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Abstract: Tungsten disulphide (WS2) is a two-dimensional transition-metal dichalcogenide material
that can be used to improve the sensitivity of a variety of sensing applications. This study investigated
the effect of WS2 coating on tapered region microfiber (MF) for relative humidity (RH) sensing
applications. The flame brushing technique was used to taper the standard single-mode fiber (SMF)
into three different waist diameter sizes of MF 2, 5, and 10 µm, respectively. The MFs were then
coated with WS2 via a facile deposition method called the drop-casting technique. Since the MF had
a strong evanescent field that allowed fast near-field interaction between the guided light and the
environment, depositing WS2 onto the tapered region produced high humidity sensor sensitivity.
The experiments were repeated three times to measure the average transmitted power, presenting
repeatability and sensing stability. Each MF sample size was tested with varying humidity levels.
Furthermore, the coated and non-coated MF performances were compared in the RH range of 45–90%
RH at room temperature. It was found that the WS2 coating on 2 µm MF had a high sensitivity of
0.0861 dB/% RH with linearity over 99%. Thus, MF coated with WS2 encourages enhancement in the
evanescent field effect in optical fiber humidity sensor applications.

Keywords: tapered microfiber; humidity sensor; transition-metal dichalcogenide; tungsten disul-
phide (WS2)

1. Introduction

Silica fiber has received significant attention due to various applications in laser
technology [1–3], sensor technology [4,5], plasmonic devices [6,7], telecommunications
devices [8], and other applications. Moreover, due to recent technological development,
silica fiber has experienced changes in structure, size, and composition, increasing its
performance [9–11]. Hence, silica fiber has been used in critical areas for sensing purposes,
such as the biomedical and chemical industries [12–14]. The size of silica fiber is the center
of the discussion, as it can be manipulated and reduced to the micro-scale. This new
development may increase the potential of silica fiber to be used widely and for numerous
applications [15]. One techniques known as flame brushing can taper and reduce the silica
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fiber size down to the micro-region by heating and pulling using sufficient temperature
flame [16,17]. The micro-silica fiber, better known as MF or tapered fiber, has a unique
character due to its diameter and high index contrast between the core of the fiber and
the air [18]. MF is the best choice in optical sensing applications based on the principle
of the evanescent field, where strong interactions occur between the MF medium and its
surroundings. This principle has been a significant advantage of MF, potentially being
used in a limited area with high performances.

The MF structures used for relative humidity sensors can be classified into resonator
and non-resonator types. A resonator is an advanced structure based on a closed-loop
configuration that uses a large evanescent field created from self-coupling light and over-
lapping condition. This configuration enables the evanescent field to interact with the
surrounding environment of the sensing region. As a result, the collected transmitted
light is interpreted as the changed output power for sensing purposes. There are a few
resonator-based structures, including the MF loop resonator (MLR) [19], the MF coil res-
onator (MCR) [20], the MF knot resonator (MKR) [21], and the whispering gallery mode
resonator (WGMR) [22]. The working principle of the resonator-based humidity sensor is
that the resonance wavelength is changed with the variation of humidity concentration.
Besides sensitivity and linearity parameters, other sensing characteristics of resonators
have been studied for the humidity sensors: intensity variation, wavelength shift, and
Q-factor.

Unlike the resonator, the configuration of a non-resonator MF’s structure is straight-
forward and has been extensively used [23,24]. Besides, it has various forms, such as
functional material coated sensors, Mach–Zehnder interferometer (MZI)-based sensors,
micro-probes/nano-probes, grating-based sensors, and coupling-based sensors. For func-
tional material coated sensors, the tapered region surface is coated with high refractive
index material to create the functionality in humidity sensing to sustain the ability of
waveguiding [25].

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have recently piqued
the interest of researchers due to their unique electrical, optical, chemical, and thermal
properties [26–28]. Among TMDs, tungsten disulphide (WS2) has shown good potential for
humidity sensing [29]. Numerous studies on humidity sensors that use 2D nanostructure-
based materials coating as sensitivity catalysts have been reported recently [30–33].

In this work, the effects of WS2 coating on various waist diameters of MF using a
facile and cost-effective method known as the drop-casting technique were explored for
relative humidity sensing applications. Before that, using the flame brushing technique,
we managed to form three sizes of tapered fiber region, i.e., 2, 5, and 10 µm. These MFs
were then coated with WS2 and tested in humidity ranging from 45% to 90% for sensing
purposes. The characterization of coated MFs was done by using a tunable laser source
and optical power meter. The performances of coated MFs for the different tapered region
in humidity sensing were evaluated and compared.

2. Fabrication and Preparation of Tapered Microfiber Sensor

Figure 1 shows the schematic of the fabrication technique of the MF by means of
a flame brushing method. The MF was fabricated from standard 125 µm SMF-28 using
Programmable Logic Controller (PLC) stepper motor stages to pull the fiber while the
flame from the torch moved to heat the stripped fiber. First, the outer plastic of the fiber
was removed and the buffer was stripped, as shown in Figure 2. The fiber was then finely
placed on the holder for the tapering process. The stripped area was heated gradually by
manipulating the flame temperature, and the fiber was pulled from both sides to complete
the process.
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The MFs were then placed on glass slides and measured under a microscope to en-
sure the desired tapered region diameter depicted in Figure 3. After that, each MF sample 
was placed on a stage for the deposition process. The coating material, WS2 prepared in 
solution, was purchased from the Graphene Supermarket, which is practical for the SMF 
coating process. The MFs were coated at the tapered region with 10 µL of WS2 using the 
drop-casting technique and left in ambient environment for two hours to obtain a uniform 
layer formation on the tapered MF surface. The coated MFs were tested on a few humidity 
levels for sensing purposes. 

The size of the MF was determined by the time consumed by the heating process 
during the tapering procedure. The duration of tapering time is proportional to the size 
of the MF. Figure 4 demonstrates the characterization of MF in two parameters: waist di-
ameter Dw and neck-to-neck length Lw. The Dw is determined as the size of produced MF, 
which were 2, 5, and 10 µm with the waist-length range of about 30 to 40 mm. 
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Figure 2. SMF before and after tapering process.

The MFs were then placed on glass slides and measured under a microscope to ensure
the desired tapered region diameter depicted in Figure 3. After that, each MF sample
was placed on a stage for the deposition process. The coating material, WS2 prepared in
solution, was purchased from the Graphene Supermarket, which is practical for the SMF
coating process. The MFs were coated at the tapered region with 10 µL of WS2 using the
drop-casting technique and left in ambient environment for two hours to obtain a uniform
layer formation on the tapered MF surface. The coated MFs were tested on a few humidity
levels for sensing purposes.

The size of the MF was determined by the time consumed by the heating process
during the tapering procedure. The duration of tapering time is proportional to the size
of the MF. Figure 4 demonstrates the characterization of MF in two parameters: waist
diameter Dw and neck-to-neck length Lw. The Dw is determined as the size of produced
MF, which were 2, 5, and 10 µm with the waist-length range of about 30 to 40 mm.
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3. Experimental Setup

The performances of MF before and after WS2 coatings were compared. Figure 5
shows the experimental setup to investigate the performance of coated MF towards a
different level of relative humidity percentage. Three differently coated MFs, i.e., 2, 5,
and 10 µm, were placed inside the sealed chamber, whose ends were connected to the
tunable laser source (TLS) and to the optical power meter (OPM). The chamber was also
connected to a commercial hygrometer sensor (RS 1365) to monitor relative humidity levels.
The experiment was performed at ambient temperature (25 ◦C) under an atmospheric
pressure of 1.0 atm. The relative humidity was varied from 45% to 90% RH by using
sodium hydroxide (NaOH) mixed with a drop of water inside the chamber.

The TLS (ANDO AQ4321D) at 1550 nm was used as an input, and the OPM (THOR-
LABS S145C) was used to observe the output power simultaneously. Each coated MF of
different sizes was repeatedly tested for three cycles to reduce the random errors during
the experiment.
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4. Sensing Mechanism

Despite tapered MF-based sensors having a simple form and being low cost, the
detecting mechanism renders the RH sensor highly subject to light transmitted changes
and fiber loss. The tapered MF sensing mechanism has relied on the variation of light
intensity and transmission scheme, which can be used to evaluate the performance of the
RH sensor. This sensor operates strongly dependently on MF that guides light through the
tapered region (sensing area) and the interaction of evanescent field outside the fiber. It
can be found that due to the strong evanescent field, the MF is extremely sensitive to the
change in the surrounding environment, including temperature and RH.

For comparison, the actual RH level reading surrounding the tapered fiber inside
the chamber was also measured using a hygrometer sensor as a reference. The changes
in the surrounding environment caused by the presence of water vapor will result in the
variation of the output transmitted power of the tapered MF, making it suitable to be used
as a moisture sensor. The output transmitted power is identified by the modulation of
light intensity according to the interaction between evanescent field absorption and the
propagated light signal.

However, the tapered MF RH sensor found some difficulties in measuring the accurate
value of sensing parameters since it is influenced by the fluctuations from the surrounding
environment. Therefore, integrating the tapered MF with a coating material will improve
the sensitivity of the RH sensor.

WS2 is among the TMDs that offers thermodynamic stability at room temperature,
and that is capable of both absorption and desorption of water vapor. WS2 was deposited
on the tapered MF as sensing material allowing for enhanced sensitivity of the RH sensor.
When the sensor was exposed to water vapor, the tapered MF significantly interacted with
the WS2, causing a change in fiber optical transmission at 1550 nm wavelength. As a result,
even a tapered MF with a small waist diameter will achieve a high sensitivity RH sensor
by enhancing evanescent field interaction between guided light and WS2 coating.

5. Results and Discussion
5.1. Characterization of Tapered Microfiber

The TLS was used to characterize the WS2-coated MF with a wavelength ranging from
1520 to 1620 nm. This experiment used the range of wavelengths from 1550 to 1550.1 nm
with an interval of 0.001 nm. The OPM was used to collect the output power from the
other end of the fiber. Figure 6 shows the transmission spectra produced by tapered MF
with three different waist diameters (Dw) and coated with WS2. The insertion loss from the
2 µm coated MF was −29.20 dBm, for the 5 µm MF it was −18.1 dBm, and for the 10 µm
MF it was −18.9 dBm. From the results, 5 and 10 µm coating MFs had similar insertion
loss values, whereas the insertion loss of the 2 µm MF was slightly lower. The size of
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non-coated MF affected the value of insertion loss. The coating diameter remained the
same for all MFs: <10 µm.
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The transmission spectra for the non-coated MF of three different sizes are depicted
in Figure 6a. The insertion loss from the 2 µm non-coated MF was −17.00 dBm; it was
−18.1 dBm for the 5 µm MF; and it was −1.985 dBm for the 10 µm MF. For 2 µm and
5 µm non-coated MFs, the insertion loss values were lower than 10 µm. The MF guides
light as a single-mode waveguide, with the evanescent field guided outside the MF. This
evanescent field is affected not only by the operating wavelength and the surrounding
medium, but also by the diameter of the fiber [34]. Therefore, the size of the MF is still the
main contributing factor for the insertion loss value, even for a non-coated MF. The waist
diameter size of the MF sensor corresponds to the output transmitted power value. A small
diameter of MF decreases the refractive index of the fiber and allows the light travelling
through it to be refracted outside. Consequently, the insertion loss of output power will
increase as the MF diameter decreases. For sensing applications, the smallest diameter is
crucial to allow more light to be refracted over microfiber boundaries and become a sensing
mechanism. The more light refracts, the more sensitive it becomes.

5.2. Structural, Morphological, and Compositional Analysis of WS2

The morphological characteristics of the MF were analyzed using field emission
scanning electron microscopy (FESEM). Figure 7a represents the surface morphology of
WS2 coated (thin layer) on top of the MF waist region. The enlarged image of the WS2
can be seen in Figure 7b, which adhered to the MF surface with a diameter range of 400
to 600 nm. The elemental compositional analysis and elemental distribution mapping
were performed using energy-dispersive X-ray spectroscopy (EDX). Figure 7c represents
EDX analysis of the 10 µm WS2-coated MF. The inset of Figure 7c tabulates the percentual
weights and atomic percentages of the elemental compositions of materials. The presence of
tungsten (W) and sulfur (S) confirms the successful deposition of sensitive sensing material
(WS2). Silicon (Si), carbon (C) and oxygen (O) peaks arose from MF. The normalized S/W
ratio was calculated to be 1.667, which is evidence of non-stoichiometric WS2 presence.
The deficiency of S atoms is attributed to the presence of O atoms from the environmental
during the deposition process performed at room temperature. Figure 7f–i represents the
elemental distribution mapping of Si, W, O and S, respectively.
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MF coated with WS2 (e). Silicon, (f) tungsten (W) (g); oxygen (O) (h), and sulfur (i) distribution mapping.

The structural properties of coated MF were obtained using Raman scattering analysis
within the spectrum range from 330 to 450 cm−1. Figure 7d divulges the bonding structure
of the thin WS2 layer. Two dominant peaks are shown within the spectrum range. Both
originated from an in-plane optical mode known as phonon mode (E1

2g) and from an
out-plane vibration mode caused by S atoms, confirming the successful growth of WS2
on the MF surface. The lattice vibration is caused by the weak van der Waals interlayer
forces. Both E1

2g and A1
g modes are apparent at 349 and 418.42 cm−1, respectively. The
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separation (∆) between two peaks (E1
2g and A1

g) was calculated as 69.42 cm−1, which
validates the presence of WS2 [35].

5.3. The Performance of the RH Sensor

Sensitivity and linearity values for three different sizes of coated and uncoated MFs
are shown in Figure 8. Sensitivity is defined as the change in output power for each RH
level [36]. Linearity is the interaction of output powers concerning each percentage of
RH [37]. Figure 8a shows the sensitivity and linearity results, among which 2 µm coated
MF recorded the highest values: 0.0861 dB/% RH for sensitivity and 99.8% for linearity.
Figure 8b represents the sensitivity and linearity values for non-coated MF. The 2 µm
non-coated MF had the highest performance parameters with a sensitivity of 0.0615 dB/%
RH and linearity of 99.6%. The tapered regions of 5 µm and 10 µm show lower sensitivity
and linearity than the 2 µm tapered MF. The results for all parameters are tabulated in
Table 1. In both graphs, the 2 µm coated MF shows the best performance for sensitivity and
linearity. It is also shown to have more sensitivity towards a different level of humidity.
Moreover, by coating the MF with WS2, the humidity sensor recorded higher sensitivity
and linearity than the non-coated MF. These experiments show that WS2 has the potential
to improve humidity sensing capabilities.
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Table 1. Analysis of different diameters of MF with WS2 performance in humidity sensing activity.

Parameters

2 µm 5 µm 10 µm

Non-Coated
MF Coated MF Non-Coated

MF Coated MF Non-Coated
MF Coated MF

Linearity (%) 99.6 99.8 99.3 99.3 91.0 98.3

Sensitivity (dB/% RH) 0.0615 0.0861 0.0484 0.0484 0.0108 0.0089

Linear Range (% RH) 45–90 45–90 45–90 45–90 45–90 45–90

Figure 9 represents the repeatability results for coated and non-coated MF on all three
diameter sizes. This process is vital to reduce random error in measurement, which affects
the sensing process. For every MF condition, it was repeated three times with the same
setup. The sensitivity and linearity were calculated to ensure that all data collection was
always on track. The results show that the 2 µm MF exhibited the best sensitivity toward
RH changes for both coated and non-coated MFs, and among all the MF, the 2 µm coated
MF had the optimum RH sensing performance.
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6. Conclusions

In this paper, we demonstrated the performance of tungsten disulphide (WS2) as
a coating material on tapered MF for RH sensing applications. We used it to enhance
sensitivity with changing RH. The MF was formed with three different waist diameter
sizes, i.e., 2, 5, and 10 µm, using a flame brushing technique developed in-house. The
fabricated MFs were then prepared in two sets, non-coated and MFs coated with WS2; each
set had a similar size of tapered region. Both sets were experimentally characterized using
TLS with wavelength ranging from 1550 to 1550.1 nm with a step interval of 0.001 nm.
For these experiments with 45–90% RH, the results were compared and evaluated. The
sensitivity and linearity parameters were analyzed to identify the sensing performance.
The optimum performance was recorded for the WS2-coated 2 µm MF with sensitivity
and linearity values of 0.0861 dB/% RH and 99.8%, respectively. These results show the
potential of WS2 to become the potential sensing material for optical sensing applications.
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