests that considering broad ecology alone may 
not be enough to predict species’ ability to respond. Thus, 
understanding how the demographic history of individ-
ual populations may predispose, or hinder, species adap-
tive potential is an important component of conservation 
management of threatened species. For species with low 
SGV, proactive measures such as assisted gene flow and 
maintenance of effective population size may assist in 
their long-term conservation [83].

Conclusion
Differences in long-term standing genetic variation drove 
discordance in the response of closely related and eco-
logically similar freshwater fishes to historical climate 
change, by potentially facilitating range expansion of 
one species but not the other. However, in the centre of 
a putatively shared habitat refugium, demographic histo-
ries were concordant, suggesting that spatial variation in 
the degree of concordance is linked to the interaction of 
standing genetic variation and distribution edge effects. 
Together, this demonstrates the importance of the 
maintenance of standing genetic variation for adaptive 
potential in response to climatic changes and the role of 
non-ecological traits in driving patterns of concordance 
or discordance.
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